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Bi‑Atom Electrocatalyst for Electrochemical 
Nitrogen Reduction Reactions
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HIGHLIGHTS  

• A new heteronuclear bi‑atom electrocatalyst has been proposed by Ma and his co‑workers.

• The FeV@C2N bi‑atom electrocatalyst achieved excellent electrochemical NRR performance.

• The FeV@C2N bi‑atom electrocatalyst could effectively suppress the side and competing HER reaction, and thus possess better 
electrochemical NRR selectivity.

ABSTRACT The electrochemical nitrogen reduction reaction (NRR) to directly produce  NH3 from  N2 and  H2O under ambient conditions 
has attracted significant attention due to its ecofriendliness. Nevertheless, the electrochemical NRR presents several practical challenges, 
including sluggish reaction and low selectivity. Here, bi‑atom catalysts have been proposed to achieve excellent activity and high selectivity 
toward the electrochemical NRR by Ma and his co‑workers. It could accelerate the kinetics of  N2‑to‑NH3 electrochemical conversion and 
possess better electrochemical NRR selectivity. This work sheds light on the introduction of bi‑atom catalysts to enhance the performance 
of the electrochemical NRR.
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The electrochemical nitrogen reduction reaction (NRR) 
to directly produce  NH3 from  N2 and  H2O under ambient 
conditions has attracted significant attention due to its eco‑
friendliness compared with the traditional Haber–Bosch 
process [1, 2]. Nevertheless, the electrochemical NRR pre‑
sents several practical challenges, including sluggish reac‑
tion and low selectivity [3, 4]. The slow kinetics is caused 
by the extremely strong N≡N triple bond (941 kJ  mol−1) 
and the great energy gap between highest occupied molecu‑
lar orbital (HOMO) and the lowest unoccupied molecular 
orbital (LUMO) of the  N2 molecule [5]. The hydrogen evo‑
lution reaction (HER) is the main side reaction responsible 
for the low selectivity, which shares a very close potential 
window with the NRR in both alkaline and acidic electro‑
lytes [6, 7]. Fortunately, the electrochemical NRR depends 
heavily on its electrocatalysts [8–10]. Therefore, advanced 
rational design of the electrochemical NRR electrocatalysts 
to achieve outstanding performance and high selectivity is 
urgently required [11–13]. Various NRR electrocatalysts, 
including metal‑free catalysts, single‑atom catalysts, metal 
nanomaterials, nitrides/oxides/sulfides/carbides, etc., have 
been reported with the aim of high  NH3 yield since 2016 
[14]. Nevertheless, a promising candidate, a heteronuclear 
bi‑atom electrocatalyst, has been little studied for the elec‑
trochemical NRR.

Recently, Ma and co‑workers [15] designed a new het‑
eronuclear bi‑atom electrocatalyst, Fe, V co‑doped  C2N 
(FeV@C2N), to accelerate the kinetics of the NRR and sup‑
press the hydrogen evolution reaction (HER), which occurs 
as a side reaction. This FeV@C2N electrocatalyst achieved 
excellent electrochemical NRR performance. The nitrogen‑
ated holey structures in  C2N could anchor these Fe and V 
atoms; additionally, the unoccupied/occupied d orbitals of 
Fe and V atoms may accept/donate electrons from/to  N2 
(Fig. 1a). Therefore, Fe and V atoms could be stable on the 
 C2N matrix and serve as active sites to electrocatalytically 
transform  N2 into  NH3. The FeV@C2N could weaken the 
N≡N triple bond and increase the Bader charge difference 
of two chemisorbed N atoms, as shown in Fig. 1b−d. More 
importantly, the FeV@C2N possesses the greatest ability to 
activate  N2 compared to  Fe2@C2N and  V2@C2N.

Furthermore, Ma and co‑workers [15] proposed the mech‑
anism of  N2 reduction and free energy diagrams on side‑on 
configurations of FeV@C2N,  Fe2@C2N, and  V2@C2N, and 

they believe that FeV@C2N is the most promising electro‑
catalyst for the NRR compared with the other two. There are 
only two reaction steps from  N2H* to  NHNH* and  NHNH* 
to  NHNH2

*, which are endothermic for FeV@C2N; thus, 
these two steps are the potential‑determining step (PDS) 
with free energy of 0.17 eV, as shown in Fig. 2a. The  Fe2@
C2N shares the same PDS but with a higher free energy of 
0.37 eV (Fig. 2b). In  V2@C2N, the PDS is the formation of 
 N2

*, with the greatest free energy of 0.56 eV (Fig. 2c). The 
HER, as a competing and side reaction, was also investigated 
for these three samples. The calculated results indicated that 
FeV@C2N and  Fe2@C2N have better NRR selectivity.  V2@
C2N, because of the competing HER, is not a good candidate 
for the electrochemical NRR.

In sum, Ma and co‑workers proposed FeV@C2N as an 
outstanding heteronuclear bi‑atom electrocatalyst for the 
electrochemical NRR, with high activity and better selec‑
tivity. It could enhance the kinetics of  N2‑to‑NH3 electro‑
chemical conversion with a low potential PDS of ‑0.17 V. 
Moreover, this FeV@C2N electrocatalyst could effectivity 
suppress the side and competing HER reaction, and thus 
possess better electrochemical NRR selectivity. This work 
sheds light on the introduction of heteronuclear bi‑atom 
electrocatalysts to enhance the performance of the electro‑
chemical NRR and opens a new way to understand the elec‑
trochemical NRR mechanism.

In the future, two possible prospects could be effective 
approaches to optimize the electrocatalysts with the aim of 
improved NRR activity and selectivity, and reveal the mech‑
anisms of the electrochemical NRR as well. Firstly, theoreti‑
cal calculations could be employed to predict potential NRR 
electrocatalysts and provide various types of optimization 
guidance to the experiments. For example, high‑throughput 
computing can identify the poisoning and decomposition of 
electrocatalysts under electrochemical conditions, includ‑
ing the pH and the electrolyte effect, which can provide 
a deeper insight into the mechanism under real operation 
conditions. On the other hand, advanced characterization, 
including in-situ and operando atomic‑resolution transmis‑
sion electron microscopy and X‑ray absorption spectros‑
copy, can be developed to identify the real active sites and 
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Fig. 1  a Optimized structures of FeV anchored on  C2N substrate and simplified schematic diagram of the bonding between the transition metal 
and  N2. b Optimized structures and corresponding adsorption energies of  N2 adsorption on FeV@C2N,  Fe2@C2N, and  V2@C2N. c Relationship 
between Bader charges of adsorbed  N2 and N–N bond lengths. d Relationship between Bader charge difference of two adsorbed N atoms and 
N–N bond lengths [15]. Copyright 2020 Elsevier

composite evolution of the electrical double layer. With the 
significant efforts that have been made in the past few years, 
the electrochemical NRR appears promising to replace the 
traditional Haber–Bosch process to produce  NH3. Never‑
theless, a reproducible and excellent electrochemical NRR 
catalyst is still expected to be proposed as a standard elec‑
trocatalyst, due to the doubt that has arisen on the actual 

NRR performance. A benchmarking protocol to accurately 
quantify the electrochemical NRR activity and selectivity 
should be established. We believe that, with much effort, 
the fundamental issues and technological drawbacks will be 
addressed in the not‑too‑distant future, and the electrochemi‑
cal NRR can play an important role in  NH3 yield.
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