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Recent Advancements in Nanomedicine for ‘Cold’ 
Tumor Immunotherapy
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HIGHLIGHTS 

• Mechanisms underlying immunosuppressive tumor immune microenvironment (TIME) in ‘cold’ tumor are summarized.

• Recent nanotechnology-based strategies for ‘cold’ TIME firing up are emphasized.

• Challenges and perspectives of nanomedicines for ‘cold’ tumor treatment are proposed.

ABSTRACT Although current anticancer 
immunotherapies using immune check-
point inhibitors (ICIs) have been reported 
with a high clinical success rate, numerous 
patients still bear ‘cold’ tumors with insuf-
ficient T cell infiltration and low immuno-
genicity, responding poorly to ICI therapy. 
Considering the advancements in precision 
medicine, in-depth mechanism studies 
on the tumor immune microenvironment 
(TIME) among cold tumors are required 
to improve the treatment for these patients. 
Nanomedicine has emerged as a promising 
drug delivery system in anticancer immu-
notherapy, activates immune function, 
modulates the TIME, and has been applied 
in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosup-
pressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well 
as a brief talk about the feasibility of clinical translation.
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1 Introduction

Immunotherapy has emerged as a novel and effective treat-
ment for oncology patients by activating the host immune 
system to eliminate cancer cells [1]. Particularly, therapies 
involving immune checkpoint inhibitors (ICIs) have shown 
remarkable and long-lasting clinical outcomes in some 
advanced carcinoma, represented by programmed death pro-
tein-1 (PD-1) or its ligand (PD-L1) antibody and cytotoxic 
T-lymphocyte-associated antigen-4 (CTLA-4) antibody 
therapies. However, along with further clinical research, it 
was reported that the efficacy of ICI therapy was not uni-
form among cancer patients or cancer types, where only 
about 20% patients exhibited a positive T cell response and 
clinically benefited from this therapy [2–9]. Patients with 
favorable responses to ICI therapy always have a high level 
of tumor-infiltrating lymphocytes (TILs) in tumor lesions, 
and such tumors are normally labeled as hot tumors [10–12]. 
In contrast, patients responding poorly usually bear tumors 
with insufficient T cell infiltration, which are regarded as 
cold tumors [13]. In-depth mechanism studies on tumor 
immune microenvironment (TIME) of hot tumors have 
reported that immunosuppressive factors in hot tumors are 
involved in a negative feedback loop driven by TILs, such 
as the up-regulation of PD-L1, CTLA-4, and IDO [3, 14], 
which are rarely found in TIL-lack cold tumors. Instead, 
there are low immunogenicity and T cell exclusion in cold 
tumors [15, 16]. Furthermore, numerous clinical studies 
have proposed that prognostic and clinical outcomes of 
immunotherapy greatly relied on the T cell infiltration rate 
in various tumors [17–21]. Therefore, it is critical and chal-
lenging to increase T cell infiltration for cold tumors.

In general, effective T cell recruitment requires an 
enhanced immune circle in tumor lesions. First, the patrol-
ling dendritic cells (DCs) are recruited to tumor lesions 
through inflammatory chemokines (such as CCL4) produced 
from tumors [22, 23] in early tumorigenesis. Thereafter, 
endogenous adjuvants (including cytosolic DNA) released 
from dying tumor cells activate the  CD103+ subset of DCs to 
recognize the targeted tumor cells (via DNA-cGAS-STING 
pathway), following by type I interferon (IFN) generation 
which in turn recruits DCs and promotes DC translocation 
into tumor-draining lymph nodes (TDLNs) for the tumor-
specific T cell activation [24–27]. At the TDLN stage, the 
maturity and functionality of DCs and immunogenicity of its 

presented epitopes determines the extent of T cell immune 
response [28, 29]. Then, the activated effector T cells enter 
the bloodstream and screen for inflammatory microenviron-
ments through surface-expressed homing molecules, i.e., 
P-selectin and E-selectin ligands and the chemokine recep-
tor CXCR3 [30, 31]. Finally, accompanied with the selec-
tin-mediated endothelial adhesion and chemokine-mediated 
integrin activation, effector T cells can thus successfully 
migrate into tumor tissues and kill tumor cells [32].

In the TIME of cold tumors, as expected, the immune 
circle is interrupted in three major pathways (Fig. 1). 
First is T cell priming inhibition, including decreased 
immunogenicity and failed antigen-presenting cells 
(APCs) and T cell recruitment, which is mainly caused 
by genetic mutation. Second is T cell exclusion. The dep-
osition of extracellular matrix and stiff stroma-induced 
hypoxia in cold tumor lesions can build a physical and 
chemical barrier to obstruct the T cell infiltration. Fur-
thermore, numerous immunosuppressive cells, repre-
sented by myeloid-derived suppressor cells (MDSCs), 
Regulatory T cells (Tregs) and tumor-associated mac-
rophages (TAMs), are widely settled in the TIME of cold 
tumors and suppress the cytotoxicity of  CD8+ T cells via 
T cell exhaustion. Therefore, a multiple combinatorial 
therapy addressing these characteristics of cold TIME is 
desiderated for reversing immunosuppressive TIME and 
conquering the cold tumors.

Nanomedicine is the medical use of nanoscaled cargo to 
prolong circulation time, to protect the loaded-drug from 
degradation, and to promote the accumulation and drug 
release into targeted tissues and cells, which has been exten-
sively developed as diagnostic, therapeutic and preventive 
medicine in healthcare [33–38]. Up to date, there has been 
over 200 products of nanomedicines either approved or under 
clinical investigation, covering almost all types of nano-
materials, for example, liposomes (Doxil), protein-based 
nanoparticles (Abraxane), polymeric micelles (Apealea), 
liposomal gene delivery formulation (NCT02369198) and 
inorganic nanoparticles  (Sienna+) [39]. Similarly, the appli-
cation of nanomedicines in anti-tumor immunotherapy has 
also received enormous attention and shown great advan-
tages over traditional strategies. Abraxane and Doxil are the 
two most studied products of nanomedicine in combination 
with immunotherapy, particularly with PD-1/PD-L1 anti-
body therapy, among which, the combination of Abraxane 
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and atezolizumab has been the first immunotherapeutic regi-
men approved by FDA for locally advanced or metastatic 
triple-negative breast cancer [40]. Furthermore, autoim-
mune toxicity caused by nonspecific immune stimulation 
remains as a major challenge to current immunotherapies, 
and numerous studies have shown that delivery of immu-
nomodulatory agents via nanocarriers can not only protect 
the cargo from leakage and degradation, but also enables its 
targeted accumulation, resulting in alleviated toxicity and 
reinforced T cell responses as opposed to systemic adminis-
tration of free agents [41–43]. As expected, several advanced 
nanomedicines involving nucleic acids and vaccines have 
been processed in clinical trials, such as mRNA nanovaccine 
(lipo-MERIT) for melanoma (NCT02410733), anti-EGFR 
bispecific antibody minicells with microRNA for mesothe-
lioma and non-small cell lung cancer (NCT02369198) and 
autologous cell vaccines for breast cancer (NCT00317603) 
[44].

As to cold tumors, co-stimulating multiple immunosup-
pressive pathways synergistically is on demand for APC- 
or T cell-based immune initiation [45–47]. However, it is 
difficult to accomplish this goal by systemic administration 

of various immunomodulatory agents due to their dif-
ferences in the pharmacodynamic and pharmacokinetic 
properties. In this regard, incorporation of these agents 
in one nanoparticle would serve as an ideal approach for 
synergic drug exposure [44]. Furthermore, desmoplastic 
extracellular matrix (ECM) in cold tumor lesions can act 
as a physical barrier to both obstruct T cell infiltration and 
impair the permeation of free drugs, requiring the early 
breaching of the matrix barrier before the therapeutic pro-
cess. It has been widely reported that various nanomateri-
als can endow the corresponding cargos with capability to 
penetrate the matrix barriers by particle size reduction or 
charge reversal from negative to positive upon meeting the 
enzymes, light or lower pH. Moreover, the highly modifi-
able chemical groups on the surface of the nanoparticles 
provide the feasibility to target multiple cells in the tumor 
microenvironment [17, 48–52]. In this review, we sum-
marize the mechanisms underlying immunosuppressive 
TIME in cold tumors and address recent advancements in 
nanomedicine for cold TIME reversal-based therapies, as 
well as the feasibility of clinical translation of nanomedi-
cine for immunotherapy.
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Fig. 1  Immunosuppressive mechanisms of the tumor immune microenvironment in cold tumors. STAT3, signal transducers and activators of 
transduction-3; NF-κB, nuclear factor kappa-B; CCL4, CC-chemokine ligand 4; CXCL9/CXCL10, CXC-chemokine ligand 9/10; VCAM-1, 
vascular cell adhesion molecule 1; ICAM-1/2, intercellular adhesion molecule-1/2; VEGF, vascular endothelial growth factor; PDGF, platelet-
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2  Application of Nanomedicines in Treating 
Cold Tumors

In recent years, as the rapid development of medical test 
and diagnostic procedures, there has been an increasing 
number of voices calling for treating cancer patients with 
precision medicine based on the specificity of TIME char-
acteristics [53]. Meanwhile, various nanomaterials have 
been developed in accordance with the healthcare require-
ments. Therefore, in the following sections, the application 
of nanomedicines would be introduced according to the 
characteristics of TIME in cold tumor rather than material-
dependence, which would be divided into three main cat-
egories, including strategies for T cell priming resumption, 
T cell exclusion overcoming and T cell exhaustion rever-
sion. In each category, the characteristic of TIME would 
be outlined first, and the corresponding strategies would 
be proposed therewith.

2.1  Strategies for T Cell Priming Resumption

2.1.1  Characteristics of T Cell Priming Inhibition 
in Cold Tumors

APCs (mostly DCs) play an important role in de novo gen-
eration of T cell specific immunity; however, APC functions 
are always disrupted by numerous factors in cold tumors 
[22, 54]. The Wnt-β-catenin pathway is the first identified 
tumor-intrinsic oncogene pathway mediating the disruption 
of APC recruitment in patients with cold tumor. During the 
activation of the Wnt-β-catenin signaling pathway, tumors 
induce activating transcription factor 3 (ATF3)-dependent 
transcriptional suppression of CCL4, a DC recruitment-
supporting chemokine, thus reducing DC recruitment and 
inhibiting T cell priming [22, 55]. Meanwhile, activation 
of the Cox1/2-prostaglandin E2 (PGE2) pathway deters 
DC infiltration through the down-regulation of DC chemo-
attractants CCL5 and XCR1 owing to natural killer (NK) 
cell impairment [56].

Furthermore, cytokines including macrophage colony-
stimulating factor (M-CSF) [57], transforming growth factor 
β (TGF-β) [58], interleukin (IL)-6 [59], and IL-10 [60] in the 
TME potentially disrupt DC maturation and antigen presen-
tation in tumors, thus inhibiting T cell priming. Meanwhile, 
MYC-driven up-regulation of CD47 [61], an antiphagocytic 

protein inhibiting the phagocytic effects of macrophages and 
DCs on tumor cells, on tumor cells can ultimately impair the 
potential of APCs to prime effector T cells.

Thirdly, alterations in the conformation and number of 
epitopes presented to APCs are the major mechanisms regu-
lating antigen processing and presentation in APCs [62]. 
For example, the alterations in the proteasomal or post-
proteasomal machinery can impair antigen processing by 
disrupting the epitope binding to major histocompatibility 
complex (MHC) molecules [63, 64], and mutations and epi-
genetic changes in MHC-I can regulate the presentation of 
processed epitopes on the tumor cell surface [65, 66]. The 
loss-of function mutations in PTEN or activation mutations 
in PI3K can reduce the autophagy in cold tumors, which 
results in decreased presentation of danger signals to APCs. 
Furthermore, antigenic discontinuum owing to the onco-
genic mutations (including those in KRAS) or chromosome 
rearrangements (such as BCR-ABL1) can induce a non-
destructive immune response that is aberrantly considered 
as tumor immunity [67–69].

2.1.2  DC Recruitment and Functional Enhancement

According to the characteristic of T cell priming inhibition, 
DC recruitment is the first step for T cell activation. CCL4 is 
a crucial chemokine for  CD103+ DC recruitment; however, 
it is usually lacking in tumor lesions [70], and the reten-
tion of external CCL4 in tumor lesions is still a problem. 
Recently, a fusion protein of CCL4 and collagen-binding 
domain (CBD) of von Willebrand factor was generated to 
achieve stromal-targeted delivery of CCL4 to increase the 
retention of CCL4. As expected, intravenous administration 
of CBD-CCL4 can remarkably enhance the recruitment of 
 CD103+ DCs and  CD8+ T cells, exhibiting significant anti-
tumor effects in multiple tumor models in combination with 
ICB immunotherapy [26]. Furthermore, recent studies have 
revealed that autophagy in DCs can promote both MHC 
class I and II presentation of endogenous or exogenous anti-
gens. Hence, Wang et al. tried to conjugate both autophagy-
inducing peptide (Bec1) and OVA peptide to the terminals 
of a pH-responsive polymer to form a nano-activator for T 
cells activation [71] (Fig. 2a). In this work, they reported 
that the buffering capability and low-pH-triggered morphol-
ogy swollen of nano-activator were beneficial to endosomal 
escape and peptide exposure, which could increase the cross 
talk between autophagy and functional antigen presentation, 
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eventually leading to the high-efficiency antigen cross-pres-
entation and antigen-specific T cell generation. Stimulator 
of IFN genes (STING) plays a crucial role in cyclic dinu-
cleotide (CDN)-driven DC maturation [72], and its potent 
agonist, 2′3′-cyclic guanosine monophosphate-adenosine 
monophosphate (cGAMP), are widely used to activate 
DCs in encapsulation with various cationic nanocarriers 
including cationic liposomes [73]. Nevertheless, the tox-
icity of these macromolecular cationic materials and inef-
ficient cytosolic cargo transport greatly limit the cGAMP 

delivery [74, 75]. Currently, some novel pH-sensitive cati-
onic polymers offer the potential solutions. A pH-responsive 
cross-linkable polymersome was developed by Shae et al. 
to encapsulate cGAMP to promote endosomal escape of 
cargos in response to endolysosomal acidification to disas-
semble membrane-destabilizing segments [76]. In another 
study, cGAMP was encapsulated into pH-sensitive acety-
lated dextran (Ace-DEX) polymeric microparticles (MPs) 
to achieve an approximately 50-fold in vivo increase in type 
I IFN responses I comparison with soluble cGAMP [77] 

(a)

(b)

(c)

H2N
N

N

NN

HO

HO
P

O

O

O

O
O

S
P

O
S (R)

(R)

O

O

O

O

O O
6

O O
OH

O

N
H

N
H

N
H

N
H

N
H

N
H

5'

5'
NN

N
N

NH2

NH2

NH3

NH3

2'3'

= cGAMP
Nucleus

STING

100

80

60

40

20

0

HA + cGAMP Particles

HA alone
pH 5
triggered
release

cGAMP Encapsulation
in Ace-DEX Particles

STING
Activation

cGAMP K2(SL)6K2
Multidomain peptide (MDP) Anti-parallel β-sheet nanofiber MDP gel

2 µm

Antigen peptide (OVA)

Autophagy-inducing
peptide (Bec1)

NH2-PEG-2000

Dendritic cell

T cell

Lysosome escape

Autophagy induction

Cross presentation
Tumor cell

Pe
rc

en
t s

ur
vi

va
l

0 7
Days

14

Long-Term Protection
Against Influenza

−

−

+ NH3 +

+ NH3+
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(Fig. 2b). Furthermore, a previous study introduced thixo-
tropic and extracellular matrix-mimicking multi-domain 
peptides (MDPs) to load cGAMP in the form of anti-parallel 
β-sheet nanofibrous hydrogels in solution, which markedly 
improved the overall survival in a challenging murine model 
with an eightfold lower cGAMP release rate as opposed to 
standard collagen hydrogel-mediated delivery [78] (Fig. 2c).

Adjuvants, such as the agonists of Toll-like receptors 
(TLR), are a major class of immune-modulatory molecules 
that can effectively activate DC cells and promote anti-
gen presentation to T cells [79]. Currently, there are 11 
types of TLRs found in the cells and their locations that 
can be divided into two categories: on cytomembrane or 
endosomal membrane [80]. Particularly, TLR1, TLR2, 
TLR4, TLR5, TLR6, TLR10, and TLR11 are located on 
cytomembrane, and TLR3, TLR7, TLR8, and TLR9 are 
located on endosomal membrane. As for the delivery of 
TLR agonists, releasing the cargo in appropriate location 
can maximize the efficacy of agonists, while avoiding rapid 
diffusion of agonists from the site of injection is also the 
concerns we should take seriously so as to reduce the severe 
systemic inflammation. In regard to the cell membrane-
located TLR activation, adequate and effective exposure of 
their agonists to cell surface is warranted. Monophosphoryl 
lipid A (MPLA) is an FDA-approved detoxified derivative 
of lipooligosaccharide (LOS) with immune stimulatory 
effects through engagement of TLR4. According to the 
TLR4 located on cell membrane, Traini et al. [81] devel-
oped a nanovaccine featuring MPLA adhered to mIONPsp 
through hydrophobic interactions and model antigen (OVA) 
linked by hydrazine bonds to create adjuvant-exposed and 
antigen-protected nanostructures for maximum TLR4-based 
DC activation, and the results indicated that it would be a 
promising strategy to improve the immunostimulatory prop-
erties and reduce cytotoxicity through exposed delivery of 
MPLA and OVA by mIONPsp. Furthermore, it’s also criti-
cal to release cargo from the nanovaccine in endosome for 
delivery of endosomal membrane-located TLRs’ agonists. 
Thus, the mildly acidic and hydrolase-rich microenviron-
ment of endosome might be served as trigger for controlled 
drug release. For instance, Nuhn et al. [82] developed a 
self-assembled, pH-degradable TLR7/8 agonist-ligated 
nanoparticle carrier (IMDQnano) that can protect TLR7/8 
agonist from systemic bio-distribution and unfavorable 
degradation, while retaining the valid anti-tumor efficacy 
of localized IMDQ treatment. Meanwhile, a study from 

Wang et al. [83] reported an amphiphilic conjugation of 
TLR7/8 agonist to poly (ethylene glycol) (PEG) via endo-
somal enzyme-responsive linker that self-assembled to form 
a nano-vesicular structure to achieve lymph node-focused 
drug delivery and enzyme-triggered release of native drugs 
after endocytosis, eventually inducing robust maturation of 
DC cells in vivo (Fig. 3).

Finally, artificial DC-derived nano-vaccines, regardless 
of DC membrane coating formulations [84] or DC-derived 
microvesicles [85], have been reported to have the inherent 
potential of antigen presentation and T cell stimulation from 
activated DCs and to exert marked therapeutic and prophy-
lactic effects against tumors.

2.1.3  Synchronous Delivery of Adjuvants 
and Neoantigens

Efficient induction of antigen-specific adaptive immunity 
requires two conditions: successful tumor-specific neoan-
tigen delivery to APCs and sufficient APC activation, a 
so-called adjuvant effect [86–88]. Recent studies on nano-
technology-based co-delivery strategies, apart from ICD 
induction [89], have reported that subunit antigens (includ-
ing ovalbumin [90]) and antigen-coded mRNAs [91] are 
the most commonly used model antigens, and these applied 
adjuvants were primarily classified as TLR agonists includ-
ing lipopolysaccharide (LPS) for TLR4 [92], imiquimod and 
resiquimod for TLR7/8 [93], and CpG for TLR9 [94].

Simultaneous co-delivery of specific antigen epitopes 
and immunostimulant moieties is required for efficient 
vaccine immunogenicity [45]. Owing to the nucleic acid-
like property of CpG and the facile modification of nucleic 
acids, Jin et  al. [95] reported a self-assembling lipid-
DNA-peptide nano-aggregation (INA) hybridized with 
the CpG motif, lipid-DNA, and antigen peptide-DNA for 
co-delivery of multiple adjuvants and antigens together 
(Fig. 4). The hybrid-DNA nanostructures could efficiently 
co-deliver the antigen peptide and CpG to CD8α+ DCs in 
the tumor-DLN, promoting potent antigen presentation to 
regulatory T cells via DC activation. Finally, INA treat-
ment could exhibit anti-tumor and anti-metastasis effects 
against carcinoma and melanoma in vivo. Another study 
reported a generalizable conjugation approach for co-deliv-
ering peptide antigens and adjuvants in a self-assembling 
vaccine platform (SNP-7/8a) of uniform size (~ 20 nm) 
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[96], containing hydrophilic positive charge-modified 
antigen peptide, cathepsin degradable linkers, and hydro-
phobic poly-TLR-7/8 agonists. Subcutaneous vaccination 
of SNP-7/8a containing 179 types of predicted neoantigens 
in mice activated CTLs against ~ 50% of neoantigens with 
high predicted binding affinity of MHC-I, thus reinforcing 
tumor clearance.

2.1.4  Targeted Intracellular Delivery of Adjuvants 
and Neoantigens

Endogenous antigen can directly activate antigen-specific 
CTLs via MHC-I-mediated antigen presentation, while 

exogenous antigens are presented by MHC-II to activate 
regulatory T cells, which facilitates CTL-mediated cel-
lular immunity or B cell-mediated humoral immunity 
[97]. Hence, cytosolic delivery of exogenous antigens is 
necessary for the antigen to be considered an endogenous 
antigen and presented to CTLs via MHC-I. However, 
most adjuvants are ligands of TLR7/8/9, expressed in DC 
endosomes [98]. In order to deliver not only adjuvants, 
such as CpG-DNA, to endosomes but also antigens to 
the cytosol of DCs, Yoshizaki et al. developed liposomes 
modified with a pH-sensitive polymer (MGlu-HPG) loaded 
with cationic lipids (TRX), Toll-like receptor 9 ligand 
(CpG-DNA), and the antigen peptide (ovalbumin) for 
efficient antigen delivery and DC activation [94]. After 
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the classic receptor-mediated endocytosis, adjuvants, 
TRX, and CpG-DNA bound to their cognate endosomal 
receptors and stimulated DC activation (up-regulation 
of co-stimulatory molecules and cytokine production). 
Thereafter, owing to the pH-sensitive membrane fusion 

potential of MGlu-HPG, the endosomal membrane was 
gradually degraded and the loaded antigen was released 
into the cytosol for MHC-I-mediated cross-presentation 
to CTLs, resulting in high immunity-inducing effects for 
effective cancer immunotherapy.
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2.1.5  mRNA‑Based Vaccines

Recently, mRNA encoding antigen-based vaccines have 
received increasing attention for developing anti-tumor 
immunity [99, 100]. Compared with conventional live-
attenuated or subunit vaccines, the advantages of mRNA-
based vaccines are obvious [101], including less safety 
concerns, the potential to produce various personalized 
tumor antigens with GMP quality, and intra-cytosolic 
translation of selected antigens in DCs, which can be 
directly presented to CTLs via MHC-I [97]. Nano-deliv-
ery strategies have facilitated effective intra-cytosolic 
delivery of mRNAs in DCs; however, it is not that easy to 
successfully translate the delivered mRNAs into coding 
antigens in DC cells. Verbeke et al. and other groups have 
reported that foreign mRNA is usually recognized by the 
intracellular danger-sensing receptors, such as TLRs, thus 
inducing an innate immune response and burst release of 
type I IFNs, which in turn reduce the mRNA stability and 
further translation [91, 102, 103]. Therefore, it is criti-
cal to develop a delivery system that can not only protect 
mRNA, but also enable efficient release and translation at 
the appropriate time for mRNA vaccine delivery. Primar-
ily, researchers have generated nucleotide-modified mRNA 
to protect mRNA by preventing the release of mRNA 
recognition-associated type I IFNs; however, this strat-
egy resulted in the loss of mRNA-related self-adjuvant 
effects, thus affecting DC activation and T cell priming. 
Furthermore, they developed a lipid nanoparticle encap-
sulating nucleoside-modified mRNA and TLR4 agonist 
monophosphoryl lipid A (MPLA) to ensure both antigen 
up-regulation and moderate the DC activation [91]. Simi-
larly, to compensate for reduced DC stimulation owing to 
the reduced type I IFN, they assessed a combined delivery 
tactic of immune-silent nucleoside-modified mRNA and 
activator of invariant natural killer T cells (iNKT), gly-
colipid α-galactosylceramide (α-GC) in their recent study 
[104]. In this study, α-GC served as an indirect adjuvant 
for inducing controllable DC activation via bidirectional 
activation between iNKT cells and α-GC-presenting DCs, 
thus contributing to sevenfold tumor infiltration of anti-
gen-specific CTLs than the current “gold standard” on the 
administration of mRNA vaccines.

2.1.6  Lymph Node Targeting

Lymph nodes (LN) are crucial secondary lymphoid organs 
where abundant APCs and T cells reside and interact for 
immune surveillance and responses against pathogens and 
tumors [105]. Therefore, increasing the transport of vac-
cines to LNs would be a beneficial strategy for reinforcing 
the immune responses. Numerous previous studies have dem-
onstrated that nano-vaccines containing antigens and adju-
vants exhibited the superior capability of increasing lymph 
node accumulation due to their cargo protection and lymph 
node-targeting transport [106]. In general, there are two ways 
for peripherally administrated vaccines traveling to lymph 
nodes that is passive transport through afferent lymphatics 
or peripheral DC cells-mediated active transport. Nowa-
days, it is a common agreement that translocating vaccines 
through the passive transport is much more efficient than 
the active pathway [107]. Thus, we will focus on the novel 
strategies that reinforced the lymph node accumulation via 
passive transport in this section. Recently, Nakamura et al. 
[108] reconfirmed that the negatively charged 30-nm-sized 
lipid nanoparticles (LNPs) were more efficiently translocated 
to the deep cortex of LNs and taken up by  CD8+ DC cells 
through afferent lymphatics than the larger-sized LNPs or 
neutral/positively charged 30-nm-sized LNPs (Fig. 5a). Many 
researchers [106] also suggested that modifying the small-
sized nanoparticle with DC-targeting molecular (such as, 
mannose [109], Fc receptor [110] or alginate [111]) could 
improve the possibility of nanoparticles being ingested by 
DC cells after entering the lymphatic vessels, thereby facili-
tating their trafficking to LNs. Similarly, endogenous vec-
tors, represented by albumin, with the capability of entering 
lymphatics in the interstitium can also be exploited for LN-
targeting drug delivery. Irvine group [112] was the pioneer to 
discover that long-chain fatty acids or hydrophobic molecules 
can bind to albumin with hydrophobic interaction, and they 
have developed a variety of long-chain fatty acids coupled 
adjuvant products and demonstrated their readily facilitating 
LN accumulation of adjuvants by hitch-hiking the albumin. 
Furthermore, several strategies focusing on the regulation 
of lymphatic vasculature have also been developed to facili-
tate nanoparticle LN delivery. Nitric oxide (NO) is a potent 
agonist for vascular and lymphatic vessel dilation. Recently, 
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Sestito et al. [113] employed a controlled NO release nano-
carrier (SNO-NP) to investigate the effect of lymphatic-tar-
geted NO on LN accumulation, distribution and uptake of co-
delivered nanoparticles. In this study, they demonstrated that 
a sustained NO release in the lymphatic system could expand 

the lymphatic vessel and enhance the LN penetration, as well 
as the lymphocytic uptake of co-delivered nanoparticles after 
i.d. injection (Fig. 5b). Besides, Park et al. [114] reported that 
pre-treatment with chitosan can improve the movement of 
nanoparticles across the vaginal epithelium to LNs.
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Fig. 5  a (i–ii) Scheme of effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and 
distribution. (iii) CLSM images of LNs treated with each LNP. The white arrows represent yellow dots showing the colocalization of  B220+ 
cells and LNPs. An intensity analysis was performed in the range of the white line. White squares in the intensity profile represent the colocali-
zation of  CD3+ cells and LNPs. Cyan, green, and red show CD3 (PE), B220 (FITC), and LNP (DiD), respectively.  Reproduced with permission 
from Ref. [108]. b (i) Schematic of size-based effects on molecule drainage from the interstitium and into draining LNs (dLNs). Blue = 5 nm, 
red = 30 nm, and green = 500 nm molecules, (ii) S-nitrosothiol (SNO) and nitrite  (NO2) concentration in a solution of SNO-NP over time, (iii) 
IVIS imaging of AF647-labeled NP draining to axillary and brachial LN from a forelimb injection, (iv) confocal microscopy images of tracer 
distribution within a brachial LN 72 h after ipsilateral forelimb injection. Scale bar = 500 μm, (v) representative examples of CD45 + LN cells 
without 5 and 30 nm tracers, or with tracer and SNO-NP or SH-NP treatment, vi) effect of SNO-NP treatment on tracer uptake by barrier, cortex, 
and paracortex cell populations. Reproduced with permission from Ref. [113]
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2.1.7  ICD Induction

The heterogeneity of tumor antigens and inevitable sys-
temic safety concerns of adjuvants are two major chal-
lenges associated with the development of an effective 
co-delivery system for adjuvants and antigens to induce 
antigen-specific CTLs [115–119]. Ideally, each patient 
requires personalized treatment. Recent treatments stimu-
lating tumor cells to undergo immunogenic apoptosis and 
facilitating in situ exposure of multiple neoantigens and 
DAMPs, termed as immunogenic cell death (ICD), have 
received increasing attention in personalized medicine 
[89, 120–122]. Apart from neoantigen release, the major 
immunogenic characteristics of ICD are mediated through 
DAMP exposure, including surface exposure of calreti-
culin (CRT), ATP secretion, and post-apoptotic exodus 
of heat shock proteins (HSPs) and high mobility group 
protein B1 (HMGB1). In particular, secreted ATP stim-
ulates the intra-tumoral recruitment of APCs and CTLs, 
surface-translocated CRT serves as an ‘eat me’ signal for 
DC phagocytosis, and milieu-released HSPs and HMGB1 
serve as activators for DC maturation and promote antigen 
presentation to CTLs. Ultimately, ICD treatment results in 
a vaccine-like effect in situ, leading to an antigen-specific 
immune response.

Certain current chemotherapeutics [123–125] including 
doxorubicin, mitoxantrone, oxaliplatin, and cyclophos-
phamide, radiotherapy (RT) [126], photodynamic therapy 
(PDT) [127], photothermal therapy (PTT) [128], and mag-
netic hyperthermia (MT) [129] are frequently reported ICD 
inducers. ICD refers to apoptosis due to ROS [130], and 
current studies on ICD induction are aimed at enhancing the 
ROS-inducing effect of ICD inducers through reformation 
or combination strategies [131–134]. For most chemothera-
peutic ICD inducers, stimulating ICD-associated danger 
signaling is usually a collateral effect of their cytotoxicity 
[135]. Thus, we developed a combinatorial treatment strat-
egy involving oxaliplatin and ferroptosis as prodrug-loaded 
 Fe3O4 nanoparticles, to improve the ICD effect of oxaliplatin 
[132]. With advancements in biomedical equipment, micro-
invasive PTT and PDT have received increasing attention 
owing to their accuracy and high efficiency during tumor 
destruction and during ROS-associated ICD induction 
[136–139]. For example, Zhang et al. [140] proposed that 
the tumor starvation therapy performed by PTT-inducing 
gelation shrinkage could comprehensively suppress the 

tumor growth, whether the tumor is in situ, metastatic or 
recurrence.

Furthermore, Zhou et al. reported combination of PDT 
and chemical ICD inducer via TME-stimulating prodrug-
loaded vesicle could synergistically reinforce the growth 
inhibition of both primary and abscopal tumors in addition 
to CD47 blockade [52]. Meanwhile, Chen et al. put forward 
that upon irradiation, mitochondrial targeted aggregation-
based emission photosensitizers [131] could evoke superior 
and larger-scale ICD than the popularly used photosensi-
tizers, such as pheophorbide A and chlorin e6. Moreover, 
apart from encapsulating PSs into organic nanocapsules or 
attaching PSs onto nanoparticle surfaces, the metal–organic 
framework (MOF) self-assembled from PSs and metal clus-
ters by coordination bonds have displayed great potential as 
nano-PSs for PDT within a high PS loading but less self-
quenching [137, 141–143]. Besides, Park et al. reported that 
the 90-nm-sized nanoMOF exhibited 1.7-fold PDT efficacy 
than free PS [144] and Shao et al. developed a core–shell 
heterostructure comprising a UCNP core and porphyrinic 
an MOF shell for enhanced anti-tumor activity of combined 
PDT, hypoxia-activated chemotherapy, and immunotherapy 
[145, 146]. Meanwhile, some studies introduced low‐dose 
deeply penetrating X‐ray as alternatives, with the incorpora-
tion of high‐Z elements as transducers, thus enabling radio-
dynamic therapy to significantly cause tumor regression at 
very low X-ray doses with less side effects [147–149].

Since the ultrasound is non-radiative, which is superior to 
laser and X-ray in terms of penetration, sonodynamictherapy 
(SDT) has attracted increasing interest in ICD induction. 
Yue et al. [150] proved that combination therapy of check-
point blockade and SDT based on clinically approved mate-
rial comprising HMME/R837@Lip can not only reduce the 
tumor growth, but also prevent metastases and re-challenged 
tumor in mice. However, the low ROS generation caused 
by poor energy conversion efficiency from ultrasound to 
ROS-related chemicals is a challenge limiting SDT adop-
tion. In order to improve the outcome of SDT, Zhang et al. 
contributed greatly. As oxygen is the key substrates for ROS 
production, they fluorinated the hollow mesoporous organo-
silica nanoparticles (HMONs) for oxygen immobilization, 
as well as narrowing the distance between sonosensitizer 
(IR780) and oxygen, eventually relieving hypoxic and facili-
tating the efficiency of SDT against PANC-1 solid tumor 
[151] (Fig. 6a). In addition, they have enabled SDT-based 
nanoparticles with continuous  CO2 bubble generation to 
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promote ROS production and enhance the effect of ICD 
against breast carcinoma [152]. Recently, there is a growing 
perspective that induced ROS can be depleted by reductive 
species (such as GSH) for intra-tumoral redox metabolism 
equilibrium. In this regard, Guan et al. [153] developed 

metabolism-engineered and SDT-based nanoplatform 
 (Nb2C/TiO2/BSO-PVP) wherein GSH synthesis inhibitor 
and sonosensitizer  (TiO2) are accommodated by the  Nb2C 
nanosheets to reduce ROS depletion and so as to improve 
the ROS production synergistically (Fig. 6b).
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Fig. 6  a (i) Synthetic process and action principle of IR780@O2-FHMON and characterization of FHMON carriers, (ii) In vivo therapeutic 
scheme of SDT on mice tumor xenograft and Relative  pO2 variation of PANC-1 solid tumor after the first treatment within 24 h, significance 
was obtained via comparing to control (*, **, and *** represent p < 0.01, 0.005, and 0.001, respectively), as well as  pO2 of PANC-1 solid tumor 
during the complete SDT experimental period, (iii) LCSM images of nuclei, blood vessels, and hypoxic regions stained by DAPI, hypoxia 
probe, and CD31 immunochemical methods in PANC-1 solid tumor slices of all groups at day = 28, (iv) time-dependent tumor volume varia-
tion of PANC-1 solid tumor treated with the above different groups. Data are presented as the mean value ± SD (n = 6), significance is obtained 
via comparing to the control group (*p < 0.01, **p < 0.005, and ***p < 0.001), (v) survival rate of tumor-bearing nude mice after treatments 
with the above different groups during the complete experimental period.  Reproduced with permission from Ref. [151]. b (i) Schematic on the 
preparation process and enhanced SDT mechanism of  Nb2C/TiO2/BSO-PVP, (ii) CLSM images and corresponding FCM data of 4T1 cells after 
different corresponding treatments in G0-G5 and subsequent DCFH-DA staining, (iii) CLSM images of 4T1 cells after different corresponding 
treatments in G0-G5 and subsequent ThiolTracker Violet dye staining, scale bar = 50 nm, as well as relative intracellular GSH content in 4T1 
cells determined by Ellman’s reagent after different corresponding treatments in G0-G5. Data are expressed as mean ± standard deviation (SD) 
(n = 3) and *p < 0.05 and ***p < 0.001, which were obtained using t-student test. Note: G0-G5 represent Control,  Nb2C/TiO2/BSO-PVP, US, 
 TiO2-PVP + US,  Nb2C/TiO2-PVP + US, and  Nb2C/TiO2/BSO-PVP + US, respectively. Reproduced with permission from Ref. [153]
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2.2  Strategies for Overcoming T cell Exclusion

2.2.1  Characteristics of T cell Exclusion in Cold Tumors

Binding of chemokine ligands CXCL9 and CXCL10 to 
CXCR3 is required for active T cell migration and infiltra-
tion into tumor beds [30]. However, this phenomenon is 
normally suppressed in cold tumors. Histone modifications 
and DNA methylation are the major epigenetic factors that 
can directly down-regulate CXCL9 and CXCL10, result-
ing in decreased T cell recruitment [154, 155]. Further-
more, R-2-hydroxyglutarate generation associated with 
mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and 
IDH2, respectively) can inhibit intra-tumoral CXCL9 and 
CXCL10 production [156]. Since CXCL9 and CXCL10 
are IFN-responsive genes [157], the factors affecting 
 CD103+ DC recruitment, such as Wnt-β-catenin pathway 
activation, might decrease T cell infiltration by affecting 
type I IFN expression.

Furthermore, the activation of tumor-associated fibro-
blasts (TAFs) and subsequent extracellular matrix (ECM) 
deposition might be another factor affecting T cell infiltra-
tion at tumor sites by the formation of physical barriers 
[158, 159]. TAF heterogeneity is associated with their tis-
sue of origin, e.g., TAFs are regarded to originate from the 
bone marrow-derived precursors (BMDP), mesenchymal 
stem cells (MSC), liver and pancreas stellate cells, resting 
tissue fibroblasts and probably from several certain types 
of epithelial cells [160]. First, tumor cells harboring KRAS 
or NF-κB mutations release mitogenic and fibrogenic fac-
tors that can reprogram normal pro-fibrotic cells into active 
TAFs, including vascular endothelial growth factor (VEGF), 
platelet-derived growth factor (PDGF), TGF-β, and sonic 
hedgehog (SHH) [161–164]. Thereafter, a positive feedback 
expression of pro-inflammatory cytokines (including VEGF 
and TGF-β) produced from TAFs further promotes the TAF 
activation and promotes the production of abundant ECM 
components (including collagens, glycoproteins, elastin, 
and hyaluronan), resulting in extensive ECM deposition. 
The dense and compact ECMs tend to serve as a physical 
barrier to the entry of oxygen and nutrients and an impedi-
ment to active T cell migration. Furthermore, the activated 
TAFs produce factors including CXCL12 to limit the T cell 
recruitment to tumor lesions [165].

Third, the growing desmoplastic stroma can obstruct 
inner tumor cells from blood vessels, thus generating a 

highly hypoxic tumor cell-rich islet. In turn, the hypoxia-
induced positive feedback loops reinforce ECM deposi-
tion by up-regulating pro-inflammatory cytokines includ-
ing VEGF and TGF-β, while this further deters the T cell 
infiltration [162]. Simultaneously, hypoxia microenviron-
ment increases the demand for tumor angiogenesis through 
hypoxia-inducible factor-1α (HIF-1α)-mediated up-regu-
lation of various growth factors (represented by VEGF) 
[166], which in turn activates the FasL on tumor endothe-
lial cells, thus triggering apoptosis in T cells upon binding 
to Fas expressed on T cells and reducing T cell infiltration 
[167]. Owing to the up-regulation of pro-angiogenic sign-
aling (e.g., VEGF signaling), the tumor neovasculariza-
tion network is weakened, with a lack of pericyte cover-
age and loose endothelial cell junctions, thus disrupting 
blood vessel integrity and affecting blood flow [168]. Such 
increased neovascular permeability facilitates the extrava-
sation of plasma proteins including fibrin, facilitating the 
influx of fibroblasts and inducing ECM deposition [158]. 
Moreover, VEGF up-regulation can induce a clustering 
defect among leukocyte adhesion molecules on endothelial 
cells, which deters the T cell extravasation, e.g., intracel-
lular adhesion molecule-1/2 (ICAM-1/2), vascular cell 
adhesion protein-1 (VCAM-1), and CD34 [169].

2.2.2  Stroma Normalization

Currently, three types of approaches for overcoming physi-
cal barriers have been reported: incentive control, matrix 
component degradation, and penetrating-nanoparticle 
exploitation. First, strategies for incentive control, also 
known as stroma normalization [170, 171], are primar-
ily focused on inhibiting known factors contributing to 
matrix deposition, including VEGF [172], TGF-β [173], 
CXCL12 [174], HIF-α [175], and the hedgehog pathway 
[176]. Chen et al. reported that normalization of tumor 
vasculature upon being treated with EGFR inhibitors at 
a moderate dose could not only improve the tumor per-
fusion of oxygen and nanoscale therapeutic agents, but 
also alter the immunosuppressive TME by relieving the 
tumor hypoxia [170]. Another study reported that blockade 
of CXCR4/CXCL12 signaling with Plerixafor could also 
alleviate the desmoplasia and immunosuppression, in turn 
decompressing tumor vessels and increasing T cell infiltra-
tion, eventually enhancing immunotherapy in cold breast 
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tumors [177]. Moreover, Papageorgis et al. reported that 
suppression of TGF-β signaling with antifibrotic drugs can 
significantly enhance the efficacy of nanoparticles with 
various sizes by reducing the ECM, decreasing intersti-
tial fluid pressure, and improving tumor perfusion [178]. 
Furthermore, Ji et al. developed a β-cyclodextrin (β-CD)-
modified matrix metalloproteinase-2 (MMP-2)-responsive 
liposome for co-delivery of antifibrotic and chemothera-
peutic drugs [179] (Fig. 7). Upon the MMP-2 cleavage in 
the TME, the antifibrotic drug pirfenidone in β-CDs was 
maintained in the stroma and suppressed TGF-β and col-
lagen I in pancreatic stellate cells (PSCs), thereby down-
regulating fibrosis and decreasing the stromal barrier, 
thus enhancing drug-encapsulated liposome perfusion, 

ultimately improving the efficiency for pancreatic cancer 
therapy without overt side effects.

2.2.3  Matrix Degradation

Since the major matrix components include fiber, col-
lagen, and hyaluronic acid (HA) [180, 181], direct deg-
radation of these matrix components is another strategy 
to disrupt the physical barrier, among which the hyalu-
ronidase-mediated HA degradation has received maxi-
mum attention [182–184]. Several studies have reported 
that the direct injection of hyaluronidase into tumors can 
effectively degrade intratumor HA and increase tumor 
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accumulation and penetration of various nanoparticles and 
the levels of antigen-specific T cells at tumor sites [185, 
186]. Furthermore, to prevent unnecessary degradation of 
a large amount of HA, thus potentially improving tumor 
progression, Zhou et al. conjugated hyaluronidase to the 
surface of PLGA nanoparticles through the click reaction 

to only degrade the matrix during nanoparticle diffusion 
[187] (Fig. 8). The study reported that covalently conju-
gated rHuPH20 was more efficient than free rHuPH20 in 
enhancing the nanoparticle diffusion in the matrix, thus 
inhibiting the growth of aggressive 4T1 tumors at a low 
drug dose. Moreover, another study used an exosome 
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surface-displaying method to generate a naturally derived 
GPI‐anchored PH20-harbored exosome to address the 
limitations of enzyme immobilization-induced activity 
decline [188]. Similarly, exosome surface‐linked hyaluro-
nidase displayed higher activity in cancer therapy than the 
previously assessed recombinant PH20 proteins. Further-
more, Zinger et al. reported a 100-nm liposome encapsu-
lating collagenase, called collagozome [189]. Once being 
pretreated with the collagozome, the level of fibrotic 
tissue in the pancreas was reduced from 12.8 ± 2.3% to 
5.6 ± 0.8%, thus increasing the drug penetration into the 
pancreas and initiating pancreatic ductal adenocarcinoma 
(PDAC) treatment.

2.2.4  Nanoparticle Penetration

Irrespective of the normalization strategy or matrix degrada-
tion approach, during the initial dosage, the already exist-
ing high interstitial fluid pressure [190], dense extracellular 
matrix [191], and tightly packed tumor cells [192] substan-
tially limit the nanocarrier infiltration from the perivascu-
lar regions to distal cells [193, 194]. Thus, along with the 
adequate tumor accumulation, deeper tumor delivery of 
the formulation is required [195–198]. Most recent studies 
on penetrating nanoparticles are focused on reductions in 
particle size or charge reversal in response to TME-related 
factors (such as lower pH [199], hypoxia [200] and higher 
ROS level [201], rich GSH [202], and various enzymes 
[203–205]) or exogenous physical interventions (including 
laser irradiation [206], ultrasound [207], and thermal treat-
ment [208]). Considering strategies to decrease the particle 
size, first is a complete nanocarrier with a smaller size, such 
as albumin [209], gold nanoparticles [202], nano-dots [208], 
and PAMAM [199], on which the cargo loading is easy. 
Thereafter, cross-linking of this nanocarrier together via var-
ious stimuli-responsive cleaved chemical bonds to generate 
a larger nanocarrier-aggregate with a suitable particle size 
of approximately 100–200 nm for long-term blood circula-
tion, which could be dissociated into smaller drug-loaded 
segments on being triggered by certain stimuli at tumor sites, 
thereby achieving tumor penetration. Second, in some stud-
ies, ultra-small nanoparticles (about 5 nm) into a porous 
nanocarrier with a larger size of approximately 100–200 nm 
and then usually a biofilm was used to prevent the cargo 
leakage during the delivery [210]. Until triggered on by pH 
or near-infrared irradiation, the nano-cargo was released and 

infiltrated deep into the tumor. Charge reversal is similar 
to a process of protection and de-protection, wherein PEG 
[203, 206] or zwitterion [31, 205] is the commonly used dis-
guise for shielding the inner positive charge of nanoparticles 
along with the introduction of stimuli-responsive cleaved 
chemical bonds. Upon pH, enzyme, or irradiation activa-
tion, the shielding part was eliminated, to result the cationic 
conjugate assisted the tumor infiltration of the remaining 
cargo-encapsulated nanoparticles. In particular, Zhou et al. 
reported that cationization in situ could effectively facilitate 
nanoparticle penetration across multiple cell layers through 
caveolae-mediated endocytosis and transcytosis pathways 
[205]. Along with the aforementioned two major catego-
ries, Liu et al. developed a device comprising two oppositely 
polarized external magnets facilitating magnetism-guided 
penetration of magnetic nanoparticles into deeper tumors, 
displaying a fivefold increase in the penetration rate than 
enhanced permeability and retention effect (EPR) [211] 
(Fig. 9). Furthermore, Lee et al. used host tumor-recruiting 
 CD11b+ myeloid cells as a second active vector [212], and 
through an immune recognition reaction and bio-orthogonal 
click chemistry in vivo, tetrazine-functionalized drug-loaded 
nanoparticles might be associated with the second vector, 
then following myeloid cells through the depth of tumors.

2.2.5  Hypoxia Alleviation

Hypoxia is distinctly associated with stromal improvement 
[213]. For oxygen generation, endogenous  H2O2, as a tumor 
metabolite present at high levels (ranging from 100 μM 
to 1 mM) owing to excess ROS generated under hypoxia 
[214–216], can be used as an important source of  O2. Apart 
from catalase [217], various inorganic  H2O2 catalysts have 
been developed as nanocarriers for in situ catalytic  H2O2 
decomposition to  O2 and hypoxia alleviation, e.g.,  MnO2 
[218], copper/manganese silicate [219], Mn-carbon dots 
[220], porous platinum nanoparticles [221], Pt nanozymes 
[222], and Prussian Blue nanoparticles [223]. Moreover, 
Jiang et al. reported that  H2O is another potential source 
of  O2 when catalyzed by biomimetic ultrathin graphdiyne 
oxide (GDYO) nanosheets through near-infrared irradia-
tion [224] (Fig. 10). For the oxygen delivery strategies, 
perfluorocarbons (PFCs) [225–228] and hemoglobin (Hb) 
[229–232] were two frequent categories of high oxygen-
affiliative materials used as nanocarriers for oxygen loading, 
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which were functionalized and encapsulated into liposomes 
or biomimetic membrane-camouflaged nanoparticles to 
facilitate oxygen delivery to hypoxic tumor sites with a low 
partial pressure of  O2 and alleviating hypoxia to reinforce 
the efficacy of various anticancer modalities. Recently, 
through catalase-triggered  H2O2 decomposition-dependent 
 O2 generation, Song et al. developed a two-dose schedule 
to sequentially deliver catalase and exogenous  H2O2 into 
hypoxic areas through well-established liposomes, which 
could decompose  H2O2 into oxygen in tumors and were suit-
able for clinical translation for cancer radio-immunotherapy 
[233]. Furthermore, nanoparticles comprising CuO@ZrO2 
[234],  Au2O3 [235], or  CaO2 [236, 237] were also used as 
oxygen carriers recently, which could be activated through 
microwave treatment or a reduction in pH, thereby producing 
 O2 for the hypoxia alleviation.

2.3  Strategies for Rescuing T cell Exhaustion

2.3.1  Characteristics of T Cell Exhaustion in Cold 
Tumors

Immunosuppressive cells (primarily MDSCs [238], TAMs 
[239], and Tregs [240]), which are largely recruited 
to solid tumors under the influence of hypoxic stress 
[241–243], play an equally crucial role in generating an 
immunosuppressive microenvironment as factors affecting 
T cells homing to cold tumors [244]. MDSCs are a hetero-
geneous population of myeloid cells including immature 

myeloid cells and myeloid progenitor cells and accumulate 
in tumor regions under the influence of various tumor-
secreting factors including cyclooxygenase 2 (COX-2), 
granulocyte–macrophage colony-stimulating factor (GM-
CSF), VEGF, TGF-β, and IL-6 [238]. Similarly, because 
of the signaling pathways associated with these factors, 
most of which converge on the Janus kinase (JAK) pro-
tein family members and signal transducer and activator 
of transcription 3 (STAT3), MDSCs are expanded and acti-
vated to exert remarkable immunosuppressive effects in 
the TME [238, 245, 246]. These functions include (i) the 
activation of arginase (ARG)-1, deprivation of L-arginine, 
which are not produced by T cells and critical for T cell 
proliferation and anti-tumor responses [238, 247]; (ii) the 
activation of nicotinamide adenine dinucleotide phosphate 
oxidase (NOX) and inducible NO synthase (iNOS), pro-
ducing ROS and NO, respectively, leading to the oxidation 
of chemokines essential for T cell migration and nitration 
of T cell receptor (TCR)-induced reduction of antigen rec-
ognition and subsequent apoptosis in T cells and NK cells 
[248–250]; (iii) reinforcing TGF-β and IL-10 production 
and PD-L1 up-regulation, disrupting DC differentiation, 
migration, and antigen presentation, and inducing TAF 
activation and ECM deposition in conjunction with matrix 
metalloproteinase production [245, 251, 252]; (iv) up-reg-
ulation of angiogenic factors including VEGF, basic fibro-
blast growth factor (bFGF), and platelet-derived endothe-
lial cell growth factor (PD-ECGF), thus promoting tumor 
neovascularization [253, 254]; (v) activation of regulatory 
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T cell (Treg) differentiation through cytokine production 
or through direct cell–cell interactions [238, 241].

Once immune cells were recruited to the tumor lesions, 
macrophages are extraordinarily abundant and are present in 
all stages of cancer progression under a gradient of tumor-
derived chemo-attractants including CCL-2, tumor necrosis 
factor (TNF), IL-8, IL-6, VEGF-A, and CSF-1 [255, 256]. 
The HIF-1 pathway [257], PI3K-PTEN-AKT pathway [258, 
259], and loss of serine/threonine liver kinase B1 (LKB1) 

[260] are the mechanisms involved in the recruitment and 
activation of tumor-associated macrophages (TAMs) into 
solid tumors, usually through CXCL12 and CCL2 engage-
ment with their receptors CXCR4 and CCR2, respectively. 
Other than normal macrophages, the potential of TAMs to 
present tumor-associated antigens is decreased, instead of 
several pro-tumoral M2 phenotype-associated functions, 
including angiogenesis, matrix remodeling, immunologi-
cal suppression, and tumor metastasis [261]. For example, 
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TAMs participate in pro-angiogenic phenomena by express-
ing angiogenic factors including Wnt7b, TIE2, and thymi-
dine phosphorylase (TP), thus stimulating vascular endothe-
lial cells to produce VEGF, leading to an angiogenic switch 
[255]. Expression of PD-1 and CTLA-4 ligands can suppress 
the cytotoxic functions of T cells and NK cells [261, 262]. 
Furthermore, TAMs can up-regulate the ligands for death 
receptors including TRAIL and Fas to induce apoptosis in 
targeting cells [261, 263]. Secreted cytokines TGF-β and 
IL-10 inhibit the effector functions of T cells [264, 265] and 
induce the release of chemokines including CCL5, CCL20, 
and CCL22 for Treg recruitment [266, 267]. Beyond that, 
TAMs can produce matrix metalloproteases (e.g., MMP2 
and MMP9) and factors (e.g., TGF-β, PDGF, IL-6, urokinase 
plasminogen activator (u-PA), and tissue-type plasminogen 
activator (t-PA)) to degrade the ECM for tumor invasion and 
migration [268, 269].

Apart from the tumor-infiltrating  CD8+ T cells (major in 
hot tumor), tumor cells, M2-like TAMs, and MDSCs can 
facilitate Treg tumor infiltration by increasing CCL22 secre-
tion in cold tumors [270]. Furthermore, Tregs can actively 
produce IL-10 and TGF-β, thus suppressing cytotoxic T cells 
and immune tolerance [271]. In addition, Tregs can exhibit 
immunosuppressive functions through direct mechanisms 
including IL-2 deprivation, CD39/CD73-mediated adeno-
sine generation, and competition with CD28 (a co-stimulator 
on CTLs) for binding to CD80/CD86 on APCs by inducing 
CTLA-4 (a co-inhibitor) expression [3].

2.3.2  MDSC‑Targeting Treatments

Among the immunosuppressive cells in cold tumor lesions, 
MDSCs have been considered as the most versatile cells 
[272, 273], for which plenty of approaches have been devel-
oped to abrogate its suppressive activity in vivo, including 
the following: (i) MDSC elimination, (ii) blockade of MDSC 
recruitment, (iii) inhibition of MDSC suppression, and (iv) 
facilitating MDSC differentiation. Unfortunately, nanotech-
nology has not been extensively applied in this field, and 
most treatment strategies have focused on the development 
of chemicals or antibodies [273–275]. Therefore, a brief 
description of therapeutic agents has been provided below, 
facilitating the guidance of the development of MDSC-tar-
geting nanoformulations.

Low-dose chemotherapy, including gemcitabine [276] 
and 5-fluorouracil [277], has proven effective in depleting 
MDSC populations in tumor bearers, and tyrosine kinase 
inhibitors (including Sunitinib [278]) have successfully 
eliminated MDSCs in cancer patients by blocking VEGF, 
STAT3, and c-KIT signaling. Furthermore, regarding the 
blockade of MDSC recruitment, antagonists of chemokines 
(CCL2, CCL5, CSF-1, and G-CSF) and their receptors 
(CXCL2, CCR5, and CSF-1R) engaged in tumor chemot-
axis of MDSCs have been identified as strategically promis-
ing therapeutic agents to inhibit MDSC migration to tumor 
lesions to restrict tumorigenesis [279–282], and most of 
these agents have been reported in previous clinical trials 
[283], e.g., phase II clinical trials on CXCR2 antagonist 
Reparixin for TNBC (NCT02370238) and phase 1 clinical 
trials on CCR5 antagonist Maraviroc for metastatic colo-
rectal cancer (NCT01736813). Moreover, STAT3 inhibitor 
(AZD9150) [284], reactive nitrogen species (RNS) inhibitor 
(AT38) [285], nitroaspirin (NCX4060 and NCX4016) [286], 
phosphodiesterase-5 inhibitors (sildenafil) [287, 288], trit-
erpenoids (CDDO-Me) [246], COX-2 and PGE2 inhibitors 
(Celecoxib, ASA) [289, 290], HDAC inhibitor (Entinostat) 
[291], and very-small-sized proteoliposomes (VVSP) [292] 
have effectively attenuated the potent immunosuppressive 
functions of MDSCs to reconstitute T cell responses and 
the success of immunotherapy. Finally, differentiation of 
suppressive MDSCs into mature myeloid cells (including 
macrophages and DCs) through treatment with Vitamin D3 
[293], all-trans-retinoic acid (ATRA) [294], taxanes (doc-
etaxel and paclitaxel) [295], TLR9 activation (CpG) [296], 
curcumin [297], whole-glucan particles (WGP) [298], and 
casein kinase inhibitor (tetrabromocinnamic acid) [299] can 
overtly modulates MDSCs and decrease the tumor growth 
in tumor-bearing mice and cancer patients.

As expected, several nanotechnology-based strategies 
have been developed for MDSC-targeting therapies, such as 
gemcitabine-loaded nanocarriers to eliminate MDSCs [205, 
300–303] (Fig. 11), hypoxia alleviation-mediated MDSC 
elimination by platelet membrane-based co-encapsulation 
of metformin and IR780 [304], phosphoinositide-3-kinase-γ 
(PI3K-γ) inhibition-mediated MDSC remodeling by IPI-549-
loaded targeted polymeric nanoparticles [305], disruption of 
MDSC expansion by pseudoneutriphil cytokine sponges 
[306], co-delivery of RNAi and chemokines in polyarginine 
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nanocapsules for MDSC modulation [307], and inhibition 
of MDSC recruitment by micellar hypotoxic low molecular 
weight heparin-tocopherol succinate nanoparticles [308].

2.3.3  TAM‑Targeting Treatments

Three main categories of TAM-targeting therapies have been 
reported so far, including chemotaxis blockade, M2-like TAM 
elimination, and M2-TAM repolarization, of which the deliv-
ery via nanocarriers has been extensively studied [309–312]. 
Peripheral monocytes, TAM predecessors, are recruited 
into the tumor lesions through the engagement of CSF1/
CSF1R [313] and CCL2/CCR2 [310]; hence, the blockade 
of these factors might potentially reduce the accumulation 
of TAMs in tumors, thereby overcoming the TAM-related 
immunosuppression and enhancing tumor-specific T cell 
responses. For example, Shen et al. generated monocyte-
targeting cationic nanoparticles to deliver CCR2 siRNA for 

inhibiting the recruitment of  Ly6Chi monocytes by blocking 
CCL2-CCR2 pathways [314, 315]. Furthermore, Ramesh 
et al. developed a CSF1R- and SHP2-inhibitor-loaded nano-
particle for reinforcing cytotoxic activity and phagocytosis of 
TAMs [316]. Herein, the CSF1R-inhibitor was used for inhib-
iting the recruitment and differentiation of TAMs into the 
M2-like phenotype, and the SHP2-inhibitor could potentially 
increase TAM phagocytosis by suppressing the downstream 
‘eat-me-not’ signals of the CD47-SIRPα axis [61]. Regard-
ing M2-TAM elimination, induction of TAM apoptosis via 
nanocarriers is a common approach [309]. Bisphosphonates 
(BPs) constitute first-line low-cost agents for treating meta-
bolic bone diseases and exhibit selective toxicity to TAMs 
[317–319]. Tian et al. mineralized BPs with  Ca2+ to synthe-
size a BP-loaded nanoparticle and then functionalized the 
nanoparticle with poly(ethylene glycol) [320]. Furthermore, 
to endow the BP nanoparticle with theranostics, a single-
photon-emission computed tomography (SPECT) contrast 

(a)

(b) viiiiiii

immuneCare-DISC (iCD) Tumor resection bed

Gemcitabine MDSC

Residual
tumor Spleen

CD8 T cell

CD4
T cell

Endogenous
antigen
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Cancer vaccine

Primary tumor Resected tumor

Residual tumor

immuneCare-DISC
(lysate, nano-adjuvant, GEM)
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100 µm Tumor draining lymph node

Systemic antitumor immunity

Fig. 11  a Schematic diagram showing the design of the iCD, which codelivers GEM, as an MDSC-depleting drug to revert the immunosuppres-
sive microenvironment, and cancer vaccines consisting of whole tumor lysates and nanoadjuvants carrying TLR3 agonists, to provide immu-
nostimulation and elicit an anti-tumor immune response. Release of the vaccine induced the infiltration, activation, and homing of DCs to the 
lymph nodes, which initiated an antigen-specific adaptive immune response in a host environment where tumor-induced immunosuppression was 
depleted by MDSCs. b Implantation approach: (i) surgery was performed after the tumor volume reached ≈300 mm3, (ii) tumor dissection mim-
icking incomplete tumor removal (≈90% of primary tumor was excised), (iii) implantation of the iCD containing GEM and cancer vaccines, (iv) 
wound closure.  Reproduced with permission from Ref. [300]
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element, 99mTc, was introduced into the system via coordi-
nation bonds. As revealed through the SPECT imaging, BP 
nanoparticles exhibited efficient tumor retention post-injec-
tion (i.v.) and facilitated effective depletion of TAMs within 
the tumor (Fig. 12). Moreover, another attractive strategy for 
tumor eradication is reversing TAM polarization from an 
immunosuppressive M2 to a tumoricidal M1 phenotype [321]. 
Effective approaches in animal models have involved TLR7/8 
ligation with R848-loaded β-CD nanoparticles (CDNP-R848) 
[322], up-regulation of pro-inflammatory signals (iNOS and 
TNF) with liposome-encapsulated zoledronate acid treatment 

[323], and nanoparticle-mediated delivery of M1-like TAM-
related active microRNAs, such as miR-125, for TAM repro-
gramming [324, 325]. Recently, several independent studies 
have consistently reported that superparamagnetic iron oxide 
nanoparticles (SPIONs) can also reorient M2-like TAMs 
into an M1-like phenotype through multiple approaches 
[326–329], e.g., interferon regulatory factor 5 (IRF-5) signal-
ing-mediated M1 polarization and M2-like phenotype-related 
arginase-1 down-regulation [326]. Moreover, surface-man-
nosylation has been widely used to harness TAM-targeting 
nanocarrier systems [218, 330–333].
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2.3.4  Treg‑Targeting Treatments

Tregs represent the third major cell type contributing to 
the immunosuppressive TME in cold tumors [334, 335]. In 
fact, the interactions among the three categories of inhibi-
tory cells are closely associated [241, 243, 336]. There-
fore, regardless of immunotherapy aimed at MDSC or 
TAM modulation, the quality and number of Tregs would 
also be simultaneously affected [241, 337–339]. Further-
more, antibodies against surface molecules (including 
CD25 [340], CCR4 [341], CTLA-4 [342], OX40 [343], 
and GITR [344, 345]) exhaust Tregs in various tumor mod-
els, and molecules (such as cyclophosphamide [346] and 
Raf-kinase inhibitor sorafenib [347]) can also preferentially 
deplete Tregs upon systemic administration. As expected, 
the application of nanotechnology in Treg-targeting treat-
ments was in accordance with the two aforementioned cat-
egories. Li et al. developed CTLA-4-siRNA loaded PLGA 
nanoparticles to successfully deliver CTLA-4-siRNA into 
both CD4 + and CD8 + T cell subsets at the tumor sites, 
thereby down-regulating CTLA-4 in activated T cells and 
enhancing anti-tumor immune responses [348]. Similarly, 
Liu et al. encapsulated anti-CTLA-4 into PLGA nanopar-
ticles for protein-protective delivery [349]. Furthermore, 
strategies involving the loading of cyclophosphamide into 
vehicles including in situ-developed fibrin scaffolds [350] 
or engineering of PD-1-presenting platelets [351] exhib-
ited selective depletion of Tregs and effective postsurgical 
prevention of cancer relapse in combination with anti-PD 
therapy.

2.4  Strategies for Treatment of Pseudo‑Cold Tumor

Although the positive PD-L1 expression and T cell infiltra-
tion have been considered as a predictor of effective out-
come of PD-1/PD-L1 antibody therapy, there are a grow-
ing number of patients with PD-L1 overexpression that 
cannot benefit from the anti-PDs treatment [352]. Among 
these patients, some patients showed primary resistance 
to treatment like having a cold tumor with low mutational 
burden, infiltrated immunosuppressive cells or up-regulated 
immunosuppressive factors, and others usually developed an 
adaptive resistance to continuation of PD-1/PD-L1 blockade 
therapy after a period of robust initial response. Since they 
are also ineffective against anti-PDs therapy, but different 

from the cold tumors in terms of TIME, we refer to them as 
pseudo-cold tumor.

In regard to primary resistance, several studies proposed that 
genetic mutations might be responsive for the primary resist-
ance of PD-L1-positive patients [353]. In a clinical study on 
patients with non-small cell lung cancer (NSCLC), research-
ers found that patients with EGFR mutations and ALK rear-
rangements showed a low  CD8+ T cell infiltration-associated 
poor response to anti-PDs therapy despite a high rate of PD-L1 
expression, which implied that the expression of PD-L1 could 
also be constitutive rather than just responding to inflammatory 
stimuli [354]. However, it is unfortunate that the mechanism of 
action between theses mutations and apparent T cell exclusion 
remains unclear. As far as we know, it would be a promising 
approach for the reversal of primary resistance to combine 
the therapeutic strategies for cold tumors and mutant protein-
targeted therapy. Besides, it has been identified that there were 
also various immunosuppressive cells such as MDSC, TAMs, 
Tregs existing to impair the functionality of anti-tumor T cells. 
Hence, the previously mentioned strategies for rescuing T cell 
exhaustion are applied.

Recently, in addition to PD-1, several biomarkers have 
been identified as alternative checkpoint receptors that are up-
regulated and involve in T cell dysfunction during anti-PDs 
therapy, resulting in adaptive resistance [355]. These include 
cytotoxic T-lymphocyte antigen 4 (CTLA-4), T cell immu-
noglobulin and mucin domain-containing-3 (TIM-3), T cell 
immune receptor with Ig and ITIM domains (TIGIT), lym-
phocyte activation gene-3 (LAG-3), V-domain Ig suppressor 
of T cell activation (VISTA), and so forth. For these patients, 
if possible, a needle biopsy and in-depth immune analysis of 
the new or increasing site of resistance can first be performed 
to determine the mechanism of resistance and treat it accord-
ing to the cause. Nowadays, it is a hot-spot to develop effective 
antibodies against these targets, as there are numerous cases of 
clinical trials underway for each one [356].

Furthermore, some researchers have proposed that the out-
come of PD-L1 antibody therapy greatly relies on the distri-
bution of PD-L1 [357]. According to PD-L1 distribution, the 
PD-L1 can be classified into four formats: serum PD-L1 (sPD-
L1), membrane PD-L1 (mPD-L1), cytoplasm PD-L1 (cPD-
L1), and nuclear PD-L1 (nPD-L1). Among them, mPD-L1 is 
the major format that can bind to its receptor (PD-1) to enable 
immunologic tolerance, which can be blocked by utilization of 
PD-L1 antibody. However, as for cPD-L1 and nPD-L1, due to 
their intracellular location, the blockade of cell membrane can 
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theoretically impair the efficacy of PD-L1 antibody against these 
formats. Considering the translocation of PD-L1s, the cPD-L1 
and nPD-L1 may be the reservoir for mPD-L1 to be translo-
cated onto the surface when treated anti-PD-L1s have been 
eliminated, resuming the immune escape. At the same time, 
the mPD-L1 can be also translocated into the cytoplasm to be 
cPD-L1 to avoid being tracked during the anti-PD-L1 treatment. 
In a clinical study on papillary thyroid carcinoma [358], patients 
with cPD-L1 up-regulation showed a shorter disease-free sur-
vival compared to those lack of cPD-L1, which highlighted 
the function of cPD-L1. Therefore, the positive expression of 
intracellular PD-L1 could be an underlying incentive for adap-
tive resistance and therapeutic strategies, such as PD-L1 gene 
silencing, sPD-1 mRNA or plasmid transfection, and chemical 
inhibitor treatment, that can suppress the functions and sources 
of entire PD-L1 may be advantageous over antibody blockade. 
In this regard, up to now, there have been various and countless 
nanocarriers developed to enable efficient gene delivery or con-
trolled delivery of small molecule drugs alone or in combina-
tion, which is thus not described in this article.

3  Conclusion and Perspectives

As described in this review, there are three major chal-
lenges in anti-cold tumor immunotherapy: T cell priming 
inhibition, T cell exclusion, and T cell exhaustion. Nano-
medicines, within the capability of cargo protection and 
controlled release, as well as the designability for tumor 
or immune cell targeting, have shown effective therapeutic 
outcomes in reversing these limitations. In regard to nor-
malize T cell priming, it is critical to recover the antigen 
presentation of APCs. Strategy that delivering STING ago-
nists (represented by cGAMP) by DC-targeting nanocar-
rier can significantly increase the accumulation of cGAMP 

in DCs, reduce the off-target side effect, and accelerate 
the DC maturation. Meanwhile, stimuli-responsive nano-
medicines can enable the loading adjuvants and antigens 
controllable release in cell as needed, so as to exert their 
capability of DC activation preferably. Secondly, the 
deposition of extracellular matrix in cold tumor lesions 
builds a physical barrier to exclude T cell infiltration. 
Codelivery of therapeutic agents with matrix catabolic 
enzymes or deposition inhibitors via nanomedicine has 
shown capability to loose extracellular matrix from the 
lateral side and facilitate agents and T cell penetration. 
In addition, nanomedicines with TME-responsive size-
change or charge-shift can escort their cargos across the 
matrix barrier and arrive at the deeper tumor, resulting 
in appropriate microenvironment for T cell infiltration. 
Furthermore, the designability of nanomaterials endows 
the nanomedicines with the capability of targeting multi-
ple immunosuppressive cells. Although the application of 
nanomedicines has accelerated the research on anti-cold-
tumor immunotherapy and holds enormous promise, we 
are still in initial stage of the clinical translation of nano-
medicines for immunotherapy, and there are several over-
looked key problems in preclinical research which have to 
be addressed. First, do we employ the right tumor-bearing 
animal models? It is a fundamental but critical question 
for therapeutic evaluation of nanomedicines developed 
for anti-cold-tumor immunotherapy in preclinical studies. 
At present, more and more scholars have highlighted that 
the right therapeutic regimens should be applied in the 
right patients/tumors when possessing the clinical trials 
[40]. However, many current preclinical studies of cold 
tumor treatment were carried out on inappropriate animal 
models, for example, a common hot tumor-bearing model 
(subcutaneous melanoma) was widely used as a cold tumor 

Table 1  Characteristics of T cell priming inhibition in cold tumors

Categories Components Mechanism Refs.

Inhibition of T cell priming Disruption of APC recruitment Wnt-β-catenin pathway-mediated CCL4 down-regulation [22]
Cox1/2-PGE2 pathway-mediated CCL5 and XCR1 down-regulation [56]

Disruptions of APC function Cytokines (M-CSF, TGF-β, IL-6, IL-10) [57–60]
MYC-associated CD47 up-regulation [61]

Decreased immunogenicity Impairment of antigen processing through alterations in proteasomal 
or post-proteasomal machinery

[63, 64]

Regulation of antigen presentation through MHC-I mutations [65, 66]
Antigenic discontinuum driven by KRAS or BCR-ABL1 [67–70]
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model to investigate immunomodulatory effects of ICD 
therapy, as well as even though a right cold tumor cells 
chosen, usually a subcutaneous tumor-bearing model was 
employed for research rather than the in situ tumor-bearing 
model, which is also not advisable. In particular, as for 
pancreatic cancer, a well-known cold tumor, where the 
fibrosis of pancreatic stellate cells in pancreas is also one 
of the critical factors involved in cold TIME, is of little 
significance to investigate the effect of anti-tumor immu-
notherapy on subcutaneous tumor-bearing model, instead, 
resulting in a waste of resources.

However, limited by the heterogeneity between indi-
vidual animals and current clinically disjointed methods of 
diagnosis and evaluation in preclinical studies, there exists 
difficulty in defining a right animal model. At least, a real-
time biopsy method, which can monitor the change of TIME 
before and after treatment in the same animal by flow cytom-
etry or immunofluorescence staining, should be introduced 
into preclinical trials to replace current one-time terminal 
evaluation. In addition, a tempo-spatio testing standard 
should be established, such as biopsy of experimental ani-
mals, the appropriate time spot to test the T cell levels, and 
quantity of the T cells detected would be considered as a 
primal cold tumor or a fired-up cold tumor.

Second, it’s a cliché topic, drug safety. In addition to effi-
cacy, the safety of new drug is another key determinant of 

whether the new drug is eligible for an investigation new 
drug (IND) approval from FDA, as well as the goal of phase 
I clinical trial is to determine the safety profile and pharma-
cology of new drug [359]. Although the damage to meta-
bolic organs, such as liver and kidney, has been routinely 
evaluated by hematoxylin–eosin (H&E) staining or by fur-
ther blood examination of aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), etc., there are few other 
toxicity assessment of chemicals or nanomedicines (such as 
ototoxicity [360]), as well as the investigation of immune-
toxicity (such as the detection of IL-17 [51]), that have been 
implemented on animal model. Therefore, it is essential 
and necessary to establish a sound evaluation mechanism 
for adverse immune reactions in preclinical study about 
the immunotherapeutic agents. Besides, the major feature 
of clinically validated nanomedicines for immunotherapy 
is to reduce the immunogenicity and improve the stability 
of immunomodulators, for example, the PEGylated IFN 
alpha-2a protein for Hepatitis C (Pegasys®, Genentech). 
With regard to nanomedicines composed of nanomaterials 
possessing the capability to activate the immune systems, 
we need to pay more attention to their potentially increased 
risk of adverse immune reaction during treatment, perhaps 
the applications of these nanomaterials could be suspended 
for a while.

Third, as for those ‘easy’ drugs that already have been 
approved and marketed, eutherapeutic and low-toxicity 

Table 3  Characteristics of T cell exclusion in cold tumors

Categories Components Mechanism Refs.

Blockade of T cell infiltration Down-regulation 
of T cell homing 
factors

Histone modifications and DNA methylation down-regulating CXCL9 and 
CXCL10

[154, 155]

IDH-1/2-mediated R-2-hydroxyglutatate generation inhibiting CXCL9 and 
CXCL10 production

[156]

CXCL9 and CXCL10 down-regulation due to reduced type I IFN [157]
Physical barriers Release of mitogenic and fibrogenic factors (VEGF, PDGF, TGF-β, and SHH) 

for TAF activation owing to KRAS or NF-κB mutations
[161–164]

Positive feedback network of pro-inflammatory cytokines (VEGF and TGF-β) 
for ECM deposition

[165]

Abundant ECM components (collagens, glycoproteins, elastin, and hyaluro-
nan)

[165]

Hypoxia VEGF resulting from HIF-1α up-regulation inducing FasL/Fas-mediated T 
cell apoptosis

[166, 167]

High VEGF-mediated increase in neovascular permeability inducing plasma 
protein extravasation for facilitating ECM deposition

[158, 168]

VEGF expression-mediated defects in leukocyte adhesion molecules (ICAM-
1/2, VCAM-1, and CD34)

[169]
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Table 5  Characteristics of T cell exhaustion in cold tumors

Categories Components Mechanism Refs.

T cell exhaustion MDSCs ARG-1 activation-mediated L-arginine deprivation [238, 247]
NOX and iNOS activation-mediated chemokine oxidation and TCR nitration [248–250]
Production of TGF-β and IL-10 and up-regulation of PD-L1 [245, 251, 252]
Up-regulation of angiogenic factors (VEGF, bFGF, and PD-ECGF) [253, 254]
Activation of Tregs [238, 241]

TAMs Expression of angiogenic factors (Wnt7b, TIE2, TP, and VEGF) [255]
Expression of PD-1 and CTLA-4 ligands [261, 262]
Up-regulation of TRAIL or Fas inducing T cell apoptosis [261, 263]
Secretion of cytokines (TGF-β and IL-10) for T cell inhibition [264, 265]
Release of chemokines (CCL5, CCL20, and CCL22) for Treg recruitment [266, 267]

Tregs Secretion of cytokines (TGF-β and IL-10) for T cell inhibition [271]
IL-2 deprivation [3]
CD39/CD73-mediated adenosine generation [3]
CTLA-4 expression-mediated competition with CD28 for CD80/CD86 binding [3]

nanoformulations, such as paclitaxel (Abraxane) and 
doxorubicin (Doxil), would be extremely hard to develop 
new formulation to heighten the clinical benefits; instead, 
there have been many clinical trials focused on expanding 
the spectrum of approved nanomedicines for anti-tumor 
immunotherapies. Hence, a potential is to use the same 
approved nanomaterials, such as liposome and albumin, 
to prepare similar nanoformulations of new drugs, or 
to adjust the minimal structural alterations on approved 
nanomaterials to achieve our goal, such as pH or enzyme-
responsive drug release, and targeted modification. Mean-
while, the studies on several promising nanoformulations, 
including polymeric micelle, iron oxide nanoparticle, gold 

nanoparticle, and PLGA nanoparticle, should be continued 
to obtain enough data to support the safety and efficacy 
evaluation.

In summary, the application of nanomedicines has shown 
favorable results in enhancing or even dramatically improv-
ing the efficacy of immunotherapeutic agents, as well as 
reducing toxicity. Currently, although there is not likely to 
be a mass clinical translation of nanomedicines owing to the 
immature technology for monitoring the fate of nanomedi-
cines in vivo, thousands of different types of nanomedicines 
have been accumulated in this field waiting for a qualita-
tive leap, once a sound evaluation system is established 
(Tables 1, 2, 3, 4, 5, 6).
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Table 6  Advanced application of nanomedicines for rescuing T cell exhaustion

Strategy Target Mechanism Vehicle/agents Combination Models Refs.

MDSCs-targeting 
treatments

MDSCs MDSC elimination Gemcitabine-loaded 
nanocarriers

Anticancer adop-
tive T cell therapy 
(ACT)

EG7-OVA tumor, 
B16 tumor

[205, 300, 301]

Hypoxia alleviation-
mediated MDSC 
impediment

Platelet membrane-
based co-encapsu-
lation of metformin 
and IR780

PDT 4T1 tumor [303]

Phosphoinositide-3-
kinases-γ (PI3K-γ) 
inhibition-mediated 
MDSC remodeling

IPI-549-loaded 
targeted polymeric 
nanoparticles

\ KPC98027 RFP/Luc 
allografts

[304]

Disruption of MDSC 
expansion

Pseudoneutriphil 
cytokine sponges

α-PD-1 B16F10 tumor, 4T1 
tumor

[305]

MDSC modulation RNAi and CCL2 co-
loaded nanocap-
sules

\ In vitro MDSC [306]

Inhibition of MDSC 
recruitment

Micellar hypotoxic 
low molecular 
weight heparin-
tocopherol succi-
nate nanoparticle

Dox B16F10 tumor lung 
metastases

[307]

TAMs-targeting treat-
ments

TAMs CCL2/CCR2 chemot-
axis blockade

Monocyte-targeting 
cationic nanoparti-
cles encapsulating 
CCR2 siRNA

\ 4T1 tumor [313]

Reinforcing phagocy-
tosis of TAMs

CSF1R- and SHP2-
inhibitor-loaded 
nanoparticle

\ 4T1 tumor [315]

Selective toxicity to 
TAMs

Calcium bisphospho-
nate nanoparticles 
with chelator-free 
radiolabeling

radioisotope therapy 
(RIT)

4T1 tumor [319]

M2-TAM repolariza-
tion

R848-loaded 
β-cyclodextrin 
nanoparticles 
(CDNP-R848)

anti-PD-1 MC38 tumor, 
B16F10 melanoma

[321]

Liposome-encapsu-
lated zoledronate 
acid treatment

\ 4T1 tumor cells [322]

Nanoparticle encap-
sulating M1-like 
TAM-related active 
microRNAs

\ B16F10 tumor [323]

Myeloid‐derived 
suppressor cell 
(MDSC) mem-
brane‐coated iron 
oxide magnetic 
nanoparticle

PTT, ICD B16/F10 tumor [327]

Improvement of TAM 
targeting

Surface-manno-
sylated nanopar-
ticles

aPD-L1 CT26-tumor [329]
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