Supporting Information for

Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous

Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting

Sodium/Potassium Ions Storage

Junming Cao^{1,2}, Junzhi Li³, Dongdong Li¹, Zeyu Yuan¹, Yuming Zhang¹, Valerii Shulga¹, Ziqi Sun^{2,} *, Wei Han^{1, *}

¹Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin university, Changchun 130012, P. R. China

²School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia

³Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China

*Corresponding authors. E-mail: ziqi.sun@qut.edu.au (Z. Sun); whan@jlu.edu.cn (W. Han)

S1 Computational Method and Models

All calculations were carried out by using the projector augmented wave method in the framework of the density functional theory (DFT), as implemented in the Vienna *ab*-initio Simulation Package (VASP). The generalized gradient approximation (GGA) and Perdew–Burke–Ernzerhof (PBE) exchange functional was used. The plane-wave energy cutoff was set to 500 eV, and the Monkhorst–Pack method was employed for the Brillouin zone sampling. The convergence criteria of energy and force calculations were set to 10^{-1} eV/atom and 0.01 eV Å⁻¹, respectively. The Cu_{1.75}Se@Ti₃C₂O₂@N-doped carbon structure was constructed by packing 3×3 Cu_{1.75}Se (111) slab, 4×4 Ti₃C₂O₂ monolayer and N-doped graphene models. The CoSe₂@Ti₃C₂O₂@N-doped carbon

structure was built by packing 2×3 CoSe₂(100) slab, $3\times3\sqrt{3}$ Ti₃C₂O₂ monolayer and N-doped

graphene models. The NiSe₂@Ti₃C₂O₂@N-doped carbon structure was built by packing 2×2 NiSe₂(111) slab, 5×5 Ti₃C₂O₂ monolayer and N-doped graphene models. Here, the N-doped graphene model contains three different kinds of N, including pyridinic N, pyrrolic N and graphitic N. A vacuum region of 15 Å is applied to avoid interactions between the neighboring configurations. To explore the interactions between Na(K) and MSe@Ti₃C₂O₂@N-doped carbon, including Cu_{1.75}Se@Ti₃C₂O₂@N-doped carbon, CoSe₂@Ti₃C₂O₂@N-doped carbon and NiSe₂@Ti₃C₂O₂@N-doped carbon, the adsorption energies of Na(K) on composite structure were calculated. Here, the adsorption energies (E_a) were calculated by the energy difference of the system after and before adsorption: E_a= [E(Na or K-composite)–*n*×E(Na or K)– E(composite)]/*n*, where E(Na or K-composite), E(Na or K), and E(composite) represent the DFT energies of *n* Na or K adsorbed in composite structures, the energy of a Na or K atom referred to its bulk phase, and the energy of the clean composite structures. The energy barriers for Na(K) ion diffusion in the composite structures were calculated by the nudged elastic band (NEB) method.

S2 Supplementary Figures and Tables

Fig. S1 Zeta potential of Ti₃C₂T_x MXene and C₄H₆CuO₄

Fig. S2 Digital photograph of Cu_{1.75}Se-MXene-CNRib aerogel

Fig. S3 SEM image of etched multilayered $Ti_3C_2T_x$ MXenes

Fig. S4 SEM and magnified images of NiSe₂-MXene-CNRib and STEM elemental mapping

Fig. S5 SEM and magnified images of CoSe₂-MXene-CNRib and STEM elemental mapping

Fig. S6 TG-DSC curve of NiSe₂-MXene-CNRib aerogel

Fig. S7 TG-DSC curve of CoSe₂-MXene-CNRib aerogel

 $\label{eq:Fig.S8} \textbf{Fig. S8} \ \text{EDX} \ \text{spectra for } Cu_{1.75} \text{Se-MX} ene-CNRib, \ NiSe_2\text{-}MX ene-CNRib \ and \ CoSe_2\text{-}MX ene-CNRib \ and \ an$

Table S1	Contents	of MSe-	-MXene-	CNRib	aerogels
----------	----------	---------	---------	-------	----------

Cu _{1.75} Se-MXene-CNRib			NiSe ₂ -MXene-CNRib			CoSe ₂ -MXene-CNRib			
Element	Atomic %	Weight %	Element	Atomic %	Weight %	Element	Atomic %	Weight %	
С	64.20	31.97	С	80.43	52.45	С	74.26	58.26	
Ν	4.84	2.81	Ν	3.28	2.71	Ν	3.97	2.97	
0	5.45	3.61	0	5.62	5.30	0	6.84	4.12	
F	0.24	0.19	F	0.27	0.31	F	0.15	0.28	
Ti	12.89	25.61	Ti	2.63	7.45	Ti	7.13	7.54	
Cu	7.31	19.26	Ni	2.82	8.86	Co	2.42	8.12	
Se	5.04	16.51	Se	4.91	22.89	Se	5.23	18.71	

Fig. S9 XPS survey of MS-MXene-CNRib aerogels

Fig. S10 XPS spectra of Cu_{1.75}Se-MXene-CNRib: Cu 2p, Se 3d, N 1s and O 1s

Fig. S11 High-resolution Ni 2p XPS spectra of NiSe₂-MXene-CNRib and Co 2p XPS spectra of CoSe₂-MXene-CNRib

Fig. S12 Electrochemical impedance spectroscopy (EIS) before and after cycling test of Cu_{1.75}Se-MXene-CNRib, NiSe₂-MXene-CNRib and CoSe₂-MXene-CNRib in SIB applications

Fig. S13 Relationship between peak current and scan rates $^{1/2}$ at some specific potentials for Cu_{1.75}Se-MXene-CNRib

Fig. S14 Relationship between peak current and scan rates $^{1/2}$ at some specific potentials for NiSe₂-MXene-CNRib

Fig. S15 Relationship between peak current and scan rates $^{1/2}$ at some specific potentials for CoSe₂-MXene-CNRib

Fig. S16 CV curves at different sweep rates, linear logarithmic relationships between peak current *vs.* various sweep rates and CV curves at 1.0 mV s^{-1} with the shaded area refers to the pseudocapacitive-dominated proportion for NiSe₂-MXene-CNRib

Fig. S17 CV curves at different sweep rates, linear logarithmic relationships between peak current *vs.* various sweep rates and CV curves at 1.0 mV s^{-1} with the shaded area refers to the pseudocapacitive-dominated proportion for CoSe₂-MXene-CNRib

Fig. S18 GITT potential profiles and corresponding Na ions diffusivities *vs.* states of sodiation/desodiation for CoSe₂-MXene-CNRib and NiSe₂-MXene-CNRib

Fig. S19 GCD branches of Cu_{1.75}Se-MXene-CNRib hybrids in PIBs

Fig. S20 Side view of Na diffusion sites in Cu_{1.75}Se-MXene-CNRib

Fig. S21 Side view of Na diffusion sites in NiSe₂-MXene-CNRib

Fig. S22 Side view of Na diffusion sites in CoSe₂-MXene-CNRib

Fig. S23 Side view of K diffusion sites in $Cu_{1.75}$ Se-MXene-CNRib and corresponding adsorption energies

Table S2 Summary of main electrochemical properties of Cu_{1.75}Se-MXene-CNRib and other anodes for SIBs and PIBs

Motoriola	Specific Capacity		h volvos	D (D	Capacitive	Annlingtions	Def
Materiais	0.1 A g ⁻¹	1.0 A g ⁻¹	<i>b</i> -values	$\mathbf{D}_{Na}/\mathbf{D}_{K}$	1.0 mV s ⁻¹ (%)	Applications	Kei.
Cu _{1.75} Se-MXene-CNRib	536.3	480.7	~1	10-8	83.5	SIBs	This work
Ti ₃ C ₂ /NiCoP	374.8	261.7	N/A	N/A	82 (0.3 mV s ⁻¹)	SIBs	33
CT-S@ Ti ₃ C ₂	492	358	0.95	10-10	73	SIBs	34
T-MXene@C	257.6	139.5	0.92	10-8	63.2	SIBs	35
CCNA	421.6	389.0	0.98	10-11	77.8	SIBs	14
CNT/CoSe ₂ /C	531	348	0.89	N/A	69	SIBs	17
Cu _{1.75} Se-MXene-CNRib	401.3	306.1	0.97	10-10	78.5	PIBs	This work
Sb/Na-Ti ₃ C ₂ T _x	392.2	~200	0.65	10-17	55.2	PIBs	36
NG/ReSe ₂ /MXene	395.3	215.3	0.86	N/A	80.6	PIBs	37
MXene/MoS ₂	233.1	168.2	0.90	N/A	55.8	PIBs	38
PN-PCM	396	218	0.7	10-9	63.9	PIBs	39
MoSe ₂ /MXene@C	355	317	0.93	N/A	89.2	PIBs	24