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Metallic Graphene Nanoribbons
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ABSTRACT Isolated graphene nanoribbons (GNRs) usually have energy gaps, which scale with their widths, owing to the lateral quantum 
confinement effect of GNRs. The absence of metallic GNRs limits their applications in device interconnects or being one‑dimensional 
physics platform to research amazing properties based on metallicity. A recent study published in Science provided a novel method to 
produce metallic GNRs by inserting a symmetric superlattice into other semiconductive GNRs. This finding will broader the applications 
of GNRs both in nanoelectronics and fundamental science.
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Unlike the gapless semimetal of graphene [1], the graphene 
nanoribbons (GNRs) [2], whether armchair or zigzag type, 
usually own an energy gap scaling inversely with their 
widths due to the lateral quantum confinement effect of 
GNRs [3]. The raised energy gap, which is absent in gra‑
phene, enables the production of transistor [4], yet the robust 
semicondutivity of GNRs limits the applications in such as 
device interconnects or being one‑dimensional physics plat‑
form to explore superconductivity [5], Luttinger liquid [6], 
charge density waves [7] or spintronics [8]. Recently, one 
paper published in Science reported an ingenious method to 
produce metallic GNRs [9] based on the atomically precise 
bottom‑up synthesis.

In this work, Rizzo et al. in University of California at 
Berkeley used the precursor molecule 1 (Fig. 1a) to construct 
the GNRs with the symmetrical insertion of methyl groups 
to form the superlattice, which are named as the sawtooth 
GNR (sGNR). Upon annealing over 350 ℃, the sGNRs 
transformed to the called five sawtooth sGNRs (5‑sGNRs) 
with minor chemical bond rearrangements to form a five‑
membered ring along their edges, as also shown in Fig. 1a. 
Electronic structures of sGNRs and 5‑sGNRs were further 
determined both by scanning tunneling microscope (STM) 

spectroscopy and density functional theory (DFT) calcula‑
tions. The experimental dI/dV point spectrum of a sGNR is 
shown in Fig. 1b, and the sharp peak states as well as their 
projection in real space (Fig. 1c) at the zero bias clearly show 
the metallic density of states (DOS), which agrees well with 
the DFT results (Fig. 1d, e). In their further experiment, the 
DOS of 5‑sGNRs spans a broader energy range around the 
Fermi level, inducing the robust metallicity with a 20‑fold 
increase of the metallic bandwidth, as shown in Fig. 1.

This work provides a smart strategy for realizing the 
metallicity in GNRs to act as a candidate used in logic 
devices. In future, as a direct measurement of metallicity, 
variable temperature conductivity experiments can be fur‑
ther considered. Additionally, the performance comparison 
between these metallic GNRs and traditional metals like 
copper used in interconnect technology is also meaningful 
for the applications in nanoelectronics. Finally, considering 
the possible formation of junctions between these metal‑
lic GNRs and ordinary semiconductive GNRs, whether 
Ohmic contact or Schottky contact can be formed should 
also deserve extra efforts.
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