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Recent Advances on MOF Derivatives for Non‑Noble 
Metal Oxygen Electrocatalysts in Zinc‑Air Batteries
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HIGHLIGHTS

• This review summarizes the recent progress and application of different metal-organic frameworks (MOFs)-derived non-noble metal 
materials for zinc-air batteries in the past few years.

• This work gives extensive insights in understanding the relationship between design strategies and structure-activity relationship.

• The challenges and prospects of MOF-derived oxygen electrocatalysts for zinc-air batteries are proposed.

ABSTRACT Oxygen electrocatalysts are of great importance for the air electrode in 
zinc-air batteries (ZABs). Owing to the high specific surface area, controllable pore 
size and unsaturated metal active sites, metal–organic frameworks (MOFs) deriva-
tives have been widely studied as oxygen electrocatalysts in ZABs. To date, many 
strategies have been developed to generate efficient oxygen electrocatalysts from 
MOFs for improving the performance of ZABs. In this review, the latest progress of 
the MOF-derived non-noble metal–oxygen electrocatalysts in ZABs is reviewed. The 
performance of these MOF-derived catalysts toward oxygen reduction, and oxygen 
evolution reactions is discussed based on the categories of metal-free carbon mate-
rials, single-atom catalysts, metal cluster/carbon composites and metal compound/
carbon composites. Moreover, we provide a comprehensive overview on the design 
strategies of various MOF-derived non-noble metal–oxygen electrocatalysts and 
their structure-performance relationship. Finally, the challenges and perspectives are 
provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs.

KEYWORDS Metal–organic framework; Non-noble metal; Oxygen electrocatalysts; Air electrode; Zinc-air batteries

MM
eettaall  CC

oomm
ppoouunndd//CCaarrbboonn  CCoommppoossiitteess MMeettaall  CClluusstteerr//CC
aarrbboonn  CC

oomm
ppoo

ssii
ttee

ss

SSiinnggllee--AAttoomm  CCaattaallyysstt  MM
aatteerriiaallssMM

eett
aall

  FF
rree

ee  CC
aarrbb

oonn  MMaatteerriiaallss

MOFMOF
DerivativesDerivatives

AirAir
CathodeCathode

Zinc Zinc 
AnodeAnodeMOFsMOFs

Zinc-Air BatteryZinc-Air Battery

   ISSN 2311-6706
e-ISSN 2150-5551

      CN 31-2103/TB

REVIEW

Cite as
Nano-Micro Lett. 
         (2021) 13:137 

Received: 22 March 2021 
Accepted: 11 May 2021 
© The Author(s) 2021

https://doi.org/10.1007/s40820-021-00669-5

Yuting Zhu and Kaihang Yue contributed equally to this work.
 * Xianying Wang, wangxianying@mail.sic.ac.cn; Ya Yan, yanya@mail.sic.ac.cn; Bao Yu Xia, byxia@hust.edu.cn

1 School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, 
People’s Republic of China

2 Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry 
and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University 
of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People’s Republic of China

3 CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 
Shanghai 200050, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-021-00669-5&domain=pdf


 Nano-Micro Lett.          (2021) 13:137   137  Page 2 of 29

https://doi.org/10.1007/s40820-021-00669-5© The authors

1 Introduction

Recent couple of decades has witnessed rapid technological 
development, which increased energy demands of the soci-
ety; where the massive consumptions of conventional oil and 
gas resources have caused severe environmental problems 
[1]. Therefore, to eradicate the environmental issues, there 
is an urgent need to explore and develop new sustainable 
energy alternatives for the traditional non-renewable energy 
systems [2–4]. Hence, alternate electrochemical energy stor-
age devices [5], such as fuel cells [6–11], lithium-ion bat-
teries [12, 13], solar cells [14, 15], supercapacitors [16–18] 
and metal-air batteries [19–26] have been widely explored. 
Among these renewable sources, zinc-air batteries have 
attracted great attention due to their high specific energy 
density, environmental friendliness and safety [27–29]. 

Zinc-air batteries possess second highest weight-specific 
energy after the Li-air batteries, while the volume-specific 
energy is the highest among the other renewable energy 
sources (Fig. 1a). Thus, zinc-air batteries are considered to 
be a promising system because of their richly available raw 
materials, low cost, mildness of zinc electrode in the reac-
tion process and the non-flammable aqueous electrolytes 
[30–32].

A typical zinc-air battery is usually composed of a zinc 
electrode, air electrode, electrolyte and a separator. The cata-
lyst on the air electrode is one of the most important com-
ponents, which is mainly responsible for the oxygen elec-
trochemical reactions including oxygen reduction reaction 
(ORR) and oxygen evolution reaction (OER). The activity 
and stability of oxygen electrocatalysts play a significant role 
in the discharging-charging performance of ZABs [33–35]. 
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Fig. 1  a Comparison of gravimetric specific energy and volumetric energy density of several batteries. b Progress of our research in the devel-
opment of MOF derivatives in ZABs. c Typical device of the ZABs and air electrode of ZABs structure. d Classification diagram of MOF-
derived catalysts for air cathode
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At present, the most active catalysts are the precious metal-
based materials, such as ruthenium and platinum-based 
catalysts. The high costs and low reserves of these precious 
metals greatly hinder their widespread applications in zinc-
air batteries. Therefore, the development of highly efficient 
electrocatalysts based on non-noble metal materials for air 
electrodes has become imperative to realize the commer-
cialization of ZABs.

Metal–organic frameworks (MOFs), also known as cova-
lent organic frameworks (COFs) or coordination polymers, 
are crystalline porous materials with a periodic structure 
formed by the coordination of metal ions or clusters with 
organic ligands [36]. Up to now, MOFs have been applied to 
an ocean of fields, such as catalysis, energy storage, conver-
sion, gas adsorption and separation [37]. Besides, as cata-
lysts and catalytic host materials [38], MOFs are frequently 
used as a precursor to developing MOF-derived electrode 
catalysts, which not only retain the advantages of the origi-
nal structure of MOFs but also provide enhanced conductiv-
ity and stability [39, 40]. Based on the versatile and unique 
structure–activity characteristics of MOF-derived nanomate-
rials toward oxygen electrocatalysis in ZABs, our group has 
contributed many leading, innovative and systematic works 
(Fig. 1b). We have reported a well-defined hollow structure 
composed of cobalt incorporated into nitrogen-doped carbon 
nanotubes by the thermal annealing of zeolitic-imidazolate 
frameworks (ZIFs) for the first time as electrocatalyst for 
ZABs [41]. This work provides a prospect for the devel-
opment of highly active oxygen electrocatalysts in electro-
chemical energy devices [42–44]. To further enhance the 
activity and stability of MOF-derived carbon nanotubes for 
zinc-air batteries, the graphitization degree of carbon nano-
tubes can be improved from the enhanced carbon bonding 
at the micro–macro scale, to achieve the enhanced corrosion 
resistance, stability and conductivity of the electrocatalysts 
[45]. Thereafter, we focused on the design of both efficient 
and stable bifunctional oxygen electrocatalysts for long-life 
metal-air batteries [46–48]. A template method has been 
developed to prepare a variety of three-dimensional continu-
ous carbon nanotube network materials for liquid and flex-
ible solid-state zinc-air batteries to improve performance and 
cycle stability [49–51]. When applied to the rechargeable 
zinc-air batteries, strong cycle stability has been attempted 
up to 1600 h. Therefore, with substantial contributions 
in the preparation of MOFs derived oxygen catalysts for 
zinc-air batteries, we anticipate to work on the design of 

MOF-derived carbon-based catalysts, including optimiz-
ing the structure of carbon-based catalysts, improving the 
utilization of active metal atoms, improving the conductiv-
ity, stability, corrosion resistance of catalyst carriers, etc., 
to improve energy power density and cycling durability of 
ZABs.

There are many pieces of research on MOFs-based mate-
rials [52–54], however, most of them focus on the synthesis 
of MOFs-based catalysts for ORR or OER under different 
conditions, and little attention has been paid to the MOF-
derived electrocatalysts as air cathode in ZABs, including 
ORR catalysts and OER/ORR bifunctional catalysts. Moreo-
ver, there is huge room to describe the relationship between 
catalyst material structures, oxygen electrocatalytic activity 
and the practical problems in the application of zinc-air bat-
teries. In this review, the recent progress in MOF-derived 
oxygen electrocatalysts as air cathode in zinc-air batteries 
is comprehensively discussed and summarized with the 
focus on understanding the design strategies and the struc-
ture–activity relationship. Starting with a brief introduction 
to the fundamentals of oxygen electrolysis in ZABs, the 
recent advances on MOF-derived non-noble metal–oxygen 
electrocatalysts are successively reviewed for ORR and OER 
from the category of metal-free carbon materials, single-
atom catalysts, transitional metal cluster/carbon composites 
and metal compound/carbon composites. In particular, these 
MOF-derived non-noble metal–oxygen electrocatalysts in 
the ZABs are reviewed based on the structure-performance 
relationship. Finally, the challenges and prospects of MOF-
derived non-noble-metal oxygen electrocatalysts in ZABs 
are proposed. We hope that this review and the provided 
references will play a guiding role to contribute in the devel-
opment of MOF-derived oxygen electrocatalytic materials 
in ZABs.

2  Oxygen Electrolysis in ZABs

2.1  Architecture and Working Mechanism

A typical configuration of zinc-air battery is usually composed 
of air cathode, zinc anode, electrolyte and separator (Fig. 1c) 
[55, 56]. A multitude of the anode material of ZABs usually 
uses a gel mixture mixed with granular zinc powder or a pure 
Zn plate. The air electrode is the key technology of ZABs. The 
oxygen in the air is the active and inexhaustible substance of 
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electrode reaction, which makes the air electrode have high 
specific energy compared with the oxide electrode as a cath-
ode material of general batteries. Generally, the gas diffusion 
layer, the current collector and the catalyst layer form a sand-
wich structure, which composes of the traditional air electrode 
(Fig. 1c). The components of the air electrode include: (1) 
current collector, the current collector is nickel mesh made of 
nickel metal, nickel foam or a cheaper metal mesh with nickel 
coating [31]. (2) catalytic layer, this is the place where ORR 
occurs in the primary ZABs, or OER and ORR occur in the 
secondary ZABs, which is the key to the performance of the 
ZABs, (3) gas diffusion layer, the main function of the gas dif-
fusion layer is to let the reaction gas pass through smoothly and 
transport the corresponding gas needed for the reaction active 
layer. At the same time, the gas diffusion layer must prevent 
the gas diffusion channel from being covered due to the flow 
of electrolyte, which requires the gas diffusion layer to have a 
highly limited surface area. For example, polytetrafluoroeth-
ylene (PTFE) is generally the main part of the gas diffusion 
layer and can be doped with other carbon materials to form the 
gas diffusion layer [57].

Usually, the well-known working mechanism of ZABs is 
the oxidation–reduction reaction between zinc anode and air 
cathode during the discharge and charge process [27]. Dur-
ing the discharge process, oxygen diffuses to the air electrode, 
where it is reduced to hydroxyl ions under the action of an 
active catalyst. The hydroxyl ions generated on the air cathode 
migrate to the zinc anode through the separator, and then com-
bine with zinc ions to form soluble zincate ion (Zn(OH)4

2−), 
when the zincate ion in the electrolyte reaches saturation, it 
will decompose to ZnO. In this process, the electrons released 
by the reaction between zinc and hydroxide are transferred to 
the air cathode through an external circuit, and the oxygen in 
the air in contact with the air cathode undergoes an ORR at the 
air cathode [58]. During the charging process, OER occurs at 
the air cathode, and the final reaction is the decomposition of 
ZnO into Zn and  O2. The specific process is:

Air cathode∶ O2 + 2H2O + 4e− → 4OH−

Zinc anode∶ Zn → Zn2+ + 2e−

Zn2+ + 2OH−
→ Zn(OH)2

Zn(OH)2 → ZnO + H2O

The catalysts employed in the air electrode determine 
the efficiency of the ZABs, therefore, reasonable assess-
ment should be established to evaluate the oxygen elec-
trochemical catalysts from a single reaction to the whole 
battery architecture. Generally, the performance of the 
ORR catalyst is evaluated by comparing the reduction 
peak potential, onset potential, half-wave potential and 
stability, while the performance of the OER catalysts is 
usually estimated by the overpotential to achieve the cur-
rent density of 10 mA  cm−2 as well as its durability. Dur-
ing the charge–discharge process of ZABs, the OER and 
ORR occur on air electrode alternately. The challenge for 
the air electrode is the two different overpotentials needed 
to trigger the OER and ORR processes because the OER 
requires a larger overpotential to occur (≈2.0 V or even 
higher), but at this voltage, the ORR catalyst will be deac-
tivated during high-voltage charging. Therefore, the cata-
lysts with good ORR activity generally show poor OER 
performance. For this reason, the development of non-
precious metal materials with both OER and ORR func-
tional catalytic properties is crucial for the development 
of ZABs, especially rechargeable ZABs [59]. Besides, 6 M 
KOH is frequently used as the electrolyte for the primary 
batteries, and Zn(AC)2 is usually added to the 6 M KOH 
electrolyte in the rechargeable batteries. To assess the 
performance of the constructed ZABs, attention should 
be paid to open-circuit voltage (OCV), charging voltage 
 (VC), discharging voltage  (VD), peak power density (PPD), 
specific capacity, stability and other physical parameters. 
In light of the structure–activity relationship, the obtained 
performance results can be further used to optimize the 
design of the oxygen catalysts to achieve higher perfor-
mance of ZABs [60].

2.2  Oxygen Electrochemical Reactions in Air Electrode

It is obvious that for both primary ZABs and rechargeable 
ZABs, the ORR is an essential electrochemical process, 
which is the key reaction of the ZABs. The ORR mecha-
nism is also complicated due to the multiple-electron 
reaction process. At present, the normally accepted ORR 

Total reaction∶ 2Zn + O2 → 2ZnO
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mechanism involves a four-electron reaction mechanism 
and/or two-electron reaction mechanism [61]. In the ORR, 
the best-performing precious metal catalysts are mainly 
four-electron reactions. The process of both reaction 
mechanisms is explained as follows:

Four-electron reaction:

Two-electron reaction:

In the rechargeable ZABs, the oxygen electrocatalyst 
is also vital to catalyze the reverse reaction of ORR, that 
is OER [62–66]. When charging, the zinc compound will 
be formed at the anode, and the air cathode will release 
oxygen [67]. Analogous to ORR, OER also involves the 
transfer of four electrons, so its reaction mechanism is also 
very complicated. At present, there are two main points of 
view to explain the reaction mechanism of OER, namely: 
(1) directly combine two M–O to generate  O2; (2) first 
generate M-OOH, and then generate  O2 to from M-OOH, 
here M means active site. Compared with the ORR, the 
OER kinetics of rechargeable ZABs are much slower, a 
charging voltage of about 2.0 V or higher is often required, 
and the open-circuit voltage of the discharging process is 
generally around 1.2 V. Furthermore, the excessive charg-
ing voltage will cause the corrosion of air electrode and 
oxidation of the electrocatalyst [29]. Certainly, the exist-
ing three-electrode structure allows a rechargeable zinc-
air battery to be assembled using two single functional 
oxygen electrocatalysts to achieve dual functions. The 
three-electrode system battery increases the volume and 
weight of the battery while improving the stability, which 
inevitably reduces the volume and mass-energy. So, the 
air cathode catalyst is preferred to be functional for both 
OER and ORR instead of the three-electrode system. This 
puts forward higher requirements for the development of 

Acidic electrolyte∶ O2 + 4H+ + 4e− → 2H2O

Alkaline electrolyte∶ O2 + 2H2O + 4e− → 4OH−

Acidic electrolyte∶ O2 + 2H+ + 2e− → H2O2

H2O2 + 2H+ + 2e− → 2H2O

Alkaline electrolyte∶ O2 + 2H2O + 4e− → HO−

2
+ OH−

HO−

2
+ H2O + 2e− → 3OH−

highly active and stable OER catalysts, even more, effi-
cient bifunctional catalysts for catalyzing both OER and 
ORR.

In general, the charge–discharge process of ZABs requires 
two oxygen electrochemical processes, OER and ORR, on 
the air cathode. However, due to intrinsic high kinetic bar-
rier of OER and ORR, highly efficient electrocatalysts are 
required to meet the desired power output. Considering the 
diverse structural characteristics of MOFs derived electro-
catalytic materials, the MOF-derived oxygen electrocatalysts 
provide more possibilities for performance optimization in 
ZABs. Particularly, the high specific surface area can lead 
to more accessible active sites in contact with electrolyte. 
When MOFs is used as a support matrix, its crystal frame-
work can ensure the uniform distribution of active units, 
which avoids the formation of large agglomerates and pro-
vides a diversified platform for the synthesis of high-perfor-
mance metals or carbon-based derivatives [68–70]. There-
fore, MOFs and their derivatives are promising electrode 
materials for ZABs.

3  MOF‑Derived Oxygen Electrocatalysts 
as Air Electrode in ZABs

MOFs are the organic–inorganic hybrid materials, which 
possess a variety of metal ions and organic ligands coor-
dinated to form a variety of structures. Compared with the 
pristine MOFs, MOF-derived materials inherit the porous 
characteristics of original MOFs to a great extent, which 
realize the precise regulation of the active ingredients in the 
derived materials. We summarize the different types of MOF 
derivatives as oxygen electrocatalysts in ZABs (Fig. 1d). 
The following parts will review and discuss these advanced 
MOF-derived oxygen electrocatalysts successively from the 
category of metal-free carbon materials, single-atom cata-
lysts, metal cluster/carbon composites and metal compound/
carbon composites.

3.1  MOF‑Derived Metal‑Free Carbon Materials

Carbon materials have the advantages of low cost, envi-
ronmental acceptability, positive conductivity and stability 
[71, 72]. When doped with heteroatom such as nitrogen, 
phosphorus, boron, sulfur, oxygen and other heteroatoms, 
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they often exhibit enhanced catalytic activity. Compared 
with metal-based catalysts, MOF-derived metal-free car-
bon materials are promising alternative electrocatalysts for 
ORR and are frequently employed as air cathode catalysts 
in ZABs [73–76].

As a type of host materials, metal-free carbon materi-
als derived from MOFs have also been studied as oxygen 
catalysts, especially the nitrogen-rich porous carbon (NPC) 
[77–79]. When used as cathode electrocatalysts in the ZABs, 
the doped N can terminate the electrical neutrality of adja-
cent carbon atoms and form a positively charged position due 
to the electron-withdrawing characteristics of N atoms. This 
character can promote oxygen adsorption and thus improve 
the cathode ORR performance. In a novel work by Yang et al. 
[80], an effective and universal silica-template strategy has 
been used to form an ordered macro-porous carbon skeleton 
with narrow connections/walls between the spherical voids 
(BHPC, Fig. 2a) by in-situ growing ZIF-8 crystal particles 
on the surface of the silica microspheres and subsequent car-
bonization to remove the template. Compared with NC-950 
(1331  m2  g−1, 1.71  cm3  g−1), BHPC-950 had a larger total 
pore volume of 13.42  cm3  g−1, a larger specific surface area 
of 2546  cm2  g−1, high N content of 7.6 at% and ordered inter-
connected pore network, which highlighted the advantages of 
this dual template strategy. As shown in Fig. 2b, by using the 
BHPC-950 as an air electrode, the assembled ZABs could not 
only work at a high rate of 120 mA  cm−2 but also provide an 
excellent capacity of 770 mAh  g−1. Besides, two constructed 
ZABs connected in series could light up a light-emitting diode 
composed of 30 LEDs (2.2 V) for 12 h without brightness 
attenuation. These results indicated that the highly exposed 
graphite N under the double template had unique texture char-
acteristics, which would promote the cathodic ORR in ZABs 
and could be used as a promising substitute for Pt-based cata-
lysts in energy devices. Also, ZnO and ZIF-8 composite were 
used as the sacrifice template to fabricate hollow N-doped 
carbon microspheres (Fig. 2c) [81]. The large pore volume 
and high surface area in the microspheres not only promote 
the diffusion of electrolyte and gas molecules but also offer 
richly accessible active sites. Moreover, the addition of glucose 
as extra carbon source to the ZIF could improve the graphiti-
zation degree of samples and help to remove zinc metal and 
zinc compound impurities, giving an effective route to syn-
thesize metal-free nitrogen-doped porous carbon [82]. These 
ZIF-derived metal-free electrocatalysts usually exhibit excel-
lent electrocatalytic activity and operational stability for ORR 

with a great potential in ZABs. Therefore, as an advanced plat-
form, MOF-derived porous carbon will significantly broaden 
the family of nanoporous carbon materials with novel structure 
and versatile properties for oxygen electrolysis in ZABs.

Multi-nonmetallic heteroatom doping is another important 
strategy to utilize the mutual synergistic effect of different 
atoms to improve the oxygen electrocatalytic performance of 
the carbon materials [83, 84]. Qian et al. [85] reported B-N 
double-doped porous carbon (BNPC) for ORR/OER catalysis 
by thermal decomposition of Zn-MOF (MC-BIF-1S) in an 
 H2–Ar mixed atmosphere, which decomposed into cracked 
BNPC solids with a porous structure (Fig. 2d). It was a good 
example that MOF material was used to prepare the metal-free 
bifunctional electrocatalyst. The larger pores in the catalyst 
could greatly reduce the mass transfer resistance. The crack-
ing and porous structure of BNPC produced a sea of large 
pores, which could be used as channels for reactants to pass 
through the electrode layer, thereby improving catalytic perfor-
mance. BNPC-1100 as an oxygen catalyst on the air cathode in 
rechargeable ZABs exhibited a charge potential of 2.19 V at a 
current density of 2 mA  cm−2, and the discharge potential was 
2.16 V. The cycling stability of the assembled batteries was 
tested for 100 h without significant performance loss (Fig. 2e). 
Besides, S and N co-doped porous carbon was also synthesized 
by using urea as nitrogen source dimethyl sulfoxide as sulfur 
source in the MOF-5 template [86]. The synergistic effect of N 
and S in NS(3:1)-CMOF-5 as a metal-free electrocatalyst for 
ORR showed the highest initial potential, even comparable to 
the Pt/C catalyst. These porous carbon materials derived from 
self-sacrificial MOFs templates have more unique structural 
characteristics than traditional carbon materials. Inheriting 
the advantages of MOFs, the pore structure becomes more 
variable to meet the demand, and the specific surface area 
is greatly improved, which will affect the final performance 
of the material. Therefore, by selecting desired dopants and 
proper MOF precursors, multi-nonmetallic heteroatom-doped 
carbon materials can be ingeniously designed as advanced 
oxygen electrocatalysts, which are very promising to be used 
as catalytic materials for air cathode in ZABs.

3.2  MOF‑Derived Single‑Atom Catalysts

Platinum/iridium-based catalysts are often benchmark elec-
trocatalysts used to improve oxygen electrolysis in ZABs 
[87, 88], reducing the catalyst loading and increasing 
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intrinsic catalytic activity of these noble metal-based oxygen 
electrocatalysts are critical to realizing their application on 
large-scale. In this regard, single-atomic catalysts (SACs) 
are promising due to favorable active sites uniformity, high 
product selectivity, multiple support types, high atomic effi-
ciency and low precious metal usage [89–91]. However, it is 

difficult and challenging to synthesize SACs because with 
the dispersion of catalysts at the atomic level, the surface 
free energy increase sharply leading to serious aggregation 
[92]. Owing to the unique structural characteristics, MOFs 
present an effective a template or host to design SACs [93]. 
Besides, the MOF-derived noble metal SACs, reports on 
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MOF-derived non-precious metal containing SACs are also 
widely explored [94–99]. The following parts will focus on 
the application of MOF-derived transition metal (e.g., Co, 
Fe and Mn) single-atom oxygen catalysts in ZABs.

3.2.1  MOF‑Derived Co‑based SACs

The nitrogen coordinated cobalt atom in the carbon matrix 
(Co–N–C) is considered to be the ideal material to replace 
the noble metal Pt-based materials for the ORR [100]. To 
improve the utilization, efficiency of active Co metal by 
designing the Co single-atom decorated N-doped porous 
carbon materials is an effective way [101, 102]. For instance, 
Zang et al. [103] used a Co-MOF to prepare the CoSA elec-
trocatalyst in N-doped porous carbon nanosheets array by 
carbonization and acidification process. The obtained NC-
CoSA in a wafer array had well-dispersed Co single-atoms, 
connected to the carbon network through Co–N bonds, 
because of the extra porosity in the carbon network and an 
active surface area generated by removing Co metal clusters. 
With Co nanoparticles grown on NC comparison, the NC-
CoSA electrocatalyst with a high-density of Co–Nx active 
centers had the lower OER overpotential and higher ORR 
saturation current, which indicated that Co metal clusters 
were driving OER, and ORR aspect is superfluous. There-
fore, the NC-CoSA electrocatalyst assembled on the car-
bon cloth used as the air cathode without binder, and addi-
tive was applied in the solid-state ZABs. The constructed 
batteries demonstrated positive cycle stability and high 
open-circuit potential. Unlike the simple carbonization and 
acidification method, Ji et al. [104] reported a novel impreg-
nation carbonization acidification (ICA) method to prepare 
atom-dispersed Co–N sites within the porous carbon sheet 
arrays grown on carbon nanofibers using ZIFs and electro-
spun nanofibers (ENFs) as precursors. During the synthesis 
process, ZIF-Ls evolved into N-doped carbon flakes, while 
cobalt ion nitrogen coordination units in ZIFs were reduced 
in-situ to form atom-dispersed Co–N sites. The excess cobalt 
atoms aggregated and caused the formation of Co clusters, 
which were removed by an acid leaching process to form 
CoSA@NCF/CNF with outstanding flexibility. Therefore, 
the wearable ZABs composed of the CoSA@NCF/CNF air 
electrode had a high deformation tolerance and promising 
potential as an integrated batteries system.

In addition to above discussed single CoSACs, MOF-
derived Co-monatomic catalyst complexes also display 
excellent electrocatalytic properties. A representative 
example is hollow carbon nanotubes integrated with single 
Co atoms and  Co9S8 nanoparticles (CoSA +  Co9S8/HCNT) 
prepared by the in-situ self-sacrificing method [105]. A 
ZnS/ZIF-67 hybrid was used as a template, after the car-
bonization treatment, the ZnS self-sacrificing nanorods 
are formed a tubular structure, which served as a sulfur 
source for the formation of  Co9S8 nanoparticles (Fig. 3a). 
The obtained CoSA +  Co9S8/HCNT showed outstanding 
oxygen electrocatalytic activity, and its potential differ-
ence (the difference between Ej=10 and E1/2) was 0.705 V, 
much smaller than the potential difference of Pt/C +  RuO2 
(0.777 V). The peak power density of the liquid ZABs 
assembled with CoSA +  Co9S8/HCNT reached 177.33 
mW  cm−2, much better than Pt/C +  RuO2 (Fig. 3b). And 
at 1  mA   cm−2, the flexible Zn-air batteries based on 
CoSA +  Co9S8/HCNT catalyst still maintained a stable dis-
charge/charge potential after a long cycle and had excellent 
durability (Fig. 3c).

3.2.2  MOF‑Derived Fe‑Based SACs

In parallel, various MOF-derived Fe-based single-atom 
catalysts are also widely studied. Previously, Wang and his 
coworkers reported a hollow structure composed of single 
iron atom sites on N, P and S co-doped hollow carbon 
polyhedron (Fe-SAs/NPS-HC) constructed by MOF@pol-
ymer composite [106]. They highlighted that the polymer-
based coating modulated the electrons of the active metal 
center through the Kirkendall effect while the close coor-
dination of N and the long-distance interaction of S and P 
promoted the construction of hollow structures (Fig. 3d). 
Thus, the as-prepared Fe SAs/NPS-HC catalyst showed 
an excellent ORR performance in alkaline medium, with 
a half-wave potential (E1/2) of 0.912 V, while in acidic 
media, a E1/2 of 0.791 V was obtained, which was close 
to the catalytic performance of Pt/C catalyst and better 
than the majority of non-noble metal catalysts. Density 
functional theory (DFT) calculations revealed that the 
dispersion of N-coordinated Fe atoms and the electronic 
effects of surrounding S and P atoms are responsible for 
the efficient and satisfactory dynamics of Fe-SAs/NP-HC. 
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The atomic Fe center provided electrons, which weakened 
the charge of Fe  (Feδ+), thereby weakening the binding of 
Fe  (Feδ+) charge to OH species. Moreover, the constructed 
ZABs indicated that Fe-SAs/NPS-HC had strong competi-
tiveness compared with Pt/C, suggesting the prospects in 
energy storage and conversion devices.

In these MOF-derived Fe-based SACs, Fe–N6, Fe–N4 
and Fe–N2 coordination are often considered to be the main 
active components that affecting the oxygen electrocata-
lytic performance [107–109]. Fe–N–C is one of the most 
representative MOF-derived transition metal single-atom 
electrocatalyst material. Combination of experiments and 
DFT calculations, Han et al. [110] systematically studied 
the proximity effect of two adjacent Fe–N–C sites on ORR 
in a monodispersed Fe–N–C single-atom catalyst, which is 

essential for a more comprehensive understanding of how 
the single-atom catalyst works. To further enhance the 
oxygen electrochemical process of the Fe–N active sites in 
ZABs, Sun’s team [111] used ZIF-8 to synthesize single-
atom Fe–Nx–C electrocatalyst by in-situ incorporating  Fe2+ 
ions coordinated with 1,10-phenan-throline complexes 
(Fe-Phen) into the nanocages during the growth of ZIF-8 
followed by pyrolysis (Fig. 3e). Owing to the Fe-Phen spe-
cies providing both  Fe2+ and organic ligands (Phen), the 
Fe-Phen@ZIF-8 precursor played an important role in the 
preparation of single-atom catalysts. After the pyrolysis at 
900 °C under argon atmosphere, the precursor was converted 
into the isolated Fe single-atom on nitrogen-doped carbon 
frameworks, which allowed the iron atoms to be more dis-
persed to obtain single-atom to increase the active sites. The 
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obtained Fe–Nx–C exhibited a higher half-wave potential of 
0.91 V versus RHE than that of commercial Pt/C (0.82 V). 
As a cathode catalyst in the primary ZABs, it exhibited an 
excellent electrochemical performance at a high open-circuit 
voltage of 1.51 V. In rechargeable ZABs, it showed marve-
lous cycling performance within 300 h with an initial round-
trip efficiency of 59.6%. In addition, all-solid-state ZABs 
with Fe–Nx–C catalyst show 1.49 V and the cycle life was 
up to 120 h.

Besides, modifying the Fe-based single-atom with appro-
priate MOFs, engineered morphology of the oxygen catalyst 
is equally conducive to optimize the ZABs performance by 
enhancing the mass diffusion and electron transfer between 
the catalyst layers, thereby increasing the utilization of active 
centers. As a proof-of-concept study, Hou et al. designed an 
overhang structure that modified an isolated monoatomic 
iron site by a silica-mediated MOF template method for 
ORR (Fig. 3f) [112]. It was found that  SiO2 coated MOFs 
could generate outward adsorption force, causing the ani-
sotropic thermal contraction of the MOF precursor. The 
dodecahedron plane collapsed during the pyrolysis process, 
and the fringe of ZIF-8 was maintained. At the same time, 
the obtained N-doped carbon could reduce  Fe3+ ions and 
combine with adjacent N/C atoms to form Fe–N4–C sites. 
The as-prepared oxygen catalyst showed good performance 
in the ZABs, reaching a capacity of 807.5 mAh  g−1, a high 
peak power density of 186.8 mW  cm−2 and a decent energy 
density of 962.7 Wh  kg−1, which is comparable to the Pt/C 
catalyst (Fig. 3g, h). This superior activity of the MOF-
derived Fe SACs was contributed by the rich edge structure, 
effective three-phase boundaries, which enhanced the mass 
transport of reactants to accessible monoatomic iron sites. 
All the above works prove the advantage and practicability 
of MOFs as platform materials for synthesis effective Fe-
based SACs as oxygen electrocatalysts for the ZABs.

3.2.3  MOF‑Derived Mn‑Based SACs

In addition to Co-based and Fe-based single-atom cata-
lysts, many other single-atom catalysts have also attracted 
great attention, such as Mn-based catalysts. With the assis-
tance of theoretical calculation, Lin et al. [113] found that 
the local coordination environment could adjust its intrin-
sic catalytic activity by changing the electronic structure 
of the Mn center. Furthermore, the high activity of the 

pyridine-N-coordination Mn configuration was found to 
originate from the moderate adsorption strength of the 
ORR intermediate and the reasonable position of the d-band 
center, which promoted the ORR process. To prove such 
theoretical results, they successfully prepared Mn-SA elec-
trocatalysts composed of atomically dispersed pyridine-N 
coordination Mn atoms in the carbon skeleton. The elec-
trochemical tests showed that the Mn-based SACs had an 
excellent performance on ORR showing promising half-
wave potential of 0.87 V and diffusion current-limiting 
performance of ZABs under alkaline conditions, which was 
superior to most Mn-based nanomaterial catalysts and Pt/C 
catalysts. More recently, well-dispersed Mn single-atoms 
anchored nitrogen-doped carbon with Mn–N4 configuration 
catalyst (Mn-SAS/CN) was prepared by one-step thermal 
activation of Mn(CH3COO)2@ZIF-8 precursor [114]. The 
operando X-ray absorption spectroscopy analysis showed 
that the active sites of Mn changed with the applied poten-
tial under the basic ORR condition, and  MnL+–N4 without 
covering  OHads was the catalytic center. Further DFT cal-
culations showed that the excellent ORR performance is 
attributed to the easier electron transfer from  MnL+–N4 site 
to the adsorbed *OH species. The preparation of single-atom 
materials is different from other materials, and the special 
structure of MOFs makes the probability of uniform disper-
sion of single-atom. Impressively, the Mn-N4 oxygen elec-
trocatalysis material demonstrated high peak power density 
and excellent durability when assembled in ZABs, much 
higher than the bulk of Fe- and Co-based SACs and the com-
mercial Pt/C, showing great potential to replace Pt in practi-
cal energy devices.

3.3  MOF‑Derived Metal Cluster/Carbon Composites

Although MOFs derived metal-free carbon materials possess 
better structural advantages than common carbon materi-
als, the main problem of metal-free carbon materials is the 
lack of metal catalytic centers, which makes their reaction 
kinetics relatively slow due to the low activity of catalytic 
sites. Moreover, the MOFs derived metal-free materials are 
required to remove the metal elements within the electro-
catalysts, making the synthesis process complicated and 
expensive. As for MOF-derived single-atom catalysts men-
tioned earlier, it is reported the surface area of monatomic 
metals increases significantly in single-atom catalyst, which 
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leads to the sharp increase of surface free energy. Therefore, 
a large number of metal atoms are prone to agglomerate and 
inevitably lead to the deactivation of the catalyst during the 
oxygen electrolysis process [115]. Also, the limited loading 
of single-atom catalyst makes it far from being able to meet 
the practical application. Whereas MOF-derived carbon 
composites, doping with transition metal clusters present 
a feasible and promising way for the strong binding force 
between carbon and metal ions makes the transition metals 
in metal/carbon composites have higher dispersion, more 
active sites and faster charge transfer, thus enhancing the 
catalytic performance. Therefore, developing highly efficient 
electrolysis materials based on MOF-derived heteroatom-
doped carbon matrix, incorporated with transition metals 
is significantly necessary for advancing the oxygen electro-
chemical process in ZABs [116].

3.3.1  MOF‑Derived Transition Metal Doped Carbon 
Composites

Incorporation of transition metal clusters (e.g., Fe, Co, Ni) 
into the carbon matrix has been demonstrated to be effective 
for oxygen electrocatalysis [117–119]. Owing to the diver-
sity of MOFs, it is promising to synthesis efficient MOF-
derived metal/carbon composites with controlled structure 
by selecting proper MOF precursor and post treatment pro-
cess [120]. ZIFs, as molecular sieve polyhedral nanocrys-
tals, are a kind of widely used template to synthesis Co 
incorporated nitrogen-containing carbon materials [121, 
122]. In the presence of ZIF-67 filled silica nanoparticles 
and an additional high-temperature decomposable nitro-
gen source, a nitrogen-rich hollow carbon cage composite 
material containing Co nanoparticles (Co@NHCC) was 
synthesized [123]. When Co@NHCC-800 was used as a 
gas-permeable electrode of ZABs, its open-circuit voltage 
was as high as 1.49 V, and the discharge peak power density 
was as high as 248 mW  cm−2. The charge and discharge 
voltage gap after 12 h of cycling only increased by 0.1 V. In 
parallel with cobalt element, Lai et al. [124] used a simple 
and effective Cu coordinated MOF strategy to prepare the 
novel copper-nitrogen-carbon electrocatalyst (Cu–N/C) by 
direct pyrolysis of Cu-doped ZIF-8 polyhedron in an inert 
atmosphere without a template or surfactant (Fig. 4a). As 
shown in Fig. 4b, 25% Cu–N/C has higher operating dura-
bility than 30 wt% Pt/C catalyst. By supplementing the zinc 

anode and electrolyte, the constructed ZABs could work 
for a long time. After three times of so-called mechanical 
charging (Fig. 4c), the output voltage remained extremely 
stable without a significant drop, suggesting the great advan-
tages of MOF-derived Cu–N/C in replacing precious metal-
based materials in ZABs and other related energy conversion 
devices.

Besides, owing to their similar topological structures and 
unit cell parameters of ZIF-67 and ZIF-8, several works 
explored the potential of using these MOF hybrids as a plat-
form to prepare transition metal doped carbon composites 
[125–130]. For example, the Yin group [131] put forward 
the synthesis of MO-Co@N-doped carbon (M means metal 
Zn or Co) by the pyrolysis of Co-contained ZIF-67 and Zn-
contained ZIF-8 hybrid MOFs. With the only Zn as precur-
sors, the pyridinic N as an active sites for ORR formed on 
the surface, while, the addition of Co metal node, the OER 
catalytic active species Co–Nx and  Co3+/Co2+ were gener-
ated. Also, the synergy between the Zn and Co could pro-
mote the growth of multi-walled carbon nanotubes at high 
temperatures (greater than 700 °C), which was beneficial to 
charge transfer. It is demonstrated that the optimized CoZn-
NC-700 showed excellent ZABs performance better than the 
Pt/C and  IrO2 hybrid batteries. Another work also explored 
the merits of such hybrid MOF-derived carbon nanotubes 
[132] by employing two-dimensional bimetallic leaf-like 
zeolite-based imidazolate skeletons (ZIF-L) as precursors 
to prepare carbon nanotubes decorated with Co nanopar-
ticles (Co–N-CNTs). When used as dual-function oxygen 
electrocatalysts for the air electrode in ZABs, the primary 
batteries exhibited a high open-circuit potential of 1.365 V, 
a current density of about 90 mA  cm−2, and a peak power 
density of about 101 mW  cm−2. All these works evidenced 
the priority of ZIF-derived carbon nanotubes for ZABs in 
comparison to the commercial carbon nanotubes and Pt/C 
or  IrO2, suggesting the MOFs.

Ni nanoclusters are also frequently used as catalytic 
active species for oxygen electrolysis as compared to Co, 
the addition of Ni would offer the catalysts optimized 
electron structure and thus enhanced electrochemical per-
formance. By employing a multi-shelled two-dimensional 
NiCo-MOF@ZIF-L(Zn)@ZIF-67 composite, Co/Ni-doped 
porous carbon was successfully synthesized [133]. NiCo-
NC as the air electrode catalyst in the ZABs shows a large 
specific capacity of 792.8 mAh  g−1, a peak power density 
of 243.4 mW  cm−2, a small charge and discharge voltage 
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gap of 0.84 V at 20 mA  cm−2, with good cycling stabil-
ity. Thus, the design and construction of multi-shell 2D 
MOFs provide new opportunities for energy conversion 
and storage applications. Besides, trimetallic catalysts are 
also studied for oxygen catalysis for the potential synergetic 
effect [134]. Therefore, it is necessary to design dual- or 
multi-MOFs to achieve a good adjustment of porosity and 

increased intrinsic activity through the synergistic effect of 
multi-metal components. Chen et al. [61] proposed a new 
strategy for the preparation of multi-metal-based porous car-
bon nanorod composites by the combination of bifunctional 
MOFs (FeNiCo@NC-P, Fig. 4d). Compared with a single 
MOF-derived carbon material, N dopants and various metals 
such as Fe, Co and Ni were added to the prepared catalyst. 
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At the same time, the micro-/mesoporous structure was 
successfully prepared using two MOF precursors, and the 
one-dimensional carbon nanorod structure was maintained 
during pyrolysis at high temperatures. All these characteris-
tics ensure that FeNiCo@NC-P had highly active ORR and 
OER sites, fast charge transfer, reduced interface resistance, 
effective oxygen and electrolyte diffusion to show excellent 
dual-function electrocatalytic activity. In addition, the prac-
tical application of FeNiCo@NC-P in ZABs shows a low 
voltage gap and long-term durability of more than 130 h 
at 10 mA  cm−2 (Fig. 4e), and its performance was better 
than commercial precious metal benchmarks. These works 
not only provide a competitive dual-function oxygen elec-
trocatalyst for ZABs but also open up new ways to design 
and prepare MOF-derived metal cluster/carbon composite 
materials with adjustable catalytic performance.

3.3.2  MOF‑Derived Alloy Doped Carbon Composites

The formation of alloy is another effective method to 
improve oxygen electrocatalytic activity. The excellent cata-
lytic activity is attributed to the synergistic effect of various 
metal components, which provides a variety of well-defined 
active sites to promote the electrocatalytic reaction [135]. 
Bimetallic alloys such as CoNi, FeNi or FeCo combined 
with carbon materials have been considered to have higher 
activity and stability than their single-element counterparts. 
At the same time, the alloy particles can improve graphiti-
zation and promote electron transfer during carbonization, 
while carbon carrier can prevent acid corrosion, surface oxi-
dation and agglomeration of alloy particles. MOFs have a 
variety of characteristics and can be transformed into alloy-
carbon compounds in-situ under heat treatment, which has 
become an ideal precursor for designing electrocatalysts 
[136].

Recently, MOF-derived FeCo alloys have been extensively 
studied for oxygen electrocatalysis. By using amorphous 
ZIF-67 decorated amorphous fibers as precursors, Niu and 
Yang [137] firstly synthesized mesoporous nitrogen-doped 
graphene (MNG) compounds, then the MNG-CoFe prepared 
by decorating the MNG with graphene-coated CoFe alloy 
nanoparticles. As expected, the obtained MNG-CoFe assem-
bled air electrodes in the ZABs showed high power density 
and cycle durability. In another work, the authors prepared 
nitrogen-doped carbon nanofibers coated with FeCo alloy 

nanoparticles by the pyrolysis of the CoFe-PBA@PAN pre-
cursor in argon atmosphere at 800 ℃ [138]. The peak power 
density of the ZABs based on FeCo-NCNFs-800 was as high 
as 74 mW  cm−2, with the strong cycle stability upto 125 
cycles for 42 h. They claimed that the 1D fibrous structure, 
FeCo alloy nanoparticles, extensive mesoporous structure 
and sufficient Co–N (pyridine-N) catalytic active sites were 
responsible for the high-performance ZABs. In parallel, by 
introducing guest iron ions into core–shell Zn@Co-MOFs 
precursor followed by in-situ pyrolysis, the open carbon 
cage self-assembled into a hydrangea-like three-dimensional 
superstructure connected by carbon nanotubes decorated with 
FeCo alloy nanoparticles (Fig. 4f) [139]. Surely, its excellent 
electrocatalytic performance was related to the unique super-
structure, both conductive and porous channels to achieve 
rapid electron transfer and effective mass transfer, as well 
as abundant Co/Fe catalytic sites and significant synergistic 
effects. As an air electrode catalyst in the ZABs, it showed 
perfect performance, reaching a high peak power density of 
190.3 mW  cm−2, an ultra-high capacity of 787.9 mAh  g−1 
and an amazing energy density of 1012 Wh  kg−1 (Fig. 4g, h).

Although MOF-derived alloy doped carbon materials 
show promising oxygen electrocatalytic performance in 
ZABs, design and synthesis is still in their infancy, facing 
different challenges. One of the big challenges is the side 
effects of aggregation and phase separation during the reduc-
tion process of the bimetallic phase under heat treatment. 
The second is the limited coordination of metal ions and 
organic ligands, which limits the choice of metal–ligand 
combinations [140, 141]. Therefore, more emerging strate-
gies need to be developed to further discover MOF-derived 
alloy-carbon catalysts with unique catalytic properties. 
Meanwhile, the suitable metal precursors with the required 
proportion and composition can be selected by the predic-
tion of the phase diagram and enthalpy of formation and 
can coordinate with MOF ligands through different reactions 
such as gas-phase, liquid-phase and solid-phase [135].

3.4  MOF‑Derived Metal Compound/Carbon 
Composites

For the past few years, transition metal compounds have 
long been studied as oxygen electrocatalysts, but the inher-
ent low conductivity and poor dispersion of nanoparticles 
seriously hinder their electrocatalytic activity. Consequently, 
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transition metal compound combined with carbon materials, 
MOF-derived carbon materials particularly, can effectively 
overcome the above concerns [142–144]. By far, various 
MOF-derived metal compound/carbon composites have 
been reported for oxygen electrocatalysis, which mainly 
includes metal oxides, metal sulfides/carbides/phosphides 
and other metal compounds composite carbon materials.

3.4.1  Metal Oxides

Transition metal oxides are the most widely studied com-
pounds for oxygen electrolysis. On the one hand, they are 
easy to prepare in oxidizing or alkaline environments, on the 
other hand, they are very stable during the oxygen electro-
catalytic process due to the oxidized surface composition. 
When MOFs employed as precursors, oxygen-rich vacant 
metal oxides can be obtained, which would offer much 
higher ORR/OER activity than ordinary materials. Among 
various MOFs, Co containing MOFs are mostly studied. 
These MOF-derived cobalt oxide/carbon composite mate-
rial can help to improve the conductivity and dispersibility 
of the cobalt oxide, thereby exposing the intrinsic active 
sites in the catalyst [145]. Compared with pure  Co3O4, the 
MOF-derived hybrid carbon material based on  Co3O4 doped 
with nitrogen, sulfur, and phosphorus showed better electro-
chemical activity [146–152]. For instance, Ren et al. [153] 
prepared a porous nanowire array composed of  Co3O4 nano-
particles and carbon species by carbonizing ZIF-67 directly 
grown on nickel foam. The resulting hybrid material was 
used as an air catalyst for ZABs, which exhibited a large 
peak power density of 118 mW  cm−2 and promising operat-
ing stability.

Designing unique nanostructures also play a signifi-
cant role in the improvement of oxygen catalytic activity. 
By using a well-designed MOFs precursor, a N-doped 
carbon nanowall array embedded with irregular hollow 
 Co3O4 nanospheres electrocatalyst (NC-Co3O4) was 
designed [154]. The authors explained that the surface of 
the metal nanoparticles covered with a layer of graphite 
onion during the carbonization process (Fig. 5a). Then 
the carbon onion-coated Co nanoparticles inhibited the 
Kirkendall effect at the nanoscale, promoted the forma-
tion of irregular hollow  Co3O4 nanospheres, and offered 
them pleasurable catalytic properties for OER and ORR. 

Furthermore, the integrated NC-Co3O4/CC was directly 
used as an additive-free air cathode for f lexible all-
solid ZABs, showing a large capacity of 387.2 mAh  g−1 
(Fig.  5b), exceptional cycle stability and mechanical 
flexibility, which was significantly better than Pt-based 
and infrared ZABs. In another work, by a facile carbon-
ization-oxidation method, the 3D-on-2D MOF precursor 
on carbon cloth (ZIF-L-D/CC) was converted to nitro-
gen-doped carbon and  Co3O4 nanoparticles (ZIF-L-D-
Co3O4/CC) [155]. This unique layered MOF on MOF 
(3D-on-2D) structure undoubtedly promoted the reaction 
kinetics and proton transport. Meanwhile, the tight pro-
tection of  Co3O4 nanoparticles by N-doped carbon also 
provided prominent electrochemical activity and stabil-
ity. In particular, when the catalyst was applied to air 
cathode inflexible all-solid-state ZABs, it exhibited high 
open-circuit potential (1.461 V), capacity (815 mAh  g−1 
at 1 mA  cm−2), energy density (1010 Wh  kg−1), excep-
tional cycling stability as well as outstanding mechanical 
flexibility. This work could push the enormous develop-
ment of new-type flexible energy conversion and storage 
devices.

In addition to cobalt oxide, manganese oxide is another 
promising oxygen electrocatalytic materials for its variable 
geometry. To resolve the low conductivity of single man-
ganese oxide, Chen et al. [156] selected ZIF-67 supported 
ultra-thin  MnO2 hollow nanowire as a precursor, MnO@
Co–N/C nanomaterials with controllable diameter were 
obtained after pyrolysis. The synergistic effect between the 
MnO and porous Co–N/C provide excellent catalytic activ-
ity and performance of the ZABs, even better than Pt/C and 
 RuO2 mixed catalysts. To further investigate such MOF-
derived MnO/Co for oxygen electrolysis, a heterogeneous 
MnO/Co interface in a porous graphite carbon polyhe-
dron (MnO/Co/PGC) was prepared by using a bimetallic 
metal–organic framework as a precursor [157]. In-situ gen-
erated Co nanocrystals could not only form a highly con-
ductive heterointerface, overcome the disadvantage of poor 
OER activity, but also promote the formation of graphitic 
carbon. Therefore, MnO/Co/PGC shows excellent activity 
and stability for both OER and ORR. Importantly, domestic 
ZABs exhibited outstanding performance, including peak 
power density of 172 mW  cm−2, specific capacity of 872 
mAh  g−1, as well as excellent cycle stability, better than 
commercial Pt/C mixed catalyst with  RuO2. Different from 
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the simple mixture of  MnO2 with MOF to prepare metal 
oxides/carbon composite, this work emphasizes the syn-
ergy of heterogeneous interfaces in oxygen electrocatalysis, 
thereby providing a promising way to develop advanced 
zinc-air cathode materials.

3.4.2  Metal Sulfides/Phosphides/Carbides

MOF-derived carbon-based transition metal sulfides/
phosphides/carbides composites are also hotspots in 
ZABs [158]. For instance, Co/CoxSy@S, N-doped carbon 
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fibers were prepared by Co-MOFs fibers under hydrother-
mal conditions followed with pyrolysis at 800 °C [159]. 
The catalyst showed excellent bifunctional ORR and 
OER activity, as well as high power density and favora-
ble durability in rechargeable ZABs. To further inves-
tigate such composite on the oxygen electrolysis, N, O 
and S-doped carbon matrix embedded with  Co9S8 nano-
particles  (Co9S8@TDC, Fig. 5c) was produced by direct 
carbonization of a novel Co-MOF constructed by SPDP 
(4,4′-(sulfonylbis(4,1-phenylene))dipyridine) and  H2BDC 
(1,4-benzene dicarboxylic acid) ligands [160]. The inher-
ent activity of  Co9S8 nanoparticles and the heteroatom-
doped carbon shell promote the catalytic performance 
of OER and ORR. The  Co9S8@TDC-900 was used as an 
air cathode catalyst layer in rechargeable ZABs, which 
provided considerable open-circuit voltage of 1.50  V 
and long-term charge–discharge stability (Fig.  5d). In 
addition to the cobalt sulfide, the study on molybdenum 
sulfide is also quite remarkable toward ORR electroca-
talysis. Considering the outstanding flexibility, ultra-high 
surface area, layered pore structure and high catalytic 
activity of MOFs and metal dihydrogen disulfide, Mu’s 
team reported a highly efficient electrocatalyst based on 
a vertically aligned  MoS2 nanosheet hierarchically inter-
connected Mo–N/C frame produced by carbonization of 
ZIF-8 resulting in the formation of an interface Mo–N 
coupling center (Fig. 5e) [161]. Surprisingly, when used as 
a cathode electrocatalyst in ZABs, it showed a high power 
density of about 196.4 mW  cm−2 (Fig. 5f), and the voltam-
metry efficiency at 5 mA  cm−2 was about 63%. Even after 
48 h at 25 mA  cm−2, it still had excellent cycle stability. 
Such perfect electrocatalytic performance was attributed 
to the synergistic effect of unique chemical composition, 
unique three-phase active site and layered pore frame for 
rapid mass transfer.

Owing to the similar catalytic properties of phosphides 
with sulfides, there are also a few studies on MOF-derived 
metal phosphides/carbon composites [162, 163]. In compari-
son to transition metal sulfides-based oxygen electrocata-
lysts, phosphides display enhanced catalytic activity but lim-
ited stability, while MOFs just provide a potential solution 
for such issue. For example, based on the pyrolysis of ZIF-
67 and dicyandiamide, Hao et al. [164] synthesized carbon 
polyhedral penetrating bamboo-like carbon nanotubes by a 
three-step chemical method. This polyhedron provided large 
interfacial areas for catalytic reactions. The compositions 

of Co, CoP and hairy N-doped carbon in the catalyst made 
it possess higher catalytic activity. As an air cathode in the 
rechargeable ZABs, it still had high round-trip efficiency, 
low overpotential and stable voltage platform after 100 
cycles. In another important work, the authors used MOF 
enveloped protein and melamine as starting materials, then 
a N-doped envelope carbon-based framework was prepared 
by the pyrolysis-phosphine reaction with the iron-nickel 
phosphide nanoparticles fixed to the envelope connected 
by a large number of carbon nanotubes on carbon (Fig. 5g) 
[165]. The synergistic effect between the carbon skeleton 
and the highly surface-exposed phosphide sites made the 
material exhibit highly efficient multi-functional electroca-
talysis in HER, OER and ORR. It was a qualified component 
for rechargeable ZABs with the peak value power density 
was 250 mW  cm−2, and perfect stability was up to 500 h.

Apart from the transition metal sulfides/phosphides, 
MOF-derived carbide/carbon composites also show good 
electrocatalytic properties [166]. By assembling ZIF-8 nano-
particles (NPs) within the polyacrylonitrile nanofibers with 
an electrospinning method, Liu et al. [167] reported  Fe3C 
NPs embedded in Fe–N-doped porous carbon nanofibers as 
a bifunctional oxygen electrocatalyst applied in ZABs. Simi-
larly, by using ZIF-8 as a precursor and uniformly distributed 
ultrafine α-MoC nanoparticles as a model electrocatalyst, 
a nitrogen-doped layered porous carbon material (α-MoC/
NHPC) was prepared [168]. Theoretical studies have shown 
that α-MoC on NHPC could effectively reduce the energy 
barrier for proton generation during the hydrolysis process, 
and ultimately promote the proton coupling ORR dynamics. 
The α-MoC/NHPC catalyst synthesized with the assistance 
of NaCl had the advantages of ultrafine nanoparticles and 
MOF-derived layered porous carbon structure, it exhibited 
excellent ORR performance with a half-wave potential as 
high as 0.88 V. As the air electrode of the ZABs, its peak 
power density was 200.3 mW  cm−2, which had long-term 
stability.

3.4.3  Other Compounds

N-doping and nitrides have been proved to be active spe-
cies for oxygen electrolysis by promoting the charge trans-
fer in the catalytic process [169]. Because the pyrolysis of 
MOFs may lead to the loss of nitrogen content, it is feasi-
ble to enrich the amount of nitrogen in MOF derivatives by 
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nitriding [170]. For instance, Guan et al.[171] demonstrated 
the design of NC embedded with Co/CoNx nanoparticles 
(NC-Co/CoNx) by carbonizing Co-ZIF-L followed with 
nitriding process (Fig. 6a), which provided abundant active 
sites, high-density interfaces and short ion diffusion paths. 
This highly integrated electrode combines the advantages of 
each component, showing high electrochemical performance 
and strong mechanical stability. A MOF-derived metal 
nitrides/N-doped carbon composites (Fe–Co4N@N–C) with 
richly accessible pyridine-N-M active sites were developed 
by ammonization [172]. Owing to the strong coordination 
between metal center and pyridinic nitrogen, Fe doping in 
Co-MOF promoted the formation of a large number of pyr-
idine-N-M active sites for ORR (Fig. 6b). Therefore, when 
used as the air cathode in liquid Zn-air batteries, the electro-
catalyst achieved a high specific capacity of 806 mAh  g−1 at 
5 mA  cm−2 (Fig. 6c) and excellent cycle stability.

Furthermore, MOF-derived metal selenides/carbon com-
posites have also attracted enormous attention toward oxy-
gen electrocatalysis. By direct selenization of ZIF-67, the 
ultrafine  Co0.85Se nanocrystals coupled with N-doped carbon 
was developed [173]. In-situ carbonization of ZIF-67 could 
ensure a smaller size of  Co0.85Se nanocrystal to increase 
the active sites to obtain a higher electrocatalytic activity. 
Also, the  Co0.85Se@NC catalyst inherited the unique porous 
structure of the ZIF-67 template, which could increase its 
surface area in contact with electrolyte, thus effectively pro-
moting the transfer of electrolyte and the rapid diffusion of 
gas products for better performance. The catalyst assembled 
in ZABs played a very low charge–discharge voltage gap of 
0.80 V and a life span of 180 cycles at 10 mA  cm−2. Because 
the electron transfer of metal compound in the catalytic 
process can affect the intrinsic conductivity of the catalyst. 
Therefore, with the assistance of MOFs, both phosphorous 
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and selenium were introduced during pyrolysis to form a 
complex catalyst CoFe–P–Se/NC [174]. A low voltage gap 
of 0.719 V at 200 mA  cm−2, the high power density of 104 
mW  cm−2, and the high energy density of 805 Wh  kg−1 were 
achieved when used in a rechargeable battery.

As a typical two-dimensional material, layered double 
hydroxides (LDHs) have long been studied for oxygen elec-
trochemical reactions, especially the OER process, but the 
applications of MOF-derived hydroxides in ZABs are inad-
equate [175]. Recently, Qian and his colleagues explored 
the performance of the NiFe layered double hydroxides 
for ZABs [176]. They prepared the OER active NiFe-LDH 
composites supported on ORR active MOF-derived carbon 
network (MCN) as Janus-ORR/OER electrocatalyst for the 
rechargeable ZABs. Through simple hydrothermal reaction, 
LDH nanoplates could be easily fixed on MCN (Fig. 6d). 
The interaction between MCN and LDH enhanced the OER 
activity, but ORR activity remained positive. When MCN-
LDH was further installed in the rechargeable ZABs, it could 
operate continuously for more than 100 h at 10 mA  cm−2 
without significant performance loss (Fig. 6e). The life of the 
batteries was tripled as compared to the standard precious 
metal catalyst Pt/C-RuO2 assembled batteries. Therefore, the 
MOF-derived hydroxides cases show great potential in the 
development of the ZABs and other related electrochemical 
energy storage systems [177].

4  Conclusion and Outlook

With the increasing demand for energy conversion devices 
in modern society, air electrode is of immense significance 
for ZABs. For the improved performance and durability of 
ZABs, the exploration of efficient oxygen electrocatalysts 
is urgent and meaningful. MOFs featured with diverse inor-
ganic metal nodes and organic ligands provide an abundant 
platform for the design of low cost and highly efficient 
oxygen electrocatalysts for the air cathode in ZABs. In this 
review, with a brief introduction of the fundamentals on 
oxygen electrolysis in ZABs, the recent advances on MOF-
derived non-noble metal–oxygen electrocatalysts are suc-
cessively reviewed for ORR and OER from the category of 
metal-free carbon materials, single-atom catalysts, metal/
carbon composites and metal compound/carbon compos-
ites (Table 1). In particular, the structure-performance rela-
tionship of these MOF-derived non-noble metal oxygen 

electrocatalysts for zinc-air batteries (Fig. 7a) in term of 
their oxygen electrocatalytic activity and specific capacity. 
Despite great achievements have been made in the field of 
MOF-derived oxygen materials for zinc-air batteries, they 
still face a host of numerous challenges.

Here, we put forward several criteria for the commerciali-
zation of ZABs in future from the design of catalysts, elec-
trode and batteries by considering the performance, safety 
and cost (Fig. 7b). Design and construction of efficient elec-
trode materials are always of uppermost priority, the struc-
tural diversity of MOFs makes the materials system very 
complex, selection of proper MOF platform is highly critical 
for design MOF-derived oxygen electrocatalytic materials. 
Using high throughput technology, one can calculate and 
predict the possibility of the different MOF compositions 
and structures on the performance of final products, and 
thus accelerating the manufacturing speed of MOF-derived 
air electrode materials [178, 179]. Besides, the direct appli-
cations of MOFs electrocatalysts in ZABs are rarely stud-
ied, the ORR catalytic performance of pure MOFs has not 
reached the point of direct applications, with the aid of high 
throughput screening, the fast selection of active metal and 
organic ligands becomes impossible and accelerated for the 
design of catalytic active MOFs for ORR.

At present, the accurate structure elucidation of as-pre-
pared MOFs derivatives is particularly useful for studying 
their structure–activity relationship during oxygen electro-
catalysis in ZABs. Currently, growing individuals choose in-
situ testing technology to explain the process and mechanism 
of OER, ORR and other electrocatalysis [180–182]. By the 
combination of electrode and batteries test with advanced 
in-situ synchrotron radiation technology, it would appreciate 
to fully characterize the structural evolution of the catalysts 
during the electrochemical reactions and batteries service. 
Over the past decade, intense research activities have been 
made for the oxygen electrocatalysts and air cathode, and a 
shift of research attention from air cathodes to Zn anodes 
would also advance the current ZABs.

In addition to the aforementioned challenges, the commer-
cialization of current ZABs requires further balance in per-
formance, safety and cost. The improvement of performance, 
such as power density, energy density and cyclability, could 
be achieved by optimizing the electrode materials, batter-
ies configuration, electrolytes and operation conditions. For 
example, developing MOFs derivatives with enhanced gra-
phitization and open-framework or 2D intercalation MOF 
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electrode with tailored architecture; improve the utilization 
of electrolyte and prevent leakage; widen the output voltage 
by controlling the overpotential. Apart from high perfor-
mance, safety is always the key aspect of any future battery 
technology in our daily life, especially for ZABs in compari-
son to current Li-ion batteries. Also, low cost, determining 

the large-scale application of ZABs, is crucial, which can be 
realized by using earth-abundant resources, simple manu-
facturing processes and facile control systems. Therefore, 
achieving the balance of cost and performance is the main 
task for the fast-growing research on ZABs in future.
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While commercialization progress of ZABs requires more 
and more research work, it is believed that the progress in 
electrode materials innovations will boost the performance 
of ZABs in the coming years. At the same time, the struc-
ture of ZABs, the electrolyte and other aspects are all need 
to be improved so that the performance of ZABs could be 
further advanced in future. By considering the balance of 
high performance, safety and low cost, future developments 
in this area will surely advance the large-scale application 
of high-performance ZABs.
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