Supporting Information for

Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator

for Biomechanical and Morphing Wing Energy Harvesting

Kai Tao¹, Zhensheng Chen¹, Haiping Yi¹, Ruirong Zhang¹, Qiang Shen¹, Jin Wu², Lihua Tang³, Kangqi Fan⁴, Yongqing Fu⁵, Jianmin Miao^{6, *}, Weizheng Yuan^{1, *}

¹Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, P. R. China

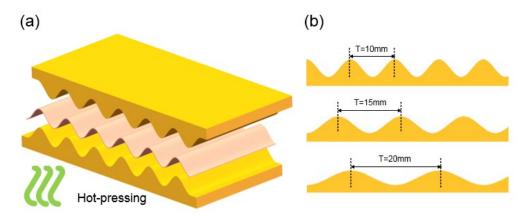
²State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China

³Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand

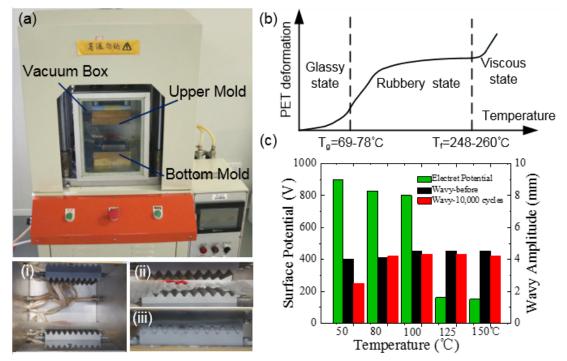
⁴School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, P. R. China

⁵Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

⁶School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China


*Corresponding authors. E-mail: jmmiao@sjtu.edu.cn (Jianmin Miao); yuanwz@nwpu.edu.cn (Weizheng Yuan)

Supplementary Table and Figures


Table S1 Comparison of the state-of-the-art TENGs with multilayered structures

Refs.	Substrate material	Main structure	Connected method	Volum e (cm ³)	Area (cm ²)	Weight (g)	V _{oc} (V)	Ι _{sc} (μΑ)	Power density (mW cm ⁻³)
[43]	Kapton	Wavy	Bond	12.25	25	-	96	10.85	0.039*
[33]	Silicone	Wavy	Paste	432*	108*	335*	52	16.2	0.009^{*}
[41]	Kapton	Zigzag	Fold	44.46	29.64	3150	480	400	0.102
[35]	Kapton	Wavy	Tape	60^*	50	380^{*}	72	32	0.033
[34]	Kapton	Origami	Fold	13.72	13.3	7	215	660	10.24
[32]	Kapton	Zigzag	Fold	47.42	29.64	29.9	700	0.2	0.007^{*}
[31]	PET	Arc shaped	Tape	2^*	4	7	28	0.4^{*}	0.004^{*}
[30]	Paper	Kirigami	Assemble	22.4	11.23	8.96	90	15	0.001^{*}
[36]	Acrylic	Stack	Assemble	210	7	230*	303	1140	0.349^{*}
[37]	Acrylic	Stack	Paste	45	9	30.42*	48	8	0.106
[38]	Acrylic	Plane	Paste	3.38*	1.69	2.6*	2450	108	0.118*
[40]	Kapton	Wavy	Assemble	4706	64	510	250	150	0.004
[42]	Silicone	Helical	Fold	54	9	-	85	5	0.004
[39]	Copper	Dual helix	Fold	45	9	10	460	140	0.201
[56]	LCP	Origami	Fold	16.7	6.2	9.3	1000	110	0.67
Curr.	Electret	Honeycomb	Paste	45	15	5	1204	68.5	0.275

^{*}The values are estimated from the reported key characterization parameters in the references.

Fig. S1 a Schematic illustration of iron alloy mold for hot-pressing molding process. **b** Schematic illustrations of controlling the period and amplitude of the wavy sheet by adjusting the parameters of iron alloy mold.

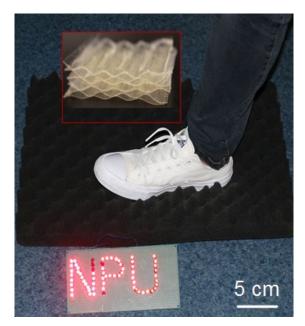


Fig. S2 a Setup of vacuum hot-pressing machine and status of pressing mold: **i** With a large air gap in the initial stage. **ii** Moving close with each other. **iii** Fully pressed with an intimate contact. **b** PET deformation stages under different temperatures: **i** Glassy state at 69 to 78 °C. **ii** Rubbery state. **iii** Viscous state at 248 °C to 260 °C. **c** Stability analysis of electret surface potential and wavy amplitude variations of PET/AgNWs/FEP wavy composites after continuous operation for ~10,000 cycles

Fig. S3 The photographs of multilayered wavy PET/AgNWs/FEP composites with a good transparency: a Single layer. b Double layers. c Triple layers

Nano-Micro Letters

Fig. S4 Photograph of the flexible h-TENG, which can be integrated into a smart foam mat, connected to 70 green LEDs, which can be lightened up simultaneously by the triple-layer h-TENG triggered by footsteps

Video S1 The 75×55 mm² LCD can be lightened up for 83 seconds by simply hand pressing the h-TENG device ten times.

Video S2 Real-time insole plantar pressure mapping by integrating an array of h-TENGs in shoes when walking.

Video S3 Dynamic demonstration of h-TENG power generation from the oscillations of the morphing wing. The generated power can continuously lighten up dozens of LEDs.