Supporting Information for

Identifying heteroatomic and defective sites in carbon with dual-ion

adsorption capability for high energy and power zinc ion capacitor

Wenjie Fan^{1,2}, Jia Ding^{1,*}, Jingnan Ding¹, Yulong Zheng², Wanqing Song¹, Jiangfeng Lin¹, Caixia Xiao¹, Cheng Zhong^{1,*}, Huanlei Wang^{2,*} and Wenbin Hu^{1,*}

¹ Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.

* Corresponding authors.

E-mail: jiading@tju.edu.cn (J. Ding), <u>cheng.zhong@tju.edu.cn</u> (C. Zhong), <u>wbhu@tju.edu.cn</u> (W. Hu)

² School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China.

* Corresponding authors.

E-mail: huanleiwang@gmail.com (H. Wang)

Supplementary Tables and Figures

S1. Experimental Section

S1.1 Electrochemical measurement

For zinc ion capacitors measurement, a CR2032 coin-type cell was chosen to test the electrochemical performance. The cathodes were prepared by coating the active material slurry on the stainless steel foil and drying at 80 °C for 12 h. The slurry is prepared by mixing BGCs (80 wt%), super P (10 wt%), polyvinylidene fluoride binder (10 wt%) in 1-methyl-2-pyrrolidinone. The mass loading of the active materials was about 1 mg cm⁻². The zinc metal foils polished with finegrained sandpaper were used as anodes. The thickness of the zinc foil is 0.5 mm. Filter paper was used as separator. 3 M Zn(CF₃SO₃)₂ aqueous solution (1 M refers to 1 mole of solute per kilogram deionized water) was used as electrolyte. The electrochemical performance including cycling voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) were tested on Chenhua electrochemical workstation (CHI760E, Shanghai, China) at room temperature. Both the CV and GCD were collected at a voltage range of 0.1-1.8 V. EIS was measured in the frequency range of 0.001-100000 Hz. Moreover, the specific capacity (C_1 , mAh g⁻ ¹), specific capacitance (C_2 , F g⁻¹), energy density (E_1 , Wh kg⁻¹) and power density $(P_1, W kg^{-1})$ were calculated through the following equations:

$C_I = I \cdot \Delta t / 3.6$	(1)
$C_2 = 2I \int V \cdot dt / V^2 m$	(2)
$E_I = \int V \cdot I \cdot dt/3.6m$	(3)
$P_1 = 3600 E / \Delta t$	(4)

where I, Δt , m and V are current, charge/discharge time, the mass of active materials on cathode and discharge voltage.

S1.2 Quasi-solid-state zinc ion capacitors fabrication

The gel electrolyte was prepared by adding 3.22 g ZnSO₄, 2.54 g LiCl and 2 g PVA (M. W. 300000) in 20 ml deionized water at 80 °C and stirring the solution for 1 h. For the assembly of pouch-type cells (2×5 cm, thickness: 4 mm), a piece of carbon cloth (1×4 cm, thickness: 0.32 mm, Cetech Co., Ltd., Taiwan) loaded with active material slurry was dried at 80 °C for 12 h and then covered with gel electrolyte followed by an age step in refrigerator at -10 °C for 6 h. The treated carbon cloth (active materials loading: 1 mg cm⁻²) and zinc foil (1×4 cm, thickness: 0.5 mm) were superimposed together and then sealed with aluminum thermoplastic paper. The cable-type cells (diameter: 3 mm, length: 15 cm) were assembled by winding the treated carbon fiber (diameter: 1.5 mm, mass loading: 0.2 mg cm⁻¹) with spiral zinc foil (width: 2 mm) and sealing with insulating tape. The electrochemical performance of the quasi-solid-state zinc ion capacitors was measured in a battery test system (Land, CT2001A, China) at room temperature.

Fig. S1 SEM micrographs of a BGC-750, b BGC-650, c BGC-850, d AC

Fig. S2 The calculation method of *R* value for **a** BGC-650, **b** BGC-750, **c** BGC-850 and **d** AC

Fig. S3 Fitted Raman spectra of a BGC-650, b BGC-750, c BGC-850, d AC using Voigt function

Sample	SBET	V _t	Pore volur	Pore volume (%)		T /T	XPS composition (at. %)		
	$(m^2 g^{-1})^a$	$(cm^3 g^{-1})^b$	V < 2 nm	V > 2 nm	- K	1D/1G	С	0	Ν
BGC-650	1723.19	0.797	50.38	49.62	1.27	2.62	85.82	9.88	4.30
BGC-750	3657.45	2.428	23.86	76.14	1.43	2.54	92.00	5.72	2.28
BGC-850	1493.60	1.061	22.35	77.65	1.48	2.27	90.95	7.94	1.11
AC	1263.35	0.541	87.83	12.17	1.52	1.68	91.07	8.93	0

 Table S1 Physical and chemical parameters for the bone glue derived carbons (BGCs) and activated carbon

^{*a*} Surface area was calculated by BET method.

^b The total pore volume was determined by DFT method.

Table S2 Relative surface concentrations (%) of nitrogen and oxygen species obtainedby fitting N 1s and O 1s core level XPS spectra

Samples	N-6	N-5	N-Q	N-X	O-I	O-II	O-III	
BGC-650	12.00	43.53	25.35	19.12	38.26	37.20	24.54	
BGC-750	14.30	40.81	26.82	18.07	40.05	36.75	23.20	
BGC-850	28.59	28.84	31.38	11.19	40.66	39.48	19.86	
AC	-	-	-	-	46.75	37.47	15.78	
								-

Fig. S4 a XPS survey spectra of BGCs and AC. High-resolution XPS C 1s spectra of **b** BGC-650, **c** BGC-750, **d** BGC-850, and **e** AC

Fig. S5 High-resolution XPS O 1s spectra of a BGC-650, b BGC-850, c AC. High-resolution XPS N 1s spectra of d BGC-650, e BGC-850

Fig. S6 CV curves of a BGC-650, b BGC-750, c BGC-850 and d AC based zinc ion capacitors at scan rates range of 2-500 mV s⁻¹

Fig. S7 Galvanostatic charge-discharge profiles of BGCs and AC based zinc ion capacitors tested at **a** 5 A g^{-1} , **b** 20 A g^{-1} , **c** 50 A g^{-1} and **d** 100 A g^{-1}

Table S3 The IR drops of the BGCs and AC electrodes at the current densities from 50 A $\rm g^{-1}$ to 100 A $\rm g^{-1}$

Current Density	BGC-650	BGC-750	BGC-850	AC
50 A g ⁻¹	0.420	0.270	0.217	0.316
60 A g ⁻¹	0.485	0.309	0.254	0.370
70 A g ⁻¹	0.552	0.336	0.291	0.424
80 A g ⁻¹	0.606	0.380	0.329	0.478
90 A g ⁻¹	0.668	0.413	0.368	0.531
100 A g ⁻¹	0.731	0.494	0.405	0.584

Fig. S8 Galvanostatic charge-discharge profiles for first three full voltage window (0.1-1.8 V) cycles for **a** BGC-650, **b** BGC-750, **c** BGC-850, and **d** AC based zinc ion capacitor at 0.5 A g⁻¹

Fig. S9 The Coulombic efficiency of BGCs and AC based zinc ion capacitor

Fig. S10 Specific capacitances at various current densities of BGCs and AC

Fig. S11 a Nyquist plots of BGCs and AC based zinc ion capacitors. **b** The corresponding simulating equivalent circuit

Table S4 Electrochemical performance comparison for reported carbon-based zinc

 ion capacitors

Cathode	Anode	Electrolyte	Cell	Capacity	Energy and	Capacity	Ref. #
(Specific		(Voltage)	configurati		power	retention	Publis
surface area)			on		density		h year
		3 M Zn(CF ₃ SO ₃) ₂	CR2032	257 mA h g ⁻¹ (0.5 A g ⁻	$168 \text{ Wh } \text{kg}^{-1}$		
		(aq.)		¹)	61696 kW		
		(0.1-1.8 V)		76 mA h g ⁻¹ (100 A g ⁻	kg^{-1}		
BGC	Zn fail			¹)			This
$(3657.5 \text{ m}^2 \text{ g}^{-1})$	ZII 1011	PVA gel	Pouch type	297 mA h g ⁻¹ (0.5 A g ⁻	182 Wh kg ⁻¹		work
		electrolyte	cell	¹)	$10419 \ W \ kg^{-1}$		
		(1 M ZnSO ₄)		159 mA h g ⁻¹ (15 A g ⁻			
		(0.1-1.8 V)		¹)			
Porous carbon	Zn on	Gelatin gel	Two-	132.7 mA h g ⁻¹ (0.2 A	$82.4 \text{ Wh } \text{kg}^{-1}$	87.6% after	[S1]
$(523 \text{ m}^2 \text{ g}^{-1})$	carbon	electrolyte	electrode	g ⁻¹)	3.76 kW kg ⁻¹	10000 cycles at	2020
	cloth	(1 M ZnSO ₄)	sandwich-	54.5 mA h g^{-1} (4 A g^{-1})		1 A g ⁻¹	
		(0.2-1.8 V)	supercapacit				
			or				
aMEGO	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	CR2032		106.3 Wh	93% after	[S2]
$(2957 \text{ m}^2 \text{ g}^{-1})$		(aq.) (0-1.9 V)			kg^{-1}	80000 cycles at	2019
					31.4 kW kg^{-1}	8 A g ⁻¹	
2D porous	Zn foil	1 M ZnSO ₄ (aq.)	Pouch type	116.8 mA h g ⁻¹ (0.5 A	$86.8 \text{ Wh } \text{kg}^{-1}$	81.3% after	[S3]
carbon		(0.2-1.8 V)	cell	g ⁻¹)	12.1 kW kg^{-1}	6500 cycles at	2019
$(597 \text{ m}^2 \text{ g}^{-1})$				55.4 mA h g ⁻¹ (20 A g ⁻		5 A g ⁻¹	

				1)			
N doping	Zn foil	1 M ZnSO ₄ (aq.)	Two	177.8 mA h g ⁻¹ (4.2 A	107.3 Wh	73.6% after	[S4]
porous carbon		(0-1.8 V)	electrode	g ⁻¹)	kg^{-1} 24.9 kW	100000 cycles	2019
(2762.7 m ² g ⁻¹)			system	108.2 mA h g ⁻¹ (33.6	kg^{-1}	at 16.7 A g ⁻¹	
				A g ⁻¹)			
rGO/CNT	Zn/graph	PAA gel	Three	104.5 F cm ⁻³ (400 mA	^a 49 mWh	98.5% after	[S5]
hybrid fiber	ite fiber	electrolyte	electrode	cm ⁻³)	cm^{-3}	10000 cycles at	2019
$(265 \text{ m}^2 \text{ g}^{-1})$		(2 M ZnSO ₄)	system	76.7 F cm ⁻³ (8000 mA	3599 mW cm ⁻	3200 mA cm ⁻³	
		(0-1.8 V)		cm ⁻³)	3		
Biomass	Zn foil	2 M ZnSO ₄ with 1	CR2025	305 mA h g ⁻¹ (0.1 A g ⁻	$118 \text{ Wh } \text{kg}^{-1}$	94.9% after	[S6]
derived carbon		M Na ₂ SO ₄ (aq)		¹)	3.158 kW	20000 cycles at	2019
(3401 m ² g ⁻¹)		(0-1.8 V)		$101 \text{ mA h g}^{-1} (5 \text{ A g}^{-1})$	kg^{-1}	2 A g ⁻¹	
Hollow carbon	Zn on	Polyacrylamide	Two-	86.8 mA h g ⁻¹ (0.5 A	59.7 Wh kg ⁻¹	98% after	[S7]
spheres	carbon	hydrogel	electrode	g ⁻¹)		15000 cycles at	2019
(819.5 m ² g ⁻¹)	cloth.	electrolyte	sandwich-	47.1 mA h g ⁻¹ (4 A g ⁻¹)		1 A g ⁻¹	
		(0.15-1.95 V)	supercapacit				
			or				
PPy	Zn/graph	2 M ZnSO ₄ (aq.)	Two	151.1 mA h g ⁻¹ (0.5 A	${}^{b}119 \text{ Wh kg}^{-1}$	76.7% after	[S8]
(Not reported)	ite paper	and 3 M NH ₄ Cl	electrode	g ⁻¹)	11.7 kW kg ⁻¹	1000 cycles at	2018
		(aq.)	system	87.6 mA h g ⁻¹ (16 A g ⁻		8 A g ⁻¹	
		(0.6-1.6 V)		¹)			
Graphene@PA	Zn foil	2 M ZnSO ₄ (aq.)	Two-	154 mA h g ⁻¹ (0.1 A g ⁻	$205 \text{ Wh } \text{kg}^{-1}$	80.5% after	[S9]
NI		(0.3-1.6 V)	electrode	¹)	2.455 kW kg ⁻	6000 cycles at	2018
(Not reported)			sandwich-	106 mA h g ⁻¹ (5 A g ⁻¹)	1	5 A g ⁻¹	
			supercapacit				
			or				
AC	Zn foil	2 M ZnSO ₄ (aq.)	CR2032	121 mA h g ⁻¹ (0.1 A g ⁻	84 Wh kg ^{-1}	91% after	[S10]
(1923 m ² g ⁻¹)		(0.2-1.8 V)		¹)	14.9 kW kg^{-1}	10000 cycles at	2018
				41 mA h g^{-1} (20 A g^{-1})		1 A g ⁻¹	

^{*a*} Calculated based on total volume of two electrodes and gel electrolyte.

^b Calculated based on total active mass of both cathode and anode.

(The other data are calculated based on the mass of cathode materials.)

Fig. S12 CV curves a BGC-650, b BGC-750, c BGC-850 and d AC based zinc ion capacitors at scan rates range of 2-100 mV s^{-1}

Fig. S13 Selected cathodic and anodic *b* values of peak currents (as indicated in Fig. S12) for **a** BGC-650, **b** BGC-750, **c** BGC-850 and **d** AC

S10/S15

Fig. S14 The capacitive contribution of a BGC-650, b BGC-750, c BGC-850 and d AC cathodes based zinc ion capacitors at scan rate of 10 mV s^{-1}

Fig. S15 Galvanostatic charge-discharge profiles of the initial several charge and discharge processes for **a** BGC-650, **b** BGC-750, **c** BGC-850, and **d** AC based zinc ion capacitor at 5 A g^{-1}

Fig. S16 a Specific capacities at various current densities and **b** galvanostatic chargedischarge profiles of BGC-750 electrode employing CMC binder

Fig. S17 *Ex situ* XPS spectra of AC at the selected states. The In signal in spectrum *a* came from the In film substrate to load the carbon powder for XPS tests. Due to the very few amount of carbon powder collected from the electrode, the electron beam has penetrated the carbon and reached the In substrate underneath

Fig. S18 Theoretical simulations of $Zn^{2+}/CF_3SO_3^{-}$ -adsorption on different graphitic structures. The configurations and corresponding adsorption energy values of single $Zn^{2+}/CF_3SO_3^{-}$ adsorbed in **a/d** N-6, **b/e** O-I doped and **c/f** flawless graphene surface. Side and top views (inserts) of electron density differences of $Zn^{2+}/CF_3SO_3^{-}$ absorbed in the **g/j** N-6, **h/k** O-I doped and **i/l** flawless carbon structures. Yellow and blue areas represent the increased and decreased electron density, respectively. Brown, purple, light yellow, green, gray, pink and blue balls represent C, N, O, S, F, Zn and H atoms, respectively. The iso-surfaces are the 0.002 electron bohr³

	N-6	N-5	O-I	O-II	Divacancy	Flawless
Zn^{2+}	-3.65	-4.81	-3.71	-4.58	-2.45	-0.02
CF ₃ SO ₃ ⁻	-3.68	-3.75	-2.10	-4.59	-3.53	-1.29

Table S5 The corresponding adsorption energy values (eV) of single Zn2+/CF3SO3-adsorbed at on different graphitic structures

Fig. S19 Ragone plots of BGC-750 based coin cells and pouch-type cells

References

[S1]Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. **387**, 124161 (2020). <u>http://doi.org/10.1016/j.cej.2020.124161</u>

[S2]S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. **9**, 1902915 (2019). <u>http://doi.org/10.1002/aenm.201902915</u>

[S3]Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. **66**, 104132 (2019). <u>http://doi.org/10.1016/j.nanoen.2019.104132</u>

[S4]H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. **31**, 1904948 (2019). <u>http://doi.org/10.1002/adma.201904948</u>

[S5]X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small. **15**, 1903817 (2019). <u>http://doi.org/10.1002/smll.201903817</u>

[S6]P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu et al., Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta. **327**, 134999 (2019).

http://doi.org/10.1016/j.electacta.2019.134999

[S7]S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A. 7, 7784-7790 (2019). <u>http://doi.org/10.1039/C9TA00733D</u>

[S8]X. Li, X. Xie, R. Lv, B. Na, B. Wang et al., Nanostructured polypyrrole composite aerogels for a rechargeable flexible aqueous Zn-ion battery with high rate capabilities. Energy Technol. 7, 1801092 (2019). http://doi.org/10.1002/ente.201801092

[S9]J. Han, K. Wang, W. Liu, C. Li, X. Sun et al., Rational design of nanoarchitecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale. **10**, 13083-13091 (2018). <u>http://doi.org/10.1039/C8NR03889A</u>

[S10] L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96-102 (2018). <u>http://doi.org/10.1016/j.ensm.2018.01.003</u>