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N‑Doped Graphene‑Decorated NiCo Alloy 
Coupled with Mesoporous NiCoMoO Nano‑sheet 
Heterojunction for Enhanced Water Electrolysis 
Activity at High Current Density

Guangfu Qian1, Jinli Chen1, Tianqi Yu1, Lin Luo1, Shibin Yin1 *

HIGHLIGHTS

• N-doped graphene-coated structure and mesoporous nano-sheet can efficiently boost active sites and stability for hydrogen and oxygen 
evolution reaction.

• NiCo@C-NiCoMoO/NF exhibits low overpotentials for HER (266 mV) and OER (390 mV) at ± 1000 mA cm−2.

• For water electrolysis, it can hold at 1000 mA cm−2 for 43 h in 6.0 M KOH + 60 °C condition.

ABSTRACT Developing highly effective and stable non-noble metal-
based bifunctional catalyst working at high current density is an urgent 
issue for water electrolysis (WE). Herein, we prepare the N-doped 
graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO 
nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for 
water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity 
with low overpotentials for hydrogen and oxygen evolution reaction 
(HER: 39/266 mV; OER: 260/390 mV) at ± 10 and ± 1000 mA cm−2. 
More importantly, in 6.0 M KOH solution at 60 °C for WE, it only 
requires 1.90 V to reach 1000 mA cm−2 and shows excellent stabil-
ity for 43 h, exhibiting the potential for actual application. The good 
performance can be assigned to N-doped graphene-decorated NiCo 
alloy and mesoporous NiCoMoO nano-sheet, which not only increase 
the intrinsic activity and expose abundant catalytic activity sites, but 
also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.

KEYWORDS N-doped graphene-decorated NiCo alloy; Catalyst; Mesoporous nano-sheet; Water electrolysis; High current density
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1 Introduction

Water electrolysis (WE) can convert renewable sources (i.e., 
solar, wind) into  H2 with clean and high energy density, 
but the sluggish kinetics of hydrogen and oxygen evolution 
reaction (HER and OER) at cathode and anode will hinder 
its efficiency [1–4]. Although Pt-/Ir-/Ru-based materials 
are the best choice to accelerate these two half-reactions, 
the large-scale hydrogen production is still limited by its 
shortage and high price [5–7]. Therefore, developing highly 
efficient non-precious metal materials to replace the noble 
metals for reducing cost and improving the performance of 
WE are necessary [8, 9].

Recently, 3D transition metal-based (TMB) catalysts 
are regarded as prospective alternative to noble metals, 
due to their abundance and low cost [10–14]. However, 
the 3D TMB catalysts are unstable under strong alkaline 
conditions. To address this problem, some researchers 
reported a novel strategy to construct the 3D TMB cata-
lysts with N-doped graphene-encapsulated to improve the 
stability and catalytic activity [15]. Deng et al. prepared 
the ultrathin graphene layer encapsulating FeNi alloy 
and efficiently optimizing its surface electronic struc-
ture [16], and it obtains a low overpotential (280 mV) 
at 10 mA cm−2 for OER and can keep for 24 h. Mu et al. 
fabricated a  Mo2C@C nanoball with hollow porous, 
which displayed low overpotentials for HER in 1.0 M 
KOH (115 mV) and 0.5 M  H2SO4 (129 mV) solution 
at − 10 mA cm−2 [17]. Furthermore, other investigators 
also use the N-doped carbon-encapsulated 3D TMB cata-
lysts, which can optimize the distribution of electrons 
on the metal surface and prevent metal dissolution under 
strong alkaline conditions to enhance the catalytic per-
formance [18–20], while most of them are focusing on 
studying the catalytic performance at low current density 
and also need high potential to drive the WE. Therefore, 
it is deserved to develop 3D TMB materials with excel-
lent WE catalytic activity at high current density [21–24].

Mesoporous-based materials are studied for enhanc-
ing the WE performance, because it has large specific 
surface area to expose abundant catalytic activity sites, 
increase the contact area with electrolyte, and prompt 
the gas and electrolyte diffusion at high current density 
[25–29]. Du et  al. reported  Co4N-CeO2 porous nano-
sheet self-supported on graphite plate  (Co4N-CeO2/GP), 

which shows low overpotentials for HER (24 mV) and 
OER (239 mV) at ± 10 mA cm−2 [30]. It can work at 
500 mA cm−2 for 50 h as cathode and anode, exhibit-
ing long-term durability. Ren et al. synthesized ternary 
3D  Ni2(1−x)Mo2xP nanowire with mesoporous structure; 
at − 500 and − 1000 mA cm−2, it exhibits low overpo-
tentials for HER (240 and 294 mV) under 1.0 M KOH 
solution [31]. Although researchers synthesized many 
mesoporous materials with better electrocatalytic perfor-
mance, the activity and durability at high current density 
still cannot meet the demand of industry WE. In addition, 
most of these catalysts are used only for HER or OER 
instead of overall water splitting.

In this work, we synthesize a highly efficient N-doped 
graphene-decorated NiCo alloy coupled with mesoporous 
NiCoMoO nano-sheet grown on 3D nickel foam as 
bifunctional catalyst (NiCo@C-NiCoMoO/NF) for WE. 
At ± 1000 mA cm−2, it exhibits excellent catalytic activ-
ity with low overpotentials for HER and OER (266 and 
390 mV). More importantly, under 6.0 M KOH solution 
and 60 °C, it needs ultralow voltage of 1.90 V to reach 
1000 mA cm−2 and can maintain for 43 h as anode and 
cathode.

2  Material Synthesis and Characterization

2.1  Synthesis of NiCo@C‑NiCoMoO/NF Nano‑Sheet

All reagents come from Aladdin Reagent Co., Ltd. with-
out purification. First, nickel foam (NF, 2.0 × 4.0  cm2) 
was treated in ethanol, 3.0 M hydrochloric acid, and ultra-
pure water with ultrasonication, respectively. Second, the 
cleaned NF was put in an 30 mL mix solution (ethylene 
glycol and ultra-pure water) with sodium molybdate dihy-
drate, urea, and nitrate hexahydrate. Third, the mix solu-
tion was put into steel autoclave for 12 h at 180 °C. After 
cooling to 25 °C, the NF was washed by ethanol and ultra-
pure water, and dried overnight under vacuum at 80 °C. 
Finally, the dried sample was treated at 450 °C under 5% 
 H2 + 95% Ar atmosphere for 2 h (3 °C min−1, the obtained 
sample named as NiCo@C-NiCoMoO/NF), and its mass 
load on NF was ≈ 10.5 mg cm−2. Besides, the dried sample 
was also heated at 350 and 550 °C. NiCo-NiCoMoO/NF 
nano-sheet was prepared in ultra-pure water with Ni, Co, 
and Mo source.
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2.2  Physical Characterization

The scanning electron microscopy (SEM, SU8220, 
HITACHI, Japan) was applied to research the surface 
morphology of the samples. X-ray diffraction (XRD) was 
examined on SmartLab, Rigaku Co., D8 Advance (Japan, 
λ(Cu Kα) = 0.15406 nm). Transmission electron microscopy 
(TEM) and high-resolution TEM (HRTEM) and energy-
dispersive X-ray (EDX) spectroscopy were characterized 
by a Titan ETEM G2 80-300 (FEI Co., USA). Raman spec-
troscopy was tested by a Raman spectrometer (Horiba Jobin 
Yvon Inc., France, λ(He/Ne) = 532 nm). The  N2 adsorption/
desorption of the samples at 77 K was evaluated by the 
ASAP 2420 instrument (USA, Micrometrics Co.). The ele-
ments status of catalyst was tested by X-ray photoelectron 
spectroscopy (XPS, ESCALab 250Xi, Al X-ray, USA).

2.3  Electrochemical Tests

All the electrochemical tests [linear sweep voltammetry 
(LSV), chronopotentiometry (CP), and electrochemical 
impedance spectroscopy (EIS)] used the standard three-
electrode system [counter electrode: graphite bar; working 
electrode: the as-prepared samples (the test area is 0.5  cm2); 
reference electrode: reversible hydrogen electrode] by elec-
trochemical workstation (Germany, ZAHNER) under 1.0 M 
KOH solution containing saturated  N2. EIS was tested by 
the three-electrode system from 100,000 to 0.1 Hz; the test 
potential was − 0.2 and 1.5 V for HER and OER (the ampli-
tude is 5 mV). The following formula was used for iR correc-
tion potential (Ecorr): (1) Ecorr = Emea − iRs, which was actu-
ally measured potential (Emea) and the solution resistance 
(Rs). Besides, the same condition was used for two-electrode 

system. The equation [(2) η = blog|j|+ a] was used to assess 
the Tafel plots; the Tafel slope and the current density were 
b and j. The turnover frequency (TOF) and mass activity 
(MA) of catalyst for HER and OER were calculated based 
on the reported literatures [32–35].

Besides, 20 wt% Pt/C (anode) and 40 wt%  IrO2/C (cath-
ode) were used as noble metal ink (bought from Aladdin 
with no further treatment). Ethanol (0.96 mL) and 5.0 wt% 
Nafion (40.0 μL) mixed solution was applied to disperse this 
noble metal catalyst; then, it was dropped on NF (0.5 cm2) 
and named as Pt/C/NF and  IrO2/C/NF.

3  Result and Discussion

3.1  Physicochemical Characterization

N-doped graphene-decorated NiCo alloy coupled with 
mesoporous NiCoMoO nano-sheet grown on 3D nickel foam 
was synthesized via the facile two-step methods (Fig. 1).

Figure S1a, b displays the SEM images of NiCo@C-
NiCoMoO/NF (annealed at 450 °C), which shows that the 
nanoparticles are uniformly anchored on the self-supported 
mesoporous nano-sheet, and it is different from the NiCo-
MoO nano-sheet precursors with smooth surfaces (Fig. S1c, 
d). The XRD images in Fig. S2 show that the three diffrac-
tion peaks belong to the (111), (200), and (220) planes of 
NiCo, respectively [36]. Furthermore, the other peaks can 
be assigned to  Ni2Mo3O8 (PDF#37-0855) and  Co2Mo3O8 
(PDF#34-0511). The XRD results indicate that it composed 
of NiCo alloy,  Ni2Mo3O8, and  Co2Mo3O8.

The TEM, high-angle annular dark field scanning TEM 
(HAADF-STEM), and high resolution TEM (HRTEM) 
images (Fig. 2a–g) are used to reveal the lattice fringe, 

Ni foam

Co(NO3)2·6H2O

Na2MoO4·2H2O

Ni(NO3)2·6H2O

CO(NH2)2

Solvothermal
160 °C 12 h

Annealing
450 °C 2 h

N-doped-graphene
decorated NiCo alloy

Mesoporous
NiCoMoO nanosheets

Fig. 1  Schematic for the synthesis of NiCo@C-NiCoMoO/NF
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N-doped graphene, mesoporous nano-sheet, and nano-
particles (≈ 30–50 nm) structure. The nanoparticles are 
evenly dispersed on the mesoporous nano-sheet (Fig. 2a). 
In Fig. 2b–d, the interplanar distances of 0.209 nm (111), 
0.248 nm (112), and 0.260 nm (200) are assigned to NiCo, 
 Ni2Mo3O8, and  Co2Mo3O8 (consistent with XRD), respec-
tively [37].

In Fig. 2d, the nanointerface existing between NiCo alloy 
and NiCoMoO can facilitate the redistribution of electrons to 
form the electron-rich and electron-poor species, which can 
optimize H* and  H2O/OH− absorption energy to enhance the 
performance for HER and OER [22, 38–40]. Furthermore, 
the NiCo alloy is obviously coated by graphene carbon (~ 4 
layers) in Fig. 2e, which can efficiently optimize the distri-
bution of electrons on the catalyst’s surface to improve the 
catalytic activity for WE and prevent the metal dissolution 
under strong alkaline condition [41].

The graphene carbon of NiCo@C-NiCoMoO/NF is also 
evaluated by Raman in Fig. S3, and the ratio of area D 
and G is 1.36 at 450 °C, which is larger than the ones 
prepared at 350 and 550 °C (1.16 and 1.28), suggesting a 
larger number of structural defects to enhance the catalytic 
activity for WE. The EDS elemental mappings (Fig. 2h–m) 
demonstrate that the Ni, Co, Mo, O, C, and N elements are 
evenly distributed on NiCo@C-NiCoMoO/NF nano-sheet.

Furthermore, it also exhibits mesoporous structure 
(2–15 nm) in Figs. 2b, c and S4a–c, which can be obtained 
by HAADF-STEM (Figs. 2f and S4d, e). To further study 
the mesoporous structure of NiCo@C-NiCoMoO/NF 
nano-sheet, the pore volume/size (0.18  cm3 g−1/6.83 nm) 
and specific surface area (102.96  m2 g−1) are characterized 
by  N2 absorption/desorption measurements, and the most 
parts range of mesoporous peaks is 1.0–14.0 nm (Fig. S5a, 
b and Table S1). This mesoporous nano-sheet possesses a 
large specific surface area to expose more catalytic active 
sites and enhance the activity for WE. Additionally, it can 
increase the contact area with electrolyte to accelerate the 
release of  H2/O2 bubbles and improve the performance for 
WE at high current density [26, 28].

Meanwhile, the NiCoMoO nano-sheet precursors also 
annealed at 350 and 550 °C to study the effect of post-treat-
ment at different temperatures on the crystal structure, mor-
phology, pore volume/size, and specific surface area (Fig. S5 
and Table S1). When the precursors annealed at 350 °C, the 
XRD peak intensities of  Co2Mo3O8,  Ni2Mo3O8, and NiCo 
are too weak (Fig. S2), the nano-sheets are smooth (Fig. S6a, 

b), and the size of mesoporous is mainly concentrated on 
11.1 nm (Fig. S5c, d). As annealed at 550 °C, the XRD peak 
intensities of  Co2Mo3O8,  Ni2Mo3O8, and NiCo are strong, 
the nano-sheets are broken (Fig. S6c, d), and the material has 
macroporous structure (Fig. S5e, f). Thus, temperature plays 
an important effect on the formation of this novel structure.

Subsequently, the electron interaction and elemental 
status of Ni, Co, Mo, O, C, and N elements in NiCo@C-
NiCoMoO/NF (Figs. 3 and S7) are proved by XPS. Interest-
ingly, for NiCo@C-NiCoMoO/NF, the Ni 2p peaks of Ni 
show a ≈ 0.4 eV positive shift compared with that of NiCo-
NiCoMoO/NF (Fig. 3a). For Co 2p, the peaks of NiCo@C-
NiCoMoO/NF also show a ≈ 0.5 eV positive shift as against 
to that of NiCo-NiCoMoO/NF (Fig. 3b). This is because 
of different electronegativity between Ni/Co (1.91/1.88), C 
(2.55), and N (3.04). So, the N-doped carbon can efficiently 
optimize the electron structure on the surface of NiCo alloy, 
which could be beneficial to enhance the performance for 
WE.

Particularly, the redistribution of electrons could lead to 
the charge transfer from NiCo to N-doped carbon, forming 
electron-rich N-doped graphene and electron-poor NiCo spe-
cies, which can optimize the absorption energy of H*,  H2O, 
and  OH− for HER and OER [38, 39]. The high-resolution 
XPS (HRXPS) spectra of Mo 3d are fitted into six mainly 
peaks at  Mo6+ (235.1/232.0),  Mo5+ (233.3/230.2), and  Mo4+ 
(232.5/229.4), respectively (Fig. 3c). Besides, the surface of 
catalyst is oxidized when exposed to air, resulting in high 
valence state of Ni, Co, and Mo (Fig. 3a–c). As shown in 
Fig. 3d, the C 1s has three peaks at C=O (288.4 eV), C–N 
(286.2 eV), and C–C (284.8 eV) that further prove the exist-
ence of the N-doped graphene. Moreover, the N 1s is located 
at 401.3 and 398.5 eV in Fig. 3e, assigned to graphitic-N 
and pyridinic-N, which can result in an important effect on 
catalytic activity for HER and OER [42]. The peaks of O 
1s are absorbed-O (532.4 eV) and NiCoMo-O (530.7 eV) 
in Fig. 3f, which demonstrate the exist of  Ni2Mo3O8 and 
 Co2Mo3O8.

Therefore, we can draw the concision that the N-doped 
graphene-decorated NiCo alloy coupled with mesoporous 
NiCoMoO nano-sheet  is successfully prepared. Combin-
ing SEM, BET, XRD, and Raman (Figs. S1–S6) results, 
the following formation mechanism can be proposed: dif-
ferent adsorption enthalpies of Ni, Co, and Mo can lead to 
the part of Ni and Co atoms segregated from precursors to 
form NiCo alloy [43, 44]. When the precursors annealed at 
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450 °C, parts of Ni and Co combine with O and Mo to form 
 Ni2Mo3O8 and  Co2Mo3O8, which can form the heterojunc-
tion between NiCo and NiCoMoO [37]. Besides, NiCo alloy 
can catalyze the organic carbon to form N-doped graphene 
[45]. The formation of mesoporous is caused by the dehydra-
tion from the precursors during the high-temperature calci-
nation process, and the pore size is related to the tempera-
ture. However, when the precursors are annealed at 350 °C, 
the NiCo alloy cannot be reduced from the precursors, and 

the surface organic carbon cannot form more N-doped gra-
phene. This will decrease the intrinsic activity for WE. It 
can also be seen from SEM and BET pictures (Figs. S6a, 
b and S5c, d), the material cannot be dehydrated to form a 
mesoporous nano-sheet structure due to the low tempera-
ture that cannot provide enough specific surface area for 
exposing more active sites. When the precursors annealing 
at 550 °C, the Ni and Co atoms will be quickly reduced to 
form strong NiCo alloy and NiCoMoO (Fig. S2), and the 
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nano-sheet is quickly dehydrated to form the macroporous 
structure and almost broken as nanoparticles (Fig. S6c, d). 
It will lower the intrinsic activity for WE and not provide 
large specific surface area for exposing more active sites. 
In summary, the N-doped graphene-decorated NiCo alloy, 
mesoporous NiCoMoO nano-sheet, and heterostructures are 
formed at 450 °C, which have the highest intrinsic activity 
and specific surface area. The heterostructures owe good 
electrochemical activity for HER and OER that is confirmed 
by LSV, Tafel, and EIS characterization (Figs. S11 and S22).

3.2  HER Catalytic Performance 
of NiCo@C‑NiCoMoO/NF

The HER electrocatalytic activity of the samples is evaluated 
by a three-electrode system under 1.0 M KOH solution con-
taining saturated  N2. Obviously, the NiCo@C-NiCoMoO/
NF only acquires low overpotentials of 39 and 266 mV 
at − 10 and − 1000 mA cm−2 (Figs. 4a and S8), which is 
lower than that of NiCo-NiCoMoO/NF (η−10 = 75  mV; 
η−1000 = 303 mV). Thus, the HER activity of NiCo@C-
NiCoMoO/NF is significantly improved after the NiCo 
alloy coated by N-doped graphene, especially at high cur-
rent density, which could be attributed to the N-doped 

graphene structure, optimized the surface electronic distri-
bution, and improved the activity and conductivity of cata-
lysts. Furthermore, the overpotentials of NiCo@C-NiCo-
MoO/NF are lower than that of precursors (η−10 = 141 mV; 
η−1000 = 443 mV), NF (η−10 = 223 mV; η−1000 = 561 mV) and 
closed to Pt/C/NF (η−10 = 30 mV; η−1000 = 231 mV). The 
overpotential at − 1000 mA cm−2 is better than most of the 
reported literatures (Fig. 4b), which indicates that it could 
meet the demand of catalytic activity at high current density 
for industrial-scale.

Figure S9 displays the LSV curves of NiCo@C-NiCo-
MoO/NF with/without iR correction for HER. Tafel slope 
obtained from LSV curve is carried out to further research 
the kinetic of HER (Fig. 4c). It shows that Tafel slope of 
NiCo@C-NiCoMoO/NF is only 63.50 mV dec−1, outper-
forming NiCo-NiCoMoO/NF (98.62 mV dec−1), precursors 
(117.19 mV dec−1), NF (159.99 mV dec−1), and similar with 
Pt/C/NF (42.24 mV dec−1). The smaller value of Tafel sug-
gests that NiCo@C-NiCoMoO/NF can readily overcome the 
kinetics process of HER. As shown in Table S3, TOF and 
MA values of NiCo@C-NiCoMoO/NF at the overpotentials 
of 50, 100, 150, and 200 mV also indicate its high catalytic 
activity for HER and better than most reported results in the 
literatures (Table S4).
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The EIS is used to estimate the kinetics of HER. In Fig. 
S10, it displays that NiCo@C-NiCoMoO/NF has the smallest 
charge transfer resistance (Rct) compared with another sam-
ples, revealing its best electron transfer rate. For precursors 
annealed at different temperatures, the LSV curves, Tafel 
slope, and EIS of HER are displayed in Fig. S11, which dem-
onstrate that the precursors annealing at 450 °C exhibits the 
best activity.

The electrochemical active surface area (EASA) is evalu-
ated by the double-layer capacitance (Cdl) that is obtained by 
cyclic voltammetry (CV) methods under no Faradic regions 
(Fig. S12). NiCo@C-NiCoMoO/NF has the largest Cdl value 
(28.81  mF  cm−2); it is better than NiCo-NiCoMoO/NF 
(17.60 mF cm−2), indicating that N-doped carbon-decorated 
NiCo alloy can effectively boost the intrinsic activity and 
speed up the HER process. The LSV curves are normalized by 
EASA in Fig. S13; apparently, the intrinsic catalytic activity of 
NiCo@C-NiCoMoO/NF is better than NiCo-NiCoMoO/NF.

In Fig. 4d, we research the HER durability of NiCo@C-
NiCoMoO/NF under 1.0 M KOH solution by CP measurement 

at − 1000  mA  cm−2, which displays excellent stability 
after continuous work 340 h, and the potential has only 
changed 18 mV. Furthermore, the value of overpotential 
at − 1000 mA cm−2 and Rct at − 0.2 V (vs RHE) after stability 
test is negligibly changed, indicating its good stability. The 
SEM (Fig. S15) and HRTEM (Fig. S16) images of NiCo@C-
NiCoMoO/NF after HER stability test showed that it main-
tains the pristine morphology. In addition, the HRXPS (Fig. 
S17) spectra of Mo, Ni, and Co for NiCo@C-NiCoMoO/
NF show no obvious change. These results confirm that the 
NiCo@C-NiCoMoO/NF exhibits an outstanding HER dura-
bility in 1.0 M KOH solution. The reason could be due to that 
the N-doped graphene-decorated NiCo alloy framework can 
prevent metal from dissolving in the strong alkaline solution, 
thus improving the chemical stability. Furthermore, the self-
supporting mesoporous nano-sheet has large specific surface 
area to increase wettability of the catalyst, facilitate the release 
of  H2 bubbles, avoid the use of binder to improve the elec-
tron transfer efficiency, and prevent the active substance from 
spalling to enhance the mechanical stability.
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3.3  OER Catalytic Performance 
of NiCo@C‑NiCoMoO/NF

We evaluate OER catalytic performance of NiCo@C-NiCo-
MoO/NF under the same solution. Figures 5a and S18 show 
their iR corrected LSV curves. Similar to HER performance, 
NiCo@C-NiCoMoO/NF has the low overpotentials (260 
and 390 mV) at 10 and 1000 mA cm−2, which is smaller 
than that of NiCo-NiCoMoO/NF (280 and 459 mV), indi-
cating that the N-doped graphene can efficiently adjust the 
surface electronic of the catalyst to enhance the intrinsic 
activity of catalyst. In addition, it outperforms precursors 
(η10 = 320 mV; η1000 = 554 mV),  IrO2/C/NF (η10 = 290 mV; 
η1000 = 476 mV), and NF (η10 = 340 mV; η1000 = 624 mV). 
Importantly, the overpotential at 1000 mA cm−2 is better 
than most of the reported literatures as shown in Fig. 5b. 
Furthermore, the LSV curves of OER for NiCo@C-NiCo-
MoO/NF with/without iR correction are shown in Fig. S19, 
and the LSV curves of OER for NiCo@C-NiCoMoO/NF and 

NiCo-NiCoMoO/NF are normalized by EASAs in Fig. S20 
similar to HER performance.

We obtain the Tafel slopes from the LSV curves 
to evaluate the kinetics of OER (Fig.  5c). Obviously, 
the Tafel slopes are decreased in following order: NF 
(170.19 mV dec−1) > precursors (155.56 mV dec−1) > NiCo-
NiCoMoO/NF (113 .13   mV  dec −1)  >  I rO 2/C /
NF (94.65  mV  dec−1) > NiCo@C-NiCoMoO/NF 
(75.15 mV dec−1). The EIS is used to estimate the electrode 
kinetics of OER. Figure S21 displays that NiCo@C-NiCo-
MoO/NF has the smallest Rct compared with another sam-
ples, revealing it possesses the best electron transfer rate. The 
above results also suggest that N-doped graphene-decorated 
NiCo alloy coupled with mesoporous NiCoMoO nano-sheet 
can effectively speed up the OER process. Additionally, in 
Fig. S22, the catalytic activity is different when precursors 
annealed at 350, 450, and 550 °C, and the precursors reduc-
ing at 450 °C exhibit the best activity. Subsequently, the 
calculated TOF and MA values of NiCo@C-NiCoMoO/NF 
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for OER (Table S5) display its fast OER kinetics, which is 
higher than most reported literatures (Table S6).

The stability is also essential to evaluate the perfor-
mance of catalyst, especially at high current density. As 
shown in Fig. 5d, NiCo@C-NiCoMoO/NF can keep for 
340 h at 1000 mA cm−2, and the change of potential is 
12 mV, displaying an outstanding stability. Furthermore, 
we also study the catalytic activity after stability test by 
LSV and EIS curves (Fig. S23), and it shows ignorable 
change. The outstanding durability of NiCo@C-NiCo-
MoO/NF could be assigned to the N-doped graphene-
decorated NiCo alloy, which can avoid corrosion in the 

harsh alkaline environment, thus improving the chemical 
stability. Besides, the self-supporting mesoporous nano-
sheet can enhance the mechanical stability, since it has 
large specific surface area to increase the contact area 
with electrolyte and prompt the release of  O2 bubbles.

After the durability tests, SEM images of NiCo@C-
NiCoMoO/NF maintain the pristine morphology (Fig. 
S24), and HRTEM images show that the mesoporous 
nano-sheet structure keeps well (Fig. S25), suggesting its 
excellent stability. In addition, the peak of the  Ni0 and 
 Co0 disappeared (Fig. S26a, b), which indicates that the 
surface of catalyst is oxidized during the OER process, 
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and it could form the Ni/CoOOH [46]. As displayed in 
Fig. S26c, the XPS spectra of  Mo4+ are also oxidized to 
 Mo6+ and  Mo5+, further suggesting the surface oxidation.

3.4  WE Catalytic Performance of NiCo@C‑NiCoMoO/
NF

Based on the excellent performance of NiCo@C-NiCoMoO/
NF toward HER and OER in alkaline solution, the two-elec-
trode system is used to evaluate the WE performance by 
using it as bifunctional catalyst (Fig. 6a).

In Fig. 6b, at 100 mA cm−2, under 1.0 M KOH solu-
tion at 30 °C, WE performance of NiCo@C-NiCoMoO/
NF (1.71 V) is better than that of the Pt/C/NF‖IrO2/C/NF 
(1.80 V) couple; it is smaller than most of the reported 
datum as shown in Fig. 6c. Interestingly, the NiCo@C-
NiCoMoO/NF only requires a low potential of 2.01 V to 
deliver 1000 mA cm−2 and perform for 295 h with negligible 
change (50 mV, Fig. 6d), indicating that it is promising for 
industrial hydrogen production.

Additionally, as exhibited in Fig. S27, the amount of  H2 and 
 O2 is acquired by water drainage method at 0, 25, 50, 75, 100, 
and 125 min operating at ± 10.0 mA. Figure S27a, b shows 
the volume ratio of  H2 and  O2 is about 2:1, which is consistent 
with theoretical values, suggesting the closely 100% Faradic 
efficiency for WE.

Subsequently, NiCo@C-NiCoMoO/NF is tested in 
6.0 M KOH + 60 °C (Fig. 6b, e); it only needs 1.90 V at 
1000 mA cm−2 and can keep for 43 h without obvious attenu-
ation. Therefore, NiCo@C-NiCoMoO/NF with excellent per-
formance provides a promising material for WE to hydrogen 
production.

4  Conclusions

In summary, NiCo@C-NiCoMoO/NF, a unique N-doped 
graphene-encapsulated structure and self-supported 
mesoporous nano-sheet, is prepared by solvothermal 
method and annealing treatment. As bifunctional cata-
lyst, it displays outstanding HER and OER performance 
in 1.0 M KOH solution, which only needs overpotentials 
of 266 and 390 mV at ± 1000 mA cm−2, and shows supe-
rior stability for 340 h with no evident activity decrease. 
More importantly, when applied as anode and cathode in 
6.0 M KOH + 60 °C, it exhibits a low potential of 1.90 V 

at 1000 mA cm−2 and can work for 43 h without obvi-
ous attenuation, exhibiting performance close to actual 
application. Therefore, this work may provide a promis-
ing catalyst with high catalytic activity and stability for 
industrial water electrolysis.
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