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Carbon‑Based MOF Derivatives: Emerging Efficient 
Electromagnetic Wave Absorption Agents
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HIGHLIGHTS

• In terms of components and structures, this review summarizes progresses and highlightsstrategies of MOF derivatives for efficient 
electromagnetic wave absorption.

• We also systematically delineate relevant theories and points out the prospects andcurrent challenges.

ABSTRACT To tackle the aggravating electromag-
netic wave (EMW) pollution issues, high-efficiency 
EMW absorption materials are urgently explored. 
Metal–organic framework (MOF) derivatives have 
been intensively investigated for EMW absorption 
due to the distinctive components and structures, 
which is expected to satisfy diverse application 
requirements. The extensive developments on MOF 
derivatives demonstrate its significantly important 
role in this research area. Particularly, MOF deriva-
tives deliver huge performance superiorities in light 
weight, broad bandwidth, and robust loss capacity, 
which are attributed to the outstanding impedance 
matching, multiple attenuation mechanisms, and 
destructive interference effect. Herein, we summa-
rized the relevant theories and evaluation methods, 
and categorized the state-of-the-art research pro-
gresses on MOF derivatives in EMW absorption 
field. In spite of lots of challenges to face, MOF 
derivatives have illuminated infinite potentials for 
further development as EMW absorption materials.

KEYWORDS Carbon-based MOF derivatives; Special structures; Multiple attenuation mechanisms; Impedance matching; EMW 
absorption
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1 Introduction

Owing to the extensive utilization of the communication 
devices working in GHz, the electromagnetic environment 
has been deteriorating. The redundant electromagnetic 
waves emitted from various electronic facilities can seriously 
threaten the physical health and disturb normal equipment 
operation [1, 2]. To solve these problems, electromagnetic 
wave (EMW) absorption materials are highly desired [3, 4]. 
Ideal EMW absorption materials should possess the char-
acteristics of light weight, strong absorption, broad band-
width, and thin matching thickness to meet diverse appli-
cation requirements [5, 6]. Thus, various EMW absorption 
materials have been widely explored currently. Nevertheless, 
some challenges still exist, such as the insufficient effec-
tive absorption abilities in S band and the deficient research 
about K band. More significantly, the thickness of absorbers 
is relatively thick and the effective absorption bandwidth 
(EAB) is still narrow on the whole view, which is not con-
ductive enough to the practical application.

In terms of EMW attenuation mechanisms, EMW absorp-
tion materials can be generally divided into conductive 
materials, dielectric materials, and magnetic materials [7–9]. 
Typical conductive absorption materials are mainly carbon-
ous, such as graphene, carbon nanotubes (CNTs), and carbon 
nanofibers [10–13]. And they exhibit obvious advantages 
in low density and high stability [14, 15]. Nevertheless, the 
impedance mismatching impedes their further application 
[16]. Inorganic ceramics and semiconductors are the rep-
resentatives of dielectric materials, possessing a remark-
able superiority in thermal stability [17–19]. However, low 
attenuation capacity restricts the enhancement of absorption 
intensity. Magnetic metal and ferrites as typical magnetic 
absorption substances are frequently used to reduce the 
matching thickness [20–22]. However, the high density and 
inherent impedance mismatching as their inevitable shortage 
limits their further applications. Therefore, to overcome the 
weakness of single-component EMW absorption materials, 
the design and configuration of multi-component have been 
becoming the inevitable choice.

Metal–organic frameworks (MOFs), as a kind of novel 
multi-functional materials, were constructed by metallic ion 
and organic ligand bonded though coordination [23–25]. 
The common MOFs contain Isoreticular Metal–Organic 
Framework (IRMOF), zeolitic imidazolate framework (ZIF), 

Coordination Pillared-Layer (CPL), Materials of Institute 
Lavoisier (MIL), Porous Coordination Network (PCN), 
University of Oslo (UiO), and so on [26–33]. Due to their 
big specific surface area, high porosity, and special peri-
odic structure, in recent years, MOFs have jumped into the 
limelight and been widely applied in gas separation, medi-
cines, catalysis, and so on [34–38]. Besides, taking MOFs 
as building blocks to develop porous carbon-based MOF 
derivatives with diversiform features such as controllable 
defects, adjustable structures, and alterable compositions 
has also drawn attention from researchers who devoted to 
EMW absorption [39, 40]. As shown in Fig. 1, since the 
first reported in 2015, MOF derivatives for EMW absorp-
tion have a rapid development in the following years. The 
nature of carbon-based MOF derivatives can be elaborately 
designed by modulating the cabonization condition and col-
locating the metallic ion and organic ligand in precursors 
[41]. Simultaneously, combining MOF derivatives with 
other functional materials offers more opportunities [42].

Compared with other absorbers, on the one hand, carbon-
based MOF derivatives possess high conductivity, facilitat-
ing strong conductive loss. With carbonization at different 
temperature, the degree of graphitization can be flexibly 
adjusted, which would further regulate the conductive loss. 
And the terminal groups of carbon matrix can induce the 
dipole polarization. On the other hand, carbon-based MOF 
derivatives possess a prominent characteristic of high dis-
persion, by which the metal oxide, metal nanoparticles, 
or other components can be highly dispersed into carbon 
matrix to create large heterogeneous phase interfaces to 
significantly enhance the interfacial polarization loss and 
optimize the impedance matching conditions. Moreover, 
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Fig. 1  Number of published items on carbon-based MOF derivatives 
as EMW absorption materials from 2015 to 2020
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carbonous components are endowed with low density, high 
mechanical strength, and high stability, which is beneficial to 
decrease the density of nanocomposite and improve environ-
mental adaptability. All these advantages of carbon-based 
MOF derivatives are extremely attractive for the exploration 
of ideal EMW absorption materials. And so many relevant 

reports have demonstrated that they can be deservedly 
regarded as the most promising choice.

In this review, we comprehensively summarized the 
theory of EMW absorption mechanism and the recent 
researches about carbon-based MOF derivatives as EMW 
absorption materials. As shown in Fig. 2, in terms of the 
composition variations, carbon-based MOF derivatives used 
for EMW absorption can be classified into four categories: 
unary carbonous materials, ceramic/carbon binary compos-
ites, magnetic NPs/carbon binary composites, and magnetic 
NPs/ceramic/carbon ternary composites. And the bottom of 
the picture is the corresponding constituent elements of the 
aforementioned nanocomposites. The specific performances, 
internal mechanisms and application scenarios were thor-
oughly illustrated by typical examples. Finally, the current 
challenges for carbon-based MOF-derived EMW absorption 
materials are pointed out, and the perspectives on future 
development directions are expected.

2  Theories of Electromagnetic Wave 
Absorption

2.1  Macroscopical Description

As shown in Fig. 3a, the incident EMWs radiated onto the 
material surface can be divided into three parts: the reflected, 
the dissipated, and the transmitted [54, 55]. On the basis of 
the plane wave model, all transmitted waves will be reflected 
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Fig. 2  Carbon-based MOF derivatives for EMW absorption applica-
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responding elements in the reported carbon-based MOF derivatives 
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on the absorber–metal surface [56]. In this condition, EMW 
absorption materials require the reflected waves are reduced 
and the dissipated energy is enhanced as much as possible. 
The most essential two parameters to determine the EMW 
absorption performance are the impedance matching condi-
tion and attenuation capacity [57]. Impedance matching condi-
tion adjudicates whether the incident waves can enter into the 
absorber. An ideal impedance matching condition means the 
incident waves can totally enter into the absorber and no waves 
will be reflected on the air-absorber surface. The attenuation 
capacity decides whether the EMWs inside the absorber can 
be dissipated. Excellent attenuation capacity requires a strong 
energy conversion and dissipation ability, which means the 
EMW energy can be transformed into thermal energy in vari-
ous methods. Only if both the two preconditions are achieved, 
a good EMW absorption performance can be obtained.

2.2  Performance Evaluation

All of the absorption performances are finally determined 
by the electromagnetic parameters: complex permittivity 
(εr = ε′ − jε″) and complex permeability (μr = μ′ − jμ″), whose 
real part stands for energy storage and imaginary part repre-
sents energy dissipation [58]. Usually, the EMW absorption 
performances are calculated on the basis of transmission line 
theory [59]. And the reflection loss (RL) was applied to evalu-
ate the EMW absorption performances. A smaller RL value 
means lesser reflected waves and stronger absorption intensity. 
And the RL value of − 10 dB refers to 90% of incident EMWs 
can be converted into thermal energy. Correspondingly, the 
frequency range in which RL value is smaller than − 10 dB 
stands for the effective absorption bandwidth [60]. On the 
basis of transmission line theory, the specific calculation pro-
cess from electromagnetic parameters to RL is expressed as 
the followed formulas [61, 62]:

where f is the frequency, d is the matching thickness, c is 
the velocity of light in vacuum, and Z0 and Zin are the free 
space impedance and the input impedance of absorbers, 
respectively.

(1)Zin = Z0

�
�r

�r
tanh

�
2�jfd

c

√
�r�r

�

(2)RL = 20log
||||
(Zin − Z0)

(Zin + Z0)

||||

In some cases, the RL is replaced by the reflection coeffi-
cient (R) to directly evaluate the EMW absorption capacities 
[63]. Similarly, a smaller R value stands for stronger absorp-
tion ability, and the R value of the EMW black body is zero.

2.3  Impedance Matching

To achieve a strong absorption intensity (a minimum of RL 
or R value), according to the equations mentioned above, the 
value of (Zin − Z0) should be equal to 0, namely Zin/Z0 = 1 [64]. 
This result tells us that an excellent impedance matching con-
dition requires the input impedance of absorbers (Zin) is as 
close to free space impedance (Z0) as possible. Considering 
that Zin and Z0 cannot maintain consistent in both real and 
imaginary part, in some calculation, the criterion of |Zin/Z0|= 1 
is employed to displace Zin/Z0 = 1. Thus, when the value of 
|Zin/Z0| is equal to 1, the absorber can obtain a perfect imped-
ance matching condition to make sure the incident EMWs can 
enter into the absorber as much as possible.

In some reports, the delta function can be also applied to 
access the impedance matching degree, which can be calcu-
lated by the followed equation [65, 66]:

where K and M could be determined by the relative complex 
permittivity and permeability:

where δe and δm refer to the electromagnetic parameters μr/εr 
and the matching thickness d/λ, respectively. The value of 
delta equaled to 0 indicates a perfect impedance matching. 
And the incident waves will not be reflected on the surface 
of absorber.
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The criterion of |Zin/Z0| was widely applied by virtue of its 
convenience and universality. But in some cases, even if the 
value of |Zin/Z0| is equal to 1, the values of Zin and Z0 are far 
apart, which would result in the criterion ineffective. |Δ| is a 
relatively complex criterion of impedance matching. Neverthe-
less, during the derivation of the |Δ|, the values of Zin and Z0 
were considered approximate, which would avoid the criteria 
losing efficacy.

2.4  Interference Cancellation Principle

To some extent, the concepts of interference cancellation 
principle and impedance matching overlap and comple-
ment with each other. The impedance matching condition 
is based on equivalent circuit theories while the interfer-
ence cancellation principle focuses on the specific and 
microcosmic behaviors of EMWs. Both the two concepts 
delineate whether or not the electromagnetic wave can enter 
the absorber and no reflected waves. If the EMWs reflected 
from air–absorber interface are out of phase by 180° to those 
reflected from absorber–backboard interface, the destructive 
interference leads to the disappearance of reflected waves, 
which seems like all EMWs are trapped inside the absorber 
to form standing waves [67, 68]. This concept is also called 
quarter-wavelength model, by which we can calculate the 
theoretical optimum thickness for a given material at any 
frequency [69, 70]:

where dm stands for the matching thickness; fm is the match-
ing frequency. On many reports, this equation is used to 
compare whether experiment matching thickness is con-
sistent with the theoretical matching thickness, further to 
expound whether the performance results accord with the 
interference cancellation principle.

2.5  Attenuation Capacity

The attenuation mechanisms of EMW absorption materials 
are divided into two aspects: dielectric loss and magnetic 
loss (Fig. 3b). And the dielectric loss mainly includes the 
conductive loss and polarization–relaxation loss. Generally, 
the dielectric loss tangent (tanδE = ε″/ε′) and magnetic loss 

(8)
dm =

nc

4fm

√
||�r�r

||
, (n = 1, 3, 5⋯)

tangent (tanδM = μ″/μ′) are used to assess the capacity of 
dielectric loss and magnetic loss [71, 72].

Conductive loss refers to that the alternating electric field 
induces microcurrent to convert electric field energy into 
heat. Specifically, for highly conductive materials, when 
EMWs enter into the interior of the absorber, the electrons 
and holes will move under the excitation of electric field 
force to form the electric currents. Due to the existence of 
resistance, the currents will generate heat to consume elec-
trical energy, by which finally the attenuation of EMW is 
realized. According to the free electron theory, for highly 
conductive materials the conductivity (σ) can directly affect 
the imaginary part of permittivity (ε″) [73]:

where ε0 is the permittivity of vacuum. Thus, a larger con-
ductivity will result in a higher ε″ value, which can enhance 
the conductive loss.

Polarization–relaxation loss is originated from the lossy 
polarization–relaxation process. Specifically, if the polariza-
tion–relaxation process can keep up with the changes of low-
frequency alternating electric field, this process is lossless. 
In high frequency range, if the polarization–relaxation pro-
cess cannot catch up with the changes of alternating electric 
field, this process will be lossy. Typical, polarization–relaxa-
tion processes include the interfacial polarization–relaxation, 
dipole polarization–relaxation, ionic polarization–relaxation, 
and electronic polarization–relaxation [74–76]. The interfa-
cial polarization–relaxation is attributed to the heterogene-
ous charge distribution in defects, heterojunctions, and phase 
interfaces [77]. The dipole polarization–relaxation is mainly 
ascribed to the deflection or displacement of dipoles such 
as polar molecules and functional groups under the induc-
tion of alternating [78, 79]. However, ionic and electronic 
polarization–relaxation usually take place at much higher 
frequency  (103–106 GHz), so that they are always excluded 
[80, 81]. According to the Debye theory, if the conductiv-
ity is negligible, for a polarization–relaxation process, the 
complex permittivity will satisfy the following equations 
[82–84]:

(9)��� ≈ �∕2��0f

(10)��
r
= �∞ +

�s − �∞

1 + (2�f )2�2

(11)���
r
=
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(
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)

1 + (2�f )2�2
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where ε∞ represents the permittivity at high frequency 
limit; εs refers to the static permittivity; and τ is the polari-
zation–relaxation time.

And subsequently the followed equation can be deduced 
by combing the above two equations:

In mathematics, there is a semicircle whose radius is �s−�∞
2

 
and center is ( �s+�∞

2
 , 0) on the ε′–ε″ curve, which is usually 

called Cole–Cole plot [85]. And each semicircle represents 
one polarization–relaxation process.

However, in the actual analysis, the Cole–Cole plot can 
hardly delineate a standard semicircle due to the conductivity. 
Thus, Eq. (11) should be modified to Eq. (13) if the conductiv-
ity is considered [86].

Thus, Eq. 12 could be evolved into Eq. 14 as followed:

The center coordinate was changed into ( �s+�∞
2

, �

�0�
 ). And this 

is a moving point, which results in the right end of semicircles 
turning to the upper right like a “tail” [52]. Thus, on Cole–Cole 
plots, the slope of the tail can be used to estimate the effect of 
conductive loss.

Magnetic loss is mainly originated from natural resonance, 
exchange resonance, eddy current loss, magnetic hysteresis, 
and domain wall resonance [87, 88]. The magnetic hysteresis 
is negligible in EMW absorption analysis because the weak 
field is not strong enough to induce irreversible magnetization. 
The domain wall resonance usually occurs at much lower fre-
quency rather than the discussed GHz frequency range [89]. 
To evaluate the contribution of eddy current, the criterion of 
C0 is usually utilized.

where μ0 is the permeability of the vacuum and d is the 
thickness of absorber. The value of C0 will express as a con-
stant, if the magnetic loss is mainly originated from eddy 
current loss [90, 91].

The natural resonances result from the ferromagnet maxi-
mally absorb the energy of alternating magnetic fields, which 
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are usually regarded as the most important magnetic attenu-
ation mechanism in high frequency. The essence of natural 
resonances is the damping motion of the magnetic moment 
around the magnetic anisotropy field. The natural resonances 
effect can be described as the following equations [92–94]:

where fr is the natural resonance frequency; γ is the gyro-
magnetic ratio; Hα is the anisotropy energy; K1 is the anisot-
ropy coefficient; μ0 is the permeability of free space; and Ms 
is the saturation magnetization. Thus, the natural resonance 
frequency is significantly decided by the anisotropy energy, 
and further affected by shape anisotropy, magneto-crystal-
line anisotropy, coercivity, particle size, and so on.

In the meantime, Snoek’s limit restricts the application 
of the magnetic materials in higher frequency range. The 
Snoek’s limit can be described as followed equation for iso-
tropic ferromagnetic materials [95–97]:

where γMs represents the Snoek constant; and γ and Ms 
represent gyromagnetic ratio and saturation magnetization, 
respectively; μi is the initial permeability; and fr is the natu-
ral resonance frequency. For a given ferromagnetic mate-
rial, the γ is a constant and Ms has a ceiling. Thus, if certain 
methods are adopted to make fr shift to higher frequency 
range, the μi will be inevitably decreased to result in the 
reduction of magnetic loss. Hence, the Snoek’s limit restricts 
the application of ferromagnetic materials in high frequency. 
The considerable methods to break the Snoek’s limit are 
choosing soft magnetic metals with higher Ms values such as 
Fe, Co, Ni, and relevant alloys or regulating the anisotropic 
equivalent field such as flak particle design.

In the summary, for a EMW absorption material, all 
above-mentioned loss capacities can be synthetically evalu-
ated by attenuation constant (α) [98, 99].

A larger attenuation constant reflected a stronger attenua-
tion capacity. Thus, only in the view of attenuation capacity, 
according to the equation, ε″ and μ″ values should be as 
large as possible to obtain a maximized attenuation constant. 
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4||K1
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However, if the impedance matching condition is also con-
sidered, the ε″ and μ″ values should be controlled in an 
appropriate range.

3  Carbon‑Based MOF Derivatives for EMW 
Absorption Applications

In the whole view, carbon-based MOF derivatives can pro-
vide a flexible method to combine dielectric and magnetic 
components, and the features of big surface areas, tunable 
compositions, and high porosity make them highly desired 
as more efficient EMW absorption applications. Benefiting 
from the frame structures of MOFs, during the pyrolysis 
process of carbon-based MOF derivatives, the metallic ions 
can directly be transformed into metallic oxide or metals 
to combine with carbon matrix, which avoids extra com-
plex reduction process. The oxide ceramics can promote the 
resistance to corrosion and the magnetic metals can provide 
magnetic loss capacity. Thus, the collocation with dielectric 
or magnetic components can effectively supplement the per-
formance shortages of carbon materials. On the other side, 
the low-density carbonous component not only possesses 
adequate conductivity to enhance the conductive loss, but 
also can effectively reduce the quality of absorption materi-
als. The abundant surface terminations such as –OH and 
C = O in the carbon substrate can significantly strengthen the 
dipole polarization [100]. Besides, on the one hand, the high 
surface and pore volume features of carbon provide more 
active sites for multiple scattering dissipations. On the other 
hand, according to Maxwell–Wagner theory [101]:

where ε1 and ε2 represent permittivity in the solid and gas 
state, respectively; p is the volume fraction of gas state in 
the porous materials, and the porosity can significantly regu-
late the permittivity to optimize the impedance matching 
condition.

Therefore, owing to the remarkable chemical and physical 
properties mentioned above, the carbon-based MOF deriva-
tives epitomize a lighting promising application for high-
efficient EMW absorption materials to deal with the elec-
tromagnetic environment deterioration. In recent five years, 
studies using carbon-based MOF derivatives as EMW absorp-
tion materials have witnessed rapid development as shown in 

(20)�MG
eff

= �1
(�2 + 2�1) + 2p(�2 − �1)

(�2 + 2�1) − p(�2 − �1)

Table 1. And excluding the under-represented unary carbon-
ous MOF derivatives, the average filling ratios, average match-
ing thickness, average matching frequency (fm), and average 
bandwidth value for ceramic/carbon, magnetic NPs/carbon, 
and magnetic NPs/ceramic/carbon MOF derivatives were cal-
culated, and the results are shown in Table 2. According to the 
comparison, we could find the magnetic NPs/carbon binary 
MOF derivatives possessed a much lower average filling ratio 
and a slightly thinner average matching thickness, indicat-
ing their advantages in density decrease of absorbers. The 
magnetic NPs/ceramic/carbon ternary MOF derivatives were 
equipped with a relatively lower matching frequency, imply-
ing they may get an upper hand in low-frequency absorption. 
Besides, the ternary MOF derivatives obtained a significant 
enhancement in absorption bandwidth performance. How-
ever, we could also notice that a comprehensive performance 
advantage is hard to achieve, and much exploration of high-
performance EMW absorption materials remains to be done.

3.1  Unary Carbonous MOF Derivatives

For carbon-based MOF derivatives, the content and con-
ductivity of carbon matrix play the particularly important 
roles in EMW absorption [157]. The introduction of other 
functional components would increase the density of the 
composites, which goes against the original intention of 
developing lightweight EMW absorption materials. There-
fore, some researchers open a new pathway by designing 
unary carbonous MOF derivatives.

Liu et al. constructed a unique structure, hollow graph-
ite spheres embedded in porous amorphous carbon matri-
ces (S-GA) by etching  Fe3Ni/C composites derived from 
 Fe2Ni MIL-88 nanorods (Fig. 4a–c) [52]. The RL value 
(Fig. 4g) reached − 46.2 dB at 10.44 GHz with a match-
ing thickness of 2.65 mm. And the maximum EAB was 
achieved in 12.8–18.0 GHz with an ultra-low filling ratio 
of 10 wt%. The satisfying filling ratio came from the 
high conductive loss of the graphite carbon (Fig. 4d, e). 
And the polarization loss (Fig. 4f) between the graph-
ite shells and amorphous carbon matrix also played an 
auxiliary role in EMW dissipation. Similarly, Xu et al. 
fabricated a special structure that hollow graphene nano-
spheres uniformly confined in porous amorphous carbon 
particles (HGS@PAC) by HF acid corroding the Co/C 
composites that pyrolyzed from CoZn-MOFs [53]. The 
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Type Composite (precur-
sor)

Filling 
ratio 
(wt%)

Minimum 
RL value 
(dB)

fm 
(GHz)

Matching 
thickness 
(mm)

Bandwidth Refs

thickness 
(mm)

Value 
(GHz)

Range 
(GHz)

Unary 
carbon-
ous MOF 
derivatives

S-GA  (Fe2Ni MIL-88 
nanorods and HCl 
acid corrosion)

10  −  46.2 10.44 2.65 2.0 5.2 12.8–18.0 [52]

HGS@PAC (CoZn-
MOF and HF acid 
corrosion)

10  − 32.43 9.19 3.7 3.7 4.2 8.2–12.4 [53]

hollow carbon micro-
cubes (ZIF-67@
SiO2 and etching)

30  − 60.7 6.9 3.2 1.0 − 5.0 14.4 3.6–18.0 [102]

Ceramic/car-
bon binary 
MOF 
derivatives

TiO2/C (MIL-125) 40  − 49.6 15.5 1.6 1.6 4.6 13.4–18.0 [103]
ZnO/N-doped C 

(ZIF-8)
50  − 39.7 8.5 4.0 4.0 4.3 7.9–12.2 [104]

ZnO/Ni3ZnC0.7/5%-
CNT (Ni-Zn-MOF/
CNT)

10  − 33.2 5.9 4.9 4.9 2.1 4.0–7.1 [105]

ZnO/C/RGO (ZIF-8/
RGO)

40  − 50.5 14.0 2.4 7.4 2.6 9.6–17.0 [106]

CuO/C  (Cu2+/ZIF-67) 50  − 57.5 14.9 1.55 1.55 4.7 13.0–17.7 [44]
ZrO2/C (UIO-66) 50  − 58.7 16.8 1.5 1.7 5.5 11.5–17.0 [43]
MoC/C (Cu/Mo-

MOF)
20  − 49.19 9.04 2.6 2.6 3.20 7.8–11.0 [107]

wheat-like MgO/C 
(CPO-27-Mg)

30  − 14.93 12.88 2.0 2.0 4.9 9.0–13.9 [108]

CoS2/N-CNTs (ZIF-
67/ sulfuration)

50  − 65.0 16.4 1.6 1.6 4.2 13.8–18.0 [109]

carbon cloths@
CoS2/C (carbon 
cloths@ZIF-67)

30  − 59.6 9.1 2.8 2.5 9.2 8.8–18.0 [110]

Magnetic 
NPs/carbon 
binary MOF 
derivatives

Co/C (MOF-74) 30  − 62.1 11.85 2.4 2.4 4.6 10.1–14.7 [111]

Co/C (ZnCo-MOF) 20  − 51.6 17.1 1.6 1.6 3.5 14.5–18.0 [112]
Co/C (CPT-1-Co) 30  − 15.7 15.1 1.7 1.7 5.4 12.3–17.7 [113]
Co/C (Co(INA)2) 33  − 47.6 14.5 2.0 2.0 5.1 12.7–17.2 [114]
Co/C (ZIF-67) 40  − 35.3 5.8 4.0 2.5 5.8 8.4–14.2 [45]
Co/CNTs (ZIF-67) 30  − 49.16 14.3 2.5 2.5 4.2 12.4–16.6 [115]
hollow Co/C (ZIF-67/

cetyltrimethylam-
monium bromide)

30  − 66.5 17.6 1.53 1.0–5.0 14.3 3.7–18.0 [116]

Co–C/CNTs (ZIF-67/
CNTs)

15  − 48.9 9.0 2.99 2.99 3.4 7.7–11.1 [46]

Co/C (Co NPs/ZIF-
67)

25  − 30.31 11.03 3.0 3.0 4.93 8.31–13.24 [117]

Co/C 
 (Co3[HCOO]6·DMF/ 
glucose)

50  − 19.86 5.0 1.6 3.8 3.84 4.2–8.04 [118]

Co/C (melamine 
foam@ZIF-67)

20  − 59.82 12.90 2.3 2.1 5.64 12.36–18.0 [119]

Table 1  EMW absorption performances of various carbon-based MOF derivatives
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Type Composite (precur-
sor)

Filling 
ratio 
(wt%)

Minimum 
RL value 
(dB)

fm 
(GHz)

Matching 
thickness 
(mm)

Bandwidth Refs

thickness 
(mm)

Value 
(GHz)

Range 
(GHz)

Co/N-CNTs/C (mela-
mine–formaldehyde 
sponge@ZIF-67)

10  − 51.2 12.0 2.2 2.2 4.1 10.3–14.4 [120]

CNT/Co/C (ZIF-67/
cotton)

10  − 53.5 7.8 2.9 2.0 8.02 9.98–18.0 [121]

Co/C (GO/PVP/ZIF-
67)

10  − 50.7 9.6 2.9 2.9 4.6 8.6–13.2 [122]

Co/N-decorated C/
CNTs (CoZn-ZIF-
L)

20  − 15.37 15.49 1.5 1.5 4.5 13.5–18.0 [123]

N-doped Co/C/CNTs 
(CoZn-ZIF/CNTs)

25  − 50.0 10.5 2.4 2.5 3.6 8.2–11.8 [124]

CoZn/N-doped C 
(CoZn-ZIF)

30  − 53.8 17.6 1.5 2.0 5.3 10.0–15.3 [125]

Fe/C (Prussian blue) 40  − 22.6 15.0 2.0 2.0 5.3 12.7–18.0 [40]
Fe/C (Fe-MIL-88A) 40  − 52.9 11.68 3.07 3.07 4.64 9.44–14.08 [126]
Fe/C (MIL-101-Fe) 5  − 59.2 5.4 4.32 1.8 5.0 13.0–18.0 [127]
Fe/C  (Fe2+/ZIF-8) 15  − 29.5 17.2 2.5 3.0 4.3 13.7–18.0 [128]
Ni wrapped C 

(Ni(bdc)(ted)0.5)
40  − 51.8 10.44 2.6 1.9 4.68 12.82–17.5 [129]

Ni/C (Ni-ZIF) 40  − 86.8 13.2 2.7 1.5 − 4.0 7.4 4.0–11.4 [130]
hollow Ni/C (hollow 

Ni-MOF)
30  − 57.25 16.1 1.8 1.8 5.1 12.9–18.0 [47]

waxberry-like Ni/C 
(Ni-btc)

50  − 73.2 12.3 2.2 1.8 4.8 13.2–18.0 [131]

CoFe@C (CoFe-
MOF-74)

10  − 61.8 12.7 2.8 2.8 9.2 8.8–18.0 [132]

FeCo/C  (Fe3O4 modi-
fied ZIF-67)

50  − 21.7 15.2 1.2 1.2 5.8 12.2–18.0 [133]

FeCo/C/GO (Fe-
doped ZIF-67/rGO)

25  − 43.26 11.28 2.5 2.5 9.12 8.88–18.0 [134]

FeCo/C  (Fe3O4/ZIF-
67@wood carbon)

15  − 47.6 15.7 1.5 1.96 8.9 9.1–18.0 [135]

CoFe@C/rGO  (Fe3+/
ZnCo-MOF/rGO)

10  − 36.08 13.01 3.0 3.5 5.17 8.72–13.89 [136]

CoFe@C/CNTs 
((Fe3+/ZnCo-MOF/
CNTs))

10  − 40.00 9.86 3.0 2.0 5.62 12.38–18.0 [136]

CoNi/C (ZIF-67@
NiCo-LDH)

10  − 61.02 13.68 2 2 5.2 / [137]

CoNi@NC/rGO 
(CoNi-BTC/rGO)

25  − 68.0 10.9 3.1 2.5 6.7 11.3–18.0 [138]

Ni1−xCox@Carbon 
(NiCo-MOF)

25  − 59.5 6.0 4.5 2.5 4.7 9.9–14.6 [139]

NiCo/C (NiCo-
MOFs)

30  − 51 17.9 1.5 1.5 4.5 13.5–18.0 [140]

FeNi@CNT/CNRs 
(melamine/FeNi-
MIL-88B)

25  − 47.0 10.0 2.3 1.6 4.5 13.5–18.0 [141]

NiFe@C/GO (NiFe 
PB/GO)

30  − 51.0 7.7 2.8 2.2 3.97 8.3–12.27 [42]

Table 1 (continued)
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Table 2  EMW absorption performance comparison of different types of carbon-based MOF derivatives

Type Average filling ratio 
(wt%)

Average fm 
(GHz)

Average matching 
thickness (mm)

Average band-
width value 
(GHz)

Ceramic/carbon binary MOF derivatives 37.0 12.3 2.5 4.5
Magnetic NPs/carbon binary MOF derivatives 26.4 12.2 2.4 5.6
Magnetic NPs/ceramic/carbon ternary MOF derivatives 37.4 11.5 2.8 6.2

Type Composite (precur-
sor)

Filling 
ratio 
(wt%)

Minimum 
RL value 
(dB)

fm 
(GHz)

Matching 
thickness 
(mm)

Bandwidth Refs

thickness 
(mm)

Value 
(GHz)

Range 
(GHz)

hollow FeCoNi@C 
(hollow FeCoNi-
MOF-74)

38  − 64.75 15.44 2.1 2.47 8.08 9.92–18.8 [142]

Fe3O4@C (Fe-MOF) 40  − 65.5 9.8 3.0 3.0 4.5 7.9–12.4 [143]
Magnetic 

NPs/
ceramic/
carbon ter-
nary MOF 
derivatives

Co/ZnO/C (CoZn-
MOF)

30  − 52.6 12.1 3.0 3.0 4.9 10.1–15.0 [50]

ZnO/Fe/Fe3C/C 
 (FeIII-MOF-5)

60  − 50.5 7.44 2.6 1.5 4.6 12.5–17.1 [144]

Co/TiO2-C (Mxene/
ZIF-67)

45  − 41.1 9.0 3.0 3.0 3.04 7.24–10.28 [51]

Fe&TiO2@C 
(MXene/Fe-MOF)

40  − 51.8 6.6 3 1.6 6.5 11.5–18.0 [145]

Co@NPC@TiO2 
(ZIF-67@TiO2)

50  − 51.7 13.8 1.65 1.2–5.0 14.7 3.3–18.0 [48]

Co/C@V2O3 (ZIF-
67@VO2)

50  − 40.1 15.2 1.5 1.5 4.64 13.26–17.9 [146]

ZnO/NPC@Co/NPC 
(ZIF-8@ZIF-67)

50  − 45.0 12.5 2.2 1.9 4.2 13.8–18.0 [147]

ZnO@NPC/Co3ZnC 
(ZnO@ZIF8@
ZIF67)

40  − 62.9 14.0 2.2 2.2 5.5 11.1–16.6 [148]

Ni@C@ZnO (Ni-Zn-
MOF)

25  − 55.8 10.0 2.5 2.5 4.1 8.0–12.1 [49]

Co/CuO/C  (Co2+/ 
 Cu3(btc)2)

40  − 25.0 13.72 1.95 1.85 5.28 12.3–18.0 [149]

Ni/NiO/Cu@C  (Ni2+/ 
 Cu3(btc)2)

10  − 38.1 14.8 3.2 3.2 1.5 14.0–15.5 [150]

Co/ZrO2/C  (Co2+/
UIO-66)

50  − 57.2 15.8 3.3 4.6 11.9 6.1–18.0 [151]

Co/N/C@MnO2 
(ZIF-67@ polydo-
pamine@MnO2)

15  − 58.9 11.1 3.7 3.7 5.6 8.8–14.4 [152]

CoFe@C@MnO2 
(CoFe-Prussian blue 
and  MnO2 coating)

50  − 64.0 15.6 1.3 1.6 9.2 8.8–18 [153]

Prussian blue@MoS2 40  − 42.83 16.46 2.1 2.5 7.44 9.82–17.26 [154]
Co–C@Co9S8 (ZIF-

67 and sulfuration)
30  − 54.02 3.04 4.89 2.2 8.2 9.8–18.0 [155]

SiC@ZIF-67 10  − 40.0 5.0 5.0 2.0 4.84 13.16–18.0 [156]

Table 1 (continued)
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carbon nanocomposite with only 10 wt% loading content 
exhibited a minimum RL value of − 32.43 dB at 9.19 GHz 
with a thickness of 3.70 mm, corresponding to an EAB of 
4.2 GHz. Besides, Zhao et al. prepared hierarchically hol-
low porous carbon microcubes (HPCMCs) with different 
structure from ZIF-67@SiO2 [102]. The  SiO2 layer could 
prevent from shrinkage of MOFs precursors during pyrol-
ysis to obtain various structures carbon materials. After 
subsequent HF acid etching, the HPCMCs were obtained. 
At 6.9 GHz, the minimum RL value of HPCMCs could 
reach − 60.7 dB with the thickness of 3.2 mm. An EAB of 
14.4 GHz (3.6–18.0 GHz) was achieved within the thick-
ness rang of 1.0–5.0 mm.

We can conclude that MOF-derived pure carbon with 
distinctive structures can actually decline the density on 
the basis of excellent EMW absorption performances. 
Thus, this kind of MOF derivatives could be an advis-
able choice for lightweight EMW absorption materials. 
However, pure carbon with high conductivity could easily 
result in impedance mismatching. Thus, the introduction 
of component with low conductivity is essential.

3.2  Ceramic/Carbon Binary MOF Derivatives

Metal oxide, carbide, or sulfide such as  TiO2, ZnO, CuO, 
 ZrO2, MgO, and  CoS2 possess high chemical and ther-
mal stability, but the low EMW loss capacity impedes its 
individual application [43, 44, 103, 107, 108, 158]. How-
ever, if combined with carbon, these ceramic materials can 
effectively optimize the impedance mismatching caused by 
over-high conductivity carbon to achieve favorable absorp-
tion performances.

TiO2 and ZnO as typical semiconductive transition metal 
oxides have been widely used as EMW absorption material 
because of the appropriate band gap, environmental friendli-
ness, and abundance [159]. Nanoporous  TiO2/carbon nano-
composites fabricated by the direct pyrolysis of MIL-125(Ti) 
showed a minimum RL value of − 49.6 dB at the match-
ing thickness of 1.6 mm, corresponding to a broad EAB 
of 4.6 GHz [103]. Wu et al. reported ZnO/N-doped porous 
carbon composites by the thermal treatment of ZIF-8 [104]. 
The maximum RL value can reach − 39.7 dB at the thickness 
of 4.0 mm with an EAB of 4.3 GHz. Liang et al. prepared 
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ZnO/nanoporous carbon/RGO. In the synthesis process, the 
ZnO/C was obtained by the pyrolysis of ZIF-8, and through 
hydrothermal method, the target nanocomposite was gained 
[106]. The nanocomposite delivered a minimum RL value 
of − 50.5 dB with the thickness of 2.4 mm. And the EAB of 
7.4 GHz was achieved at the thickness of 2.6 mm.

Besides, due to its wave-transparent characteristic, CuO is 
also introduced into EMW absorption materials to optimize 
the impedance matching. As shown in Fig. 5a–d, Ma et al. 
prepared ZIF-67 derived nanoporous CuO/carbon composite 
by etching the metallic Co and soaking the Cu(NO3)2 into 
the carbon [44]. The minimum RL value of the composite 
(Fig. 5e) can achieve − 57.5 dB at 14.9 GHz with the thick-
ness of 1.55 mm due to the excellent impedance matching. 
The EAB (RL ≤  − 10 dB) can reach 4.7 GHz. The authors 
claimed that the valence state of Cu can effectively tune the 
electromagnetic parameters to affect the absorption proper-
ties. For instance, with the introduction of metallic Cu, the 
value of ε″ would be sharply lifted due to the increasing 
conductivity so that further dissipation could be expected. 
Besides, the polarization from the heterostructures played an 
indispensable role in the absorption property enhancement.

In view of the high corrosion resistant of  ZrO2, MoC, and 
MgO, Zhang et al. synthesized octahedral  ZrO2/C nanocom-
posite by directly thermal treatment of UIO-66 [43]. Ben-
efiting from the intensified polarization loss and improved 

impedance matching condition, the EMW absorption inten-
sity with a minimum RL value of − 58.7 dB achieved. Simul-
taneously, the EAB could cover 91.3% (3.4–18.0 GHz) of the 
measured frequency within the thickness of 1.0–5.0 mm. Dai 
et al. prepared MoC/C nanocomposite by pyrolyzing the Cu/
Mo-MOF and etching Cu [107]. The nanocomposite exhib-
ited a minimum RL of –49.19 dB at 2.6 mm and an EAB of 
4.56 GHz at 1.70 mm. Also, Quan et al. reported the wheat-
like MgO/C by directly pyrolyzing CPO-27-Mg [108]. The 
nanocomposite showed a minimum RL of –14.93 dB at the 
thickness of 2.0 mm, corresponding to an EAB of 4.9 GHz.

Owing to better electrical conductivity, metal sulfides, 
such as  CoS2, have jumped into the limelight. Yan et al. 
prepared hollow  CoS2/N-doped CNTs (N-CNTs) by pre-
carbonization at 350 °C under Ar and  H2 mixture atmos-
phere and sulfuration with sulfur powder at 300 °C under 
 N2 atmosphere [109]. Benefitting from improved impedance 
matching and large specific surface area, the minimum RL 
value of  CoS2/N-CNTs could achieve –65 dB and the EAB 
could reach 6.2 GHz with the thickness of 1.6 mm. Besides, 
Liu et al. reported carbon cloths@N-doped carbon/CoS2 by 
sulfuring carbon cloths@ZIF-67 [110]. The nanocomposite 
delivered a minimum RL value of –59.6 dB at 2.8 mm and a 
EAB of 9.2 GHz with the thickness of 2.5 mm.

All these findings indicated that the synergistic contribu-
tions between carbon with high conductivity and uniformly 
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distributed ceramic materials lead to the enhanced EMW 
absorption performances. However, there are still some 
issues such as imperfect impedance matching condition. 
Thus, to further optimize the compositions and construc-
tions of MOF derivatives is still highly desirable to achieve 
a better EMW absorption performance.

3.3  Magnetic NPs/Carbon Binary MOF Derivatives

The attenuation capacity can be easily regulated by the 
degree of graphitization of carbon [40], however, to achieve 
a perfect impedance matching condition, the enhancement of 
permeability is also indispensable [160]. Thus, for carbon-
based composites, the introduction of magnetic components 
will help to achieve a better EMW absorption performance. 
Magnetic NPs, as typical magnetic components, have always 
been widely utilized for EMW absorption [139, 161]. In 
the carbon-based MOF derivatives, besides the optimized 
impedance matching condition, magnetic NPs in the porous 
carbon can also induce the magnetic loss and agitate the 
interfacial polarization loss. Furthermore, magnetic NPs can 
be directly reduced by carbon which can avoid additional 

reduction step. Thus, MOF-derived magnetic NPs/car-
bon nanocomposites have been widely applied for EMW 
absorption.

3.3.1  Simple Magnetic MOF Derivatives

Some mono-magnetic NPs/carbon nanocomposites with 
simple shape can be obtained by direct pyrolysis of MOFs. 
For example, as shown in Fig. 6a, b, Lv et al. fabricated 
porous Co/C nanocomposites by facile thermal decompo-
sition of ZIF-67 [45]. And the RL value (Fig. 6c) could 
reach − 35.3 dB with a matching thickness of 4 mm. And 
an EAB of 5.8 GHz at 2.5 mm could be achieved. The 
enhanced performance is ascribed to the synergistic effects 
between the highly porous structure and multiple compo-
nents. Wang et al. synthesized Co/C nanocomposites by the 
direct pyrolysis of MOF-74. The minimum RL value can 
reach − 62.12 dB at 11.85 GHz with the thickness of 2.4 mm, 
corresponding to an EAB of 4.6 GHz [111]. Huang et al. 
reported Co/C composites by high temperature treatment of 
ZnCo bimetallic MOF. The minimum RL value of the com-
posites achieved − 51.6 dB at a thickness of 1.6 mm [112]. 
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The enhanced absorption performances were mainly attrib-
uted to the formation of Co NPs, which greatly improved 
impedance matching condition. Zhu et al. prepared Co/C 
composites by directly pyrolyzing a newly-constructed MOF 
called CPT-1-Co [113]. And the composites carbonized at 
700 °C possessed a minimum RL value of − 15.7 dB with 
an EAB of 5.4 GHz at a ultrathin thickness of 1.7 mm. Li 
et al. fabricated prismatic Co/C nanocomposite derived 
from the cubic MOF of [Co(INA)2] in which the INA was 
isonicotinic acid. The nanocomposite pyrolyzed at 650 °C 
displayed a minimum RL value of − 47.6 dB and an EAB of 
5.11 GHz at the thickness of 2.0 mm [114]. Ulteriorly, Xiao 
et al. prepared the Co/CNTs nanohybrid by carbonizing ZIF-
67 at the gas flow of  C2H2 and Ar [115]. The RL value of 
nanocomposites could achieve − 49.16 dB at a thickness of 
2.5 mm, corresponding to an EAB of 4.2 GHz. Feng et al. 
synthesized CoZn alloy/N-doped porous carbon nanocom-
posites derived from CoZn-ZIF [125]. The nanocomposites 
possessed a minimum RL value of − 53.8 dB at 17.6 GHz 
with a thickness of 1.5 mm. Xu et al. prepared cactus-like 
hierarchical Co/N-decorated carbon architecture/CNTs 
nanocomposites by carefully treating CoZn-ZIF-L at 700 °C 
for 2 h [123]. The products exhibited an optimal absorp-
tion performance with a minimum RL value of − 44.6 dB at 
5.20 GHz, corresponding to a matching thickness of 1.5 mm.

Compared with metallic Co, other magnetic NPs have 
their unique advantages as well. For example, Fe pos-
sesses higher saturation magnetization and magnetic damp-
ing capacity [162].  Fe3O4 holds a better chemical stability 
[101]. And Ni is superior in reduction condition simplifica-
tion [163]. Similarly, as shown in Fig. 6d–f, Qiang et al. 
prepared Fe/C nanocomposites derived from Prussian 
blue, and Fe/C nanocomposites exhibited an RL value 
of − 22.6 dB at 15.0 GHz at the thickness of 2 mm [40]. 
Wu et al. also prepared Fe NPs embedded nanoporous car-
bon by the direct pyrolysis of Fe-MIL-88A [126]. The RL 
value reached − 52.9 dB at 3.07 mm, corresponding to an 
EAB of 4.64 GHz. Miao et al. reported two isomeric MOFs 
(MIL-101-Fe with octahedral shape and MIL-88B-Fe with 
rod shape) derived Fe/C by pyrolysis at Ar atmosphere and 
studied the effect of morphology on EMW absorption [127]. 
Attributed to more abundant graphite flakes in MIL-101-Fe-
derived Fe/C, the minimum RL value could reach − 59.2 dB 
with a thickness of 4.32 mm, and the EAB could achieve 
5 GHz with a thickness of 1.8 mm. Yan et al. also prepared 

two kind of organic ligands MOF-derived Ni/C, which 
exhibited a minimum RL value of − 86.8 dB at 13.2 GHz 
with a thickness of 2.7 mm and an EAB of 7.4 GHz with 
the thickness ranging from 1.5 to 4.0 mm [130]. Xiang et al. 
prepared porous  Fe3O4@carbon nanocomposites by directly 
thermal treatment of Fe-MOFs, which exhibited an absorp-
tion intensity of − 65.5 dB at 9.8 GHz with a matching thick-
ness of 3.0 mm, corresponding to an EAB of 4.5 GHz [143]. 
Besides, Liu et al. reported waxberry-like Ni/C microspheres 
by directly pyrolyzing Ni-btc [131]. The nanocomposite 
delivered a minimum RL value of − 73.2 dB and an EAB 
of 4.8 GHz at the thickness of 1.8 mm. Liu et al. synthe-
sized porous carbon-wrapped Ni nanocomposites derived 
from Ni(bdc)(ted)0.5. The nanocomposites treated at 500 °C 
exhibited a minimum RL value of − 51.8 dB at a thickness of 
2.6 mm, corresponding to an EAB of 3.48 GHz [129]. While 
the nanocomposites treated at 600 °C possessed a minimum 
RL value of − 15.0 dB at a thin thickness of 1.8 mm, cor-
responding to an EAB of 4.72 GHz.

Besides, the construction of hollow structures is also uti-
lized for better EMW absorption performances. The struc-
tures are believed to enhance the polarization effect and 
multi-scattering [164, 165].

For example, as shown in Fig. 7a, b, Qiu et al. prepared 
hollow Ni-MOFs precursors by tuning the volume ratio of 
DMF and  H2O in solvothermal process, and subsequently, 
hollow Ni/C microspheres were obtained by pyrolysis [47]. 
The hollow Ni/C microspheres delivered a maximum RL 
of − 57.25 dB (Fig. 7c) with the matching thickness of only 
1.8 mm and corresponding to an EAB of 5.1 GHz. Figure 7d 
shows that both the hollow structure and the synergistic 
effect between carbon and nickel nanoparticles contributed 
to the EMW absorption performance. Moreover, Wang et al. 
synthesized honeycomb-like Co/C composites pyrolyzed 
from specially treated ZIF-67 [122]. In the synthesis pro-
cess, graphene oxide/PVP composites, as the sacrificial tem-
plate, contributed to transforming ZIF-67 into hierarchically 
porous structures. The target products obtained a minimum 
RL value of − 50.7 dB and an EAB of 4.6 GHz, while the 
filler loading is as low as 10 wt%. Furthermore, Li et al. 
prepared hollow Co/C microspheres derived from ZIF-67 
through a one-step template synthesis, in which the cetyltri-
methylammonium bromide was used as template [116]. The 
Co/C nanocomposite delivered a minimum RL of − 66.5 dB 
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with the thickness of 1.53 mm at 17.6 GHz. And the EAB 
could reach 14.3 GHz at the thickness range of 1.0–5.0 mm.

Meanwhile, bi-magnetic NPs/carbon nanocomposites 
could obtain by the one-step pyrolysis of MOF, which 
could further enhance the magnetic loss. As shown in 
Fig.  8, Wang et  al. synthesized NiCo-MOF-derived 
 Ni1−xCox@Carbon composite and discussed their EMW 
absorption performances of composites with tunable 
nano-microstructure [139]. And Ni@C microspheres 
displayed a minimum RL value of − 59.5 dB, correspond-
ing to a EAB of 4.7 GHz. Through the off-axis electron 
holography, the excellent EMW absorption performance 
was ascribed to the magnetic-dielectric synergy effect. 
Xiong et al. reported layered NiCo alloy NPs/nanoporous 

carbon composite which was obtained by carbonizing 
NiCo-bimetallic MOFs [140]. The minimum RL value of 
the nanocomposite could achieve − 51 dB at 17.9 GHz, 
corresponding to an EAB of 4.5 GHz at the thickness 
of 15 mm. Wang et al. fabricated nest-like CoFe-MOF-
derived CoFe@C composite. The minimum RL value 
could achieve − 61.8  dB at 12.7  GHz with the thick-
ness of 2.8 mm, corresponding to an EAB of 9.2 GHz 
[132]. Moreover, Ouyang et al. constructed trimetallic 
FeCoNi@C nanocomposite hollow spheres derived from 
FeCoNi-MOF-74 by adding extra  H2O in the hydrothermal 
process [142]. The minimum RL value reached − 69.03 dB 
at 5.52 GHz. And the maximum EAB reached 8.08 GHz 
(9.92–18 GHz) at the thickness of 2.47 mm.
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3.3.2  Magnetic MOF Derivatives Combined 
with Additional Magnetic NPs

The above reports that verified the introduction of mag-
netic NPs help to optimize impedance matching conditions 
to obtain a much thinner thickness. However, the simple 

preparation process, onefold structures, and fixed proportion 
limit the further application of this kind of MOF derivatives 
as high-performance EMW absorption materials.

Considering that the nature of unchangeable compo-
nent proportion in certain MOFs may restrain the further 
enhancement of EMW absorption performances, Wang et al. 
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embedded extra metallic NPs into the MOF derivatives by 
special treatment [117]. As shown in Fig. 9, the pre-prepared 
Co NPs were impregnated dispersed into the framework of 
ZIF-67, and then, the hybrids were pyrolyzed at different 
temperatures. The obtained Co NPs/porous carbon nano-
composites treated at 700 °C exhibited a minimum RL value 
of − 30.31 dB at 11.03 GHz with a thickness of 3.0 mm. 
And an EAB of 4.93 GHz can be reached. The nanocom-
posites treated at 800 °C possessed a minimum RL value 
of − 13.87 dB at 12.9 GHz with a thickness of 2.0 mm, cor-
responding to an EAB of 3.91 GHz. And Liu et al. reported 
Fe/C derived from  Fe2+-encapsulated ZIF-8. The  Fe2+ ion 
was first encapsulated in ZIF-8 by grinding, and after car-
bonization, the Fe/C nanocomposite was obtained [128]. The 
minimum RL value of − 29.5 dB and an EAB of 4.3 GHz 
were achieved. Zhang et al. prepared FeCo/carbon by ther-
mal decomposition of the additional  Fe3O4 modified ZIF-67 
[133]. The minimum RL value of FeCo/C reached − 21.7 
at the thickness of 1.2 mm, corresponding to an EAB of 
5.8 GHz. These works provided a new idea for designing 
MOF derivatives with adjustable loading contents. Wang 
et al. prepared hollow porous CoNi/C composite derived 
from ZIF-67@NiCo-LDH CSs [137]. The minimum RL 
value of the nanocomposite could achieve − 61.02 dB at 

13.68 GHz, corresponding to an EAB of 5.2 GHz with the 
thickness of 2 mm.

3.3.3  Magnetic MOF Derivatives Combined 
with Additional Carbon Source

CNTs and graphene possess the properties of low density, 
good chemical stability, and superior electrical conductivity, 
which can be applied in EMW absorption as the reinforce-
ment elements. Particularly, as shown in Fig. 10, Yin et al. 
prepared the Co–C/CNTs composite by the carbonization 
of ZIF-67/CNTs [46]. The conductive loss was significantly 
improved, which attributed to the combination of CNTs. 
And combined with other loss mechanisms such as mag-
netic loss and dielectric loss, the nanocomposite exhibited a 
minimum RL value of − 48.9 dB at the thickness of 2.99 mm 
with filler loading as low as 15 wt%.

Similarly, Shu et al. synthesized N-doped Co–C/CNTs 
nanocomposite by carbonizing the CoZn-ZIF/CNTs 
at 700 °C for 4 h [124]. The minimum RL value of the 
nanocomposite could reach − 50.0 dB at the thickness of 
2.4 mm. The EAB could achieve 4.3 GHz at the thickness 
of 1.8 mm. Moreover, Yang et al. reported MOF-derived 
porous NiFe@C nanocubes with graphene oxide (GO) 
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combined, which showed a minimum RL value of − 51 dB 
at 7.7 GHz with a thickness of 2.8 mm [42]. The introduc-
tion of GO further generated multiple interfaces, which 
promoted the polarization loss. Wang et  al. prepared 
FeCo/N-doped carbon/rGO by carbonization Fe-doped 
ZIF-67/rGO. The nanocomposite exhibited a RL value 
of − 43.26 dB with the thickness of 2.5 mm, correspond-
ing to a EAB of 9.12 GHz [134].

Recently, due to the heat resistance, 3D interconnected 
network, and high surface area of melamine foam [166], 
it has been widely applied in EMW absorption. Combined 
with MOF, the derivatives exhibited outstanding EMW 
absorption performance. As depicted in Fig. 11, Gu et al. 
prepared Co/C composites with 3D porous network struc-
ture by deriving melamine foam@ZIF-67 [119]. The 
porosity and conductivity of the products could facilitate 

the enhancement of dielectric loss. Attributed to the syn-
ergistic effect of dielectric loss and magnetic loss, the 
minimum RL value could achieve − 59.82 dB. Moreover, 
benefited from the enhanced thermal conduction, ther-
mal convection, and thermal radiation, the nanocom-
posite showed infrared stealth and heat insulation func-
tion. Similarly, Yang et  al. synthesized Co/N-CNTs/C 
sponge composite derived from melamine–formaldehyde 
sponge@ZIF-67 as well. The minimum RL value could 
reach − 51.2 dB and the EAB could up to 4.1 GHz at the 
thickness of 2.2 mm [120]. Yang et al. reported hierarchi-
cal CNT/Co/C fiber derived from ZIF-67/cotton [121]. Due 
to the hollow fibrous structure and multiple loss mecha-
nism, the nanocomposite exhibited a minimum RL value 
of − 53.5 dB at 7.8 GHz with the thickness of 2.9 mm. 
And the EAB could reach 8.02 GHz at the thickness of 
2 mm. Xiong et al. synthesized FeCo/C nanocages by the 
pyrolysis of  Fe3O4/ZIF-67@wood carbon [135]. Attributed 
to the enhanced polarization loss, magnetic coupling loss, 
and hierarchical conductive network, the nanocomposite 
was endowed with outstanding EMW absorption perfor-
mance. The minimum RL value could reach − 47.6 dB at 
15.7 GHz with the thickness of 1.5 mm, and an EAB of 
8.9 GHz achieved at the thickness of 1.96 mm.

Furthermore, Liu et al. reported the sponge-like Co/C 
nanocomposite, as well as its synthesis procedures, micro-
structures and absorption performances [118]. By adding 
extra glucose into  Co3[HCOO]6·DMF precursors, the car-
bon contents could be noticeably changed. Meanwhile, with 
more glucose added, in the final products, the microstructure 
of extra-introduced carbon on sponge-like matrix changed 
from fragments to vertically aligned nanoflakes and eventu-
ally the sponge-like structure transformed into a thick layer 
with extra fragments. The optimal sponge-like Co/C nano-
composites exhibited a minimum RL value of − 19.86 dB at 
the thickness of 1.6 mm with the EAB of 4.12 GHz. This 
work provided opportunities for designing MOF derivatives 
with adjustable carbon matrix contents.

All the above enhanced excellent performances are attrib-
uted to the enhanced magnetic loss and the hierarchical 
hollow designs or other special structure, which can opti-
mize the impedance matching and strengthen the dissipa-
tion capacity to improve the final EMW absorption perfor-
mances. Nonetheless, considering the magnetic NPs are easy 
to be oxidized or corroded, how to improve the environmen-
tal adaptability of relevant composites is still a big challenge.
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3.4  Magnetic NPs/Ceramic/Carbon Ternary MOF 
Derivatives

As aforementioned, carbon, ceramic, and magnetic NPs 
exhibit their unique advantages in EMW absorption. 

Thus, hybridization of them to construct magnetic NPs/
ceramic/carbon ternary composites may pave the way to 
further enhance the EMW absorption performance. In this 
point, how to reasonably collocate compositions and con-
struct microstructures to achieve the synergistic effects is 
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particularly important. Nevertheless, the finite species for 
EMW absorption confine the research potential in collocat-
ing compositions, so that the researchers devoted more to 
the construction of microstructures.

3.4.1  One‑step Synthesis of Ternary MOF Derivatives

In Liao’s work, Co/ZnO/C microrods were directly derived 
from CoZn-MOF by pyrolysis. The minimum RL value 
could be as low as − 52.6 dB at 12.1 GHz with a match-
ing thickness of 3.0 mm and an EAB of 4.9 GHz [50]. The 
absorption property is mainly originated from the produc-
tion of abundant loss pathways, including conductive loss, 
dielectric loss, and magnetic loss. Liu et al. prepared ZnO/
Fe/Fe3C/carbon (ZFC) composite by the direct pyrolysis of 
 FeIII-MOF-5 [144]. The composite treated at 700 °C exhib-
ited an absorption performance with a minimum RL value 

of − 30.4 dB at a thickness of 1.5 mm, corresponding to an 
EAB of 4.6 GHz.

3.4.2  Two‑step Synthesis of Ternary MOF Derivatives

However, the method of direct treatment for bimetallic 
MOFs cannot realize the random collocation of components. 
Thus, extra treating processes such as mixing, dipping, and 
cladding are widely applied. Liu et al. synthesized the Co/
CuO/C nanocomposite [149]. As shown in Fig. 12a, by thor-
oughly grinding of Cu-MOFs  (Cu3(btc)2) in a handful of 
 Co2+ solutions and subsequent pyrolysis, the Co ions were 
also encapsulated in the carbon matrix. This method was 
simple and flexible, and made full use of the porous struc-
tures to uniformly disperse Co NPs, which further protect 
Co NPs from agglomeration. In Fig. 12b, c, the elements of 
Co and Cu were evenly distributed on the carbon matrix. 
The composite possessed a minimum RL value (Fig. 12d) 
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of − 25.0 dB at 13.72 GHz with a thickness of 1.95 mm, 
corresponding to an EAB of 5.36 GHz. Analogously, Huang 
et al. prepared Ni/NiO/Cu@C composite using the same 
method [150]. And the particles were also well dispersed 
(Fig. 12e, f). The composite exhibited a minimum RL value 
(Fig. 12g) of − 38.1 dB at a thickness of 3.2 mm with only 10 
wt% of filler loading. Figure 12h shows the possible absorp-
tion mechanism of the above two nanocomposites, and it 
can be clarified by modified equivalent circuit mode. Zhang 
et al. prepared Co/ZrO2/C nanocomposite derived from 
 Co2+-adsorbed  NH2-UIO-66 [151]. The product exhibited a 
minimum RL value of − 57.2 dB at 15.8 GHz with a match-
ing thickness of 3.3 mm. The maximum EAB could reach 
11.9 GHz at the thickness of 4.6 mm. Wang et al. fabri-
cated  Ba0.85Sm0.15Co2Fe16O27 hexaferrite/Co/porous carbon 
derived from ferrite/ZIF-67 which exhibited a minimum RL 
value of − 31.05 dB at 8.4 GHz and an EAB of 4.8 GHz at 
the thickness of 1.5 mm [167].

3.4.3  Ternary MOF Derivatives with Special Structures

On this basis, some researchers focused on the design of 
core–shell structures to achieve performance improvements. 
For example, Zhang et al. designed a novel core–shell Co@
carbon@TiO2 nanocomposite [48]. The nanocomposite 

with high  TiO2 content exhibited a minimum RL value 
of − 51.7 dB at 1.65 mm, and the RL value for the nano-
composite with low  TiO2 content could reach − 31.7 dB 
at 1.5 mm. The coating thickness  TiO2 shell affected the 
impedance matching condition to enhance the EMW absorp-
tion performance, and it could protect the Co core from oxi-
dizing as well. Similarly, Zhou et al. prepared hierarchical 
Co/C@V2O3 hollow spheres by pyrolyzing  V2O3 coated 
ZIF-67, which exhibited the EMW performances with a 
minimum RL value of − 40.1 dB at the matching thickness 
of 1.5 mm, corresponding to an EAB of 4.64 GHz [146]. 
Liang et al. further developed a core–shell structure of ZnO/
nanoporous carbon@Co/nanoporous carbon (ZnO/NPC@
Co/NPC) by the pyrolysis of ZIF-8@ZIF-67 precursor [147]. 
The core–shell nanocomposites exhibited a minimum RL 
value of − 28.8 dB at 16 GHz with a matching thickness of 
1.9 mm and an EAB of 4.2 GHz. Feng et al. also designed a 
ZnO@N-doped porous carbon/Co3ZnC core–shell hetero-
structures derived from ZnO@ZIF-8@ZIF-67 with mini-
mum RL value of − 62.9 dB and broad EAB of 5.5 GHz 
[148].

Wang et al. reported the yolk-shell Ni@C@ZnO nano-
composite as shown in Fig.  13a–c [49]. The special 
core–shell structure accelerated the multiple reflection and 
enhanced the dipole and interfacial polarization (Fig. 13d, 
e). And the hologram (Fig. 13f) confirmed the existence of 

YS-Ni@C@ZnO

2.5 mm
−55.8 dB

1.0 mm
1.5 mm
2.0 mm
2.5 mm

3.5 mm
4.0 mm
4.5 mm
5.0 mm3.0 mm

Frequency (GHz)

R
L 

(d
B

)

0

−15

−30

2 4 6 8 10 12 14 16 18

−45

−60

−75

Multiple Reflection 3D Conductive structure

Interfacial Polarization Synergistic Effect Core-Shell Ni@C

El
ec

tr
on

ic
 e

ne
rg

y Barrier

ZnO

Fermi level

Interfaces

Ni@C

Wf

Ni@C

+ +−

+ +−

+ +−

+ +−

ZnO
Surface binding energy level Space charge zone

Negative ions Positive ions

Ni2+ Zn2+ PTA Ni-Zn-MOF YS-Ni@C@ZnO

Ethanol/DMF

150 °C, 10 h

Pyrolysis

Ar 600 °C, 5 h

(a)

(g)
(d)(b)

1 µm

(c)

(e)

(f) Interfaces
e−e−

e− e−

500 nm

Fig. 13  a Illustration of the synthetic process of yolk-shell Ni@C@ZnO microspheres. b, c SEM and TEM images of Ni@C@ZnO. d, e Micro-
wave absorption mechanisms of Ni@C@ZnO. f, g Off-axis electron hologram and the RL values of Ni@C@ZnO. Reproduced with permission 
from Ref. [49]. Copyright © 2020 Elsevier BV



 Nano-Micro Lett.          (2021) 13:135   135  Page 22 of 31

https://doi.org/10.1007/s40820-021-00658-8© The authors

multiple interfaces. As a result, the nanocomposite deliv-
ered a minimum RL value of − 55.8 dB at 2.5 mm and an 
EAB bandwidth of 4.1 GHz (Fig. 13g). Wang et al. pre-
pared Co/N/C@MnO2 nanocomposite by pyrolysis ZIF-
67@polydopamine and coating  MnO2. The nanocomposite 
displayed a minimum RL value of − 58.9 dB and an EAB 
of 5.56 GHz at the thickness of 3.7 mm [152]. Similarly, 
Zhang et al. fabricated CoFe@C@MnO2 nanocomposite. 
Firstly, the CoFe@C was obtained by the carbonization 
CoFe-Prussian blue. Then, the CoFe@C nanocubes were 
coated with manganese dioxide by a hydrothermal reac-
tion to obtain the target nanocomposite [153]. CoFe@C@
MnO2 nanocomposite displayed a minimum RL value 
of − 64 dB at 15.6 GHz with the thickness of 1.3 mm and 
an EAB of 9.2 GHz at the thickness of 1.6 mm. Further-
more, Zhao et al. reported Prussian blue@MoS2 synthe-
sized by solvothermal method [154]. The minimum RL 
value of the nanocomposite could achieve − 42.83 dB with 
the thickness of 2.1 mm at 16.46 GHz. And the EAB could 
reach 7.31 GHz at 2.4 mm.

For sulfide or carbide, Liu et al. reported a yolk–shell 
structured Co–C/Void/Co9S8 nanocomposite by sulfurating 
ZIF-67 [155]. The nanocomposite displayed a minimum 
RL value of − 54.02 dB at the loading of 30 wt%, and the 
EAB could achieve 8.2 GHz with the thickness of 2.2 mm 
at the loading of 25 wt%. The synergistic effect of abundant 
heterointerfaces, controlled cavities, and multiple losses 
facilitated the EMW absorption performance enhancement. 
Zhang et al. fabricated one-dimensional ZIF-67 loaded SiC 
through the thermal treatment at 500 °C. The nanocomposite 
exhibited a minimum RL value of − 40 dB with the thickness 
of 5 mm [156]. And the EAB could reach 4.84 GHz with the 
thickness of 2.0 mm.

Furthermore, some researchers combined MOF with 
other current hot materials such as MXenes to get better 
EMW absorption performances. For example, Liao et al. 
fabricated Co/TiO2-C hybrids which was derived from 
 Ti3C2Tx (MXene)/ZIF-67 [51]. The MXenes possessed 
2D multilayered microstructures, which are beneficial for 
the absorption performances. Thus, the obtained Co/TiO2-
C hybrids possessed a minimum RL value of − 41.1 dB at 
9.0 GHz with a thickness of 3.0 mm, corresponding to an 
EAB of 3.04 GHz.

Similarly, Deng et  al. prepared sandwich-like 
Fe&TiO2@C nanocomposite by the pyrolysis of MXene/
Fe-MOF at  H2/Ar atmosphere shown in Fig. 14 [145]. The 

minimum RL value could achieve − 51.8 dB at 6.6 GHz at 
the thickness of 3 mm and the EAB could reach 6.5 GHz at 
the thickness of 1.6 mm. Particularly, the interfacial polari-
zation between Fe,  TiO2, and carbon made a great contribu-
tion to the EMW absorption performance.

In brief, compared with the binary MOF derivatives, 
the introduction of both magnetic and ceramic compo-
nents into carbon can indeed offer more opportunities to 
control the impedance matching condition, and make full 
use of various attenuation pathways. Besides, the ternary 
nanocomposites exhibited a higher tolerance to the harsh 
environment and a higher degree of controllability. Thus, 
the strategy of MOF-derived magnetic NPs/ceramic/car-
bon nanocomposite was expected as a promising pathway 
for high-efficiency EMW absorption materials. Neverthe-
less, after summarizing, we found that the EAB of most 
above-mentioned MOF derivatives is confirmed to 4 GHz. 
Thus, how to further expand the EAB performance is still 
a big challenge.

4  Conclusions and Prospects

In this review article, we summarized the common theories 
and the recent progress of carbon-based MOF derivatives 
in field of EMW absorption. In terms of composition varia-
tions, carbon-based MOF derivatives for EMW absorption 
are classified into four categories: unary carbonous mate-
rials, ceramic/carbon binary composites, magnetic NPs/
carbon binary composites, and magnetic NPs/ceramic/car-
bon ternary composites. Abundant reports verified that the 
basic features of highly porous structures, high dispersion, 
strong operability, and readily tunable compositions were 
exploitable for EMW absorption performance promotion. 
By regulating the pyrolysis conditions, the graphitization 
degree and porosity of carbon matrix can be adjusted to 
control the permittivity, as well as the conductive loss. By 
selecting the categories of constitute units in MOF precur-
sors, the derivatives with expected compositions can be 
obtained to optimize the electromagnetic parameters. By 
constructing more elaborate structures or combining with 
other functional materials, the impedance matching condi-
tions and attenuation capacities can be further improved. All 
these superiorities make the carbon-based MOF derivatives 
highly expected to be new-type high-performance EMW 
absorption materials. Therein, because of the combination of 
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both magnetic loss and dielectric loss, the further optimized 
impedance matching, as well as a more flexible preparation 
method, MOF-derived magnetic NPs/carbon binary compos-
ites have been studied most extensively. While attributed to 
a more controllable composition and structure, and a more 
optimized EMW performance, the magnetic NPs/ceramic/
carbon ternary composites are becoming more attractive for 
researchers.

The carbon-based MOF derivatives bring some new blood 
into the development of EMW absorption materials. But 

there are still a lot remaining to be done to meet the con-
tinuously developing performance requirement. To achieve a 
more comprehensive property and further expand the multi-
component combination mode, MOF-derived sulfide, phos-
phide, and nitride composites have been gradually drawing 
attention. Meanwhile, to promote the adaptability in multi-
ple scenarios, other functions such as the thermal infrared 
stealth, hydrophobicity, heat insulation, thermal stability, and 
even wearability are gradually incorporated into the material 
development goals. Furthermore, combining with theoretical 
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calculation to guide the design of EMW absorption materials 
is also well worth considered. In the overall view, it should 
be believed that the carbon-based MOFs derivatives can be 
regarded as one of the most promising materials for high-
efficiency EMW absorption now and in the future.
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