Supporting Information for

Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries

Hanwen Liu¹, Weihong Lai¹, Qiuran Yang¹, Yaojie Lei¹, Can Wu¹, Nana Wang¹, Yunxiao Wang^{1, *}, Shulei Chou¹, Hua Kun Liu¹, Shi Xue Dou¹

¹Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia

*Corresponding author. E-mail: yunxiao@uow.edu.au (Yunxiao Wang)

Supplementary Figures

Fig. S1 Pore distribution of pristine carbon host

Fig. S2 (a) Cycling performances of the Li-S batteries based on 155S and 300S at 0.1 A g^{-1} ; Discharge/charge curves of (b) the 155S and (c) the 300S at 0.1 A g^{-1}

Fig. S3 Images of disassembled battery cells with (a) 155S electrode and (b) 300S electrode

Fig. S4 CV curves for (a) the 155S and (b) the 300S at different scan rates

Fig. S5 Linear fits of the $Ip/v^{1/2}$ for (**a**) the A1 and (**b**) the C2 peaks for t155S and 300S. (**c**) Corresponding slope values of $Ip/v^{1/2}$ for 155S and 300S at the A1 and C2 peaks

Fig. S6 Rate performances of the 155S and 300S electrodes in carbonate ester electrolytes

Fig. S7 Image of NaNO₃ dispersed in TEGDME, DOL/DME, and EC/DEC electrolytes with 1 M NaClO₄. NaNO₃ could only dissolve in TEGDME

Fig. S8 Cycle performance of the 155S electrode in TEGDME electrolyte with NaNO₃ additive at the current density of 3.0 A g^{-1}

Fig. S9 Cycle performance of the 155S electrode in TEGDME electrolyte with 0.05, 0.1 and 0.2 M NaNO₃ additive, at the current density of 0.1 A g^{-1}

Fig. S10 Cycle performance of (**a**) the 155S electrodes and (**b**) the 300S electrodes with S content of 1 mg cm⁻², 2 mg cm⁻² and 3 mg cm⁻² in TEGDME with NaNO₃ additive

Fig. S11 Cycle performance of the 155S electrodes with 2 mg cm⁻² sulfur, in 20 μ L mgs⁻¹ and 4.5 μ L mgs⁻¹ TEGDME electrolyte at 0.1 A g⁻¹, respectively

Fig. S12 (a) Voltage-capacity profiles and (b) CV profiles of the 300S electrode in TEGDME with 1 M NaClO₄ and 0.2 M NaNO₃ additive. (c) Cycling performance and (d) energy density of the 300S electrode in TEGDME with 1 M NaClO4 and 0.2 M NaNO₃ additive

Nano-Micro Letters

Fig. S13 Cycle performance of the 300S electrode in 1.0 M NaClO₄ and 0.2 M NaNO₃ TEGDME electrolyte with/without 5 wt % FEC additive at the current density of 1.0 A g^{-1}

Fig. S14 Voltage-capacity profiles for the 155S electrode in TEGDME electrolyte without NaNO₃ additive at current density of 0.1 A g^{-1}

Fig. S15 (a) Cycle performance and (b) rate performance of the 155S in TEGDME with or without NaNO₃ additive based on the mass of sulfur. (c) Energy density of the 155S at 0.1 A g^{-1} based on the total mass of the electrode (including carbon black and binder)