Supporting Information for

Flexible and Waterproof 2D/1D/0D Construction of MXene-Based

Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding and

Photothermal Conversion

Zhen Xiang¹, Yuyang Shi¹, Xiaojie Zhu, Lei Cai¹, and Wei Lu^{1,} *

¹Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, P. R. China

*Corresponding author. E-mail: weilu@tongji.edu.cn (Wei Lu)

Supplementary Tables and Figures

Fig. S1 XRD curve of Ti₃AlC₂ powder

Fig. S2 TG curve of Co-MOFs precursor

Nano-Micro Letters

Fig. S3 XRD patterns of $Ti_3C_2T_x$ /CNTs/Co nanocomposites with different CNTs/Co ratios (0, 25 wt%, 50 wt%, 75 wt%, 100 wt%)

Fig. S4 Raman spectra of $Ti_3C_2T_x$ and $Ti_3C_2T_x/CNT_s/Co$ in the wavenumber of 100-800 cm⁻¹

Fig. S5 XPS survey spectra (a), Ti 2p XPS spectrum (b), and C 1s XPS spectrum (c) of $Ti_3C_2T_x$ sheets

Fig. S6 Pore size distribution of Ti₃C₂T_x/CNTs/Co nanocomposites

Fig. S7 Room temperature magnetic hysteresis loops of CNTs/Co, Ti₃C₂T_x/CNTs/Co, and Ti₃C₂T_x

Fig. S8 SEM and EDS images of Ti₃C₂T_x (T=O, F) MXene sheets

Fig. S9 Darkfield TEM image of $Ti_3C_2T_x$ sheet

Fig. S10 SEM and EDS images of CNTs/Co nanocomposites

Fig. S11 (a) RL value versus frequency and thicknesses, (b) Relationship between simulated matching thickness t_m and peak frequency of Ti₃C₂T_x/CNTs/Co nanocomposites

Fig. S12 *RL* curves of $Ti_3C_2T_x/CNT_s/Co$ nanocomposites with 25 wt% (a) and 75 wt% (b) content of CNTs/Co

Fig. S13 Frequency dependence of permittivity (ε' , ε''), permeability (μ' , μ'') and loss tangent (tan δ_m , tan δ_e) of Ti₃C₂T_x (**a-1**, **a-2**, **a-3**), Ti₃C₂T_x/CNTs/Co (**b-1**, **b-2**, **b-3**), and CNTs/Co (**c-1**, **c-2**, **c-3**)

Fig. S14 ε' - ε'' curves of Ti₃C₂T_x (a), Ti₃C₂T_x/CNTs/Co (b), and CNTs/Co (c)

Fig. S15 Frequency-dependent $\mu''(\mu')^{-2}f^{-1}$ curves of Ti₃C₂T_x, Ti₃C₂T_x/CNTs/Co, and CNTs/Co

Fig. S16 Frequency-dependent $|Z_{in}/Z_0|$, α , and *RL* values of Ti₃C₂T_x/CNTs/Co-1.4 mm nanocomposites

Fig. S17 EMI shielding measurements (SE_A (**a**) and SE_R (**b**)) of 40-µm-thick Ti₃C₂T_x/CNTs/Co nanocomposites with different content of CNTs/Co (0, 10, 20, 30, and 40 wt%)

Fig. S18 EMI shielding measurements of $Ti_3C_2T_x/CNTs/Co_{(10 wt\%)}$ (*SE*_T (**a**), *SE*_A (**b**) and *SE*_R (**c**)) and $Ti_3C_2T_x$ (*SE*_T (**d**), *SE*_A (**e**) and *SE*_R (**f**)) nanocomposites with different thickness (20, 40, 60, and 100 μ m)

Fig. S19 (a) Conductivity of 40- μ m-thick Ti₃C₂T_x/CNTs/Co with different content of CNTs/Co (0, 10, 20, 30, and 40 wt%). (b) The conductivity of Ti₃C₂T_x/CNTs/Co_(10 wt%) nanocomposites with different thickness (20, 40, 60, and 100 μ m)

Table S1 Electrom	agnetic wave abs	orption	performance	of the re	ported MXen	e-based con	nposites
	8	1	1		1		1

Sampla	Filler loading	EAB	RL_{\min}	d	Refs.	
Sample	(wt%)	(GHz)	(dB)	(mm)		
Ni/Ti ₃ C ₂ T _x /RGO aerogel	0.64	5.4	-75.2	2.15	[S1]	
Ti ₃ C ₂ T _x /Ni chain/ZnO	1	4.2	-35.1	2.8	[62]	
array cotton	/				[32]	
$Ti_3C_2T_x$ /gelatin aerogel	/	6.2	-59.5	2.0	[S3]	
$CF@Ti_3C_2T_x@MoS_2$	20	7.6	-61.5	3.5	[S4]	
Ni/Ti ₃ C ₂ T _x	10	3.7	-52.6	3.0	[S5]	
Ti ₃ C ₂ T _x /GO aerogel	10	2.9	-49.1	1.2	[S6]	
Ti ₃ C ₂ T _x /NiCo ₂ O ₄	50	/	-51.0	2.2	[S7]	
CoFe/Ti ₃ C ₂ T _x	60	2.6	-36.3	2.2	[S 8]	
$MoS_2/TiO_2/Ti_3C_2T_x$	50	2.6	-16.0	2.5	[S9]	
Ti ₃ C ₂ T _x /Co	50	/	-46.5	1.0	[S10]	
RGO/Ti ₃ C ₂ T _x	/	4.2	-20.0	3.2	[S11]	
Ti ₃ C ₂ T _x /CNTs/Co	5	6.1	-85.8	1.4	This work	

Sample	Filler (wt %)	Matrix	<i>d</i> (µm)	SE(GHz)	Refs.
Ti ₃ C ₂ T _x @CNT hybrid	Bulk	/	100	60.5	[S12]
$Ti_3C_2T_x$	Bulk	/	45	92.0	[S 13]
$Mo_2T_{i2}C_3T_x$	Bulk	/	2.5	26.0	[S13]
Ti ₃ CNT _x	Bulk	/	40	116.2	[S14]
V_2CT_x			12	46.0	
Nb ₂ CT _x	Bulk	/	10	15.0	[S15]
Ti_2CT_x			11	50.0	
Ti ₃ C ₂ T _x /SA aerogel	6.1	PDMS	2000	53.9	[S16]
Ti ₃ C ₂ /SWCNT	/	PVA/PSS	0.2	3.4	[S17]
$Ti_3C_2T_x$ aerogel	Bulk	/	1000	44.8	[S18]
Fe ₃ O ₄ @Ti ₃ C ₂ T _x / elastomer	15	DENR latex	1197	58.0	[S19]
Ti ₃ C ₂ T _x -AgNW	/	Epoxy resin	9000	49.2	[S20]
TiO_2 - $Ti_3C_2T_x$ /graphene	/	/	9.17	27.0	[S21]
Ti ₃ C ₂ T _x /CNF aerogel	Bulk	/	2000	74.6	[S22]
Ti ₃ C ₂ T _x /CNF film	Bulk	/	35	40.0	[S23]
		/	20	53.2	
Ti-C-T /CNTa/Ca	Du11/2		40	62.0	This work
$113U_2 I_X/UIN IS/U0$	Bulk		60	78.3	THIS WOLK
			100	110.1	

Table S2 EMI shielding efficiency of the reported MXene-based composites

Supplementary References

- [S1] L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti₃C₂T_x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622-6632 (2021). <u>https://doi.org/10.1021/acsnano.0c09982</u>
- [S2] S. Wang, D. Li, Y. Zhou, L. Jiang. Hierarchical Ti₃C₂T_x MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634-8645 (2020). <u>https://doi.org/10.1021/acsnano.0c03013</u>
- [S3] M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti₃C₂T_x MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12(29), 33128-33138 (2020). <u>https://doi.org/10.1021/acsami.0c09726</u>
- [S4] J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS₂ coresheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. **30**, 2002595 (2020). <u>https://doi.org/10.1002/adfm.202002595</u>
- [S5] L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic waveabsorbing performance of magnetic nanoparticles-anchored 2D Ti₃C₂T_x MXene. ACS Appl. Mater. Interfaces 12(2), 2644-2654 (2020). <u>https://doi.org/10.1021/acsami.9b18504</u>
- [S6] Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti₃C₂T_x

MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. **391**, 123512 (2020). <u>https://doi.org/10.1016/j.cej.2019.123512</u>

- [S7] T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang et al., Preparation of two-dimensional titanium carbide (Ti₃C₂T_x) and NiCo₂O₄ composites to achieve excellent microwave absorption properties. Compos. Part. B-Eng. 180, 107577 (2020). <u>https://doi.org/10.1016/j.compositesb.2019.107577</u>
- [S8] C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti₃C₂T_x composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540-550 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.07.208</u>
- [S9] H. Wang, H. Ma. The electromagnetic and microwave absorbing properties of MoS₂ modified Ti₃C₂T_x nanocomposites. J. Mater. Sci. **30**(16), 15250-15256 (2019). <u>https://doi.org/10.1007/s10854-019-01897-7</u>
- [S10] F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng et al., Improved synergistic effect for achieving ultrathin microwave absorber of 1D co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506-515 (2021). <u>https://doi.org/10.1016/j.carbon.2020.10.039</u>
- [S11] X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). <u>https://doi.org/10.1002/adfm.201803938</u>
- [S12] R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible cnt buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). <u>https://doi.org/10.1007/s40820-021-00597-4</u>
- [S13] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137-1140 (2016). <u>https://doi.org/10.1126/science.aag2421</u>
- [S14] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti₃CNT_x (MXene). Science 369(6502), 446-450 (2020). <u>https://doi.org/10.1126/science.aba7977</u>
- [S15] M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti₃C₂T_x: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008-5016 (2020). <u>https://doi.org/10.1021/acsnano.0c01312</u>
- [S16] X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu, et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). <u>https://doi.org/10.1016/j.cej.2019.122622</u>
- [S17] G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for nextgeneration electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). <u>https://doi.org/10.1002/adfm.201803360</u>

- [S18] M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). <u>https://doi.org/10.1002/adom.201900267</u>
- [S19] Q. Song, B. Chen, Z. Zhou, C. Lu. Flexible, stretchable and magnetic Fe₃O₄@Ti₃C₂T_x/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci. China Mater. 64, 1437-1448 (2021). <u>https://doi.org/10.1007/s40843-020-1539-2</u>
- [S20] W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu. Flexible, transparent, and conductive Ti₃C₂T_x MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643-16653 (2020). <u>https://doi.org/10.1021/acsnano.0c01635</u>
- [S21] C. Xiang, R. Guo, S. Lin, S. Jiang, J. Lan et al., Lightweight and ultrathin TiO₂-Ti₃C₂T_x/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158-1166 (2019). <u>https://doi.org/10.1016/j.cej.2018.10.174</u>
- [S22] Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). <u>https://doi.org/10.1002/advs.202000979</u>
- [S23] B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895-4905 (2020). https://doi.org/10.1021/acsami.9b19768