Supporting Information for

# 3D Seed-Germination-like MXene with In-Situ Growing CNTs/Ni

### Heterojunction for Enhanced Microwave Absorption via Polarization

#### and Magnetization

Xiao Li<sup>1, 2</sup>, Wenbin You<sup>1</sup>, Chunyang Xu<sup>1</sup>, Lei Wang<sup>1</sup>, Liting Yang<sup>1</sup>, Yuesheng Li<sup>1, 2</sup>, Renchao Che<sup>1, 2</sup>, \*

<sup>1</sup>Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China

<sup>2</sup>Department of Materials Science, Fudan University, Shanghai 200438, P. R. China

\*Corresponding author. E-mail: rcche@fudan.edu.cn (Renchao Che)

## **Supplementary Figures and Tables**



Fig. S1 (a) XRD pattern of MAX and MXene



Fig. S2 (a) SEM image, (b) TEM image and (c) HRTEM image of MXene-N



Fig. S3 (a) SEM image, (b, c) TEM image and (d) SAED pattern of isolated CNTs/Ni



**Fig. S4** STEM images of (**a**) Ni<sup>2+</sup>-MXene-alk and corresponding elemental mapping of (**b**) C, (**c**) Ni and (**d**) Ti



Fig. S5 XPS spectra of Ni 2p in MXene-CNTs/Ni composite



Fig. S6 XPS spectra of C 1s and Ti 2p in MXene-CNTs/Ni composite



**Fig. S7** (**a**) Permittivity and permeability vs frequency, (**b**) RL curves with different thickness and (**c**) 3D plots of MXene/Ni/CNTs composite



**Fig. S8** (a) Permittivity and permeability vs frequency, (b) RL curves with different thickness and (c) 3D plots of MXene/Ni composite



Fig. S9 Profile of charge density in the connect joints of the CNTs



Fig. S10 Microwave absorption model

| Absorber                                                                   | <b>RL</b> <sub>min</sub> | Matching  | EAB   | Thickness | Refs.     |
|----------------------------------------------------------------------------|--------------------------|-----------|-------|-----------|-----------|
|                                                                            | (dB)                     | frequency | (GHz) | (mm)      |           |
|                                                                            |                          | (GHz)     |       |           |           |
| CNTs/Fe                                                                    | -30.4                    | 3.2       | 5.76  | 3.2       | [S1]      |
| CNTs/Co                                                                    | -20.5                    | 2.4       | 4.08  | 3.6       | [S1]      |
| CNTs/Ni                                                                    | -34.1                    | 3.2       | 4.16  | 3.2       | [S1]      |
| MXene/amorphous carbon/TiO <sub>2</sub>                                    | -48.4                    | 11.6      | 2.8   | 1.85      | [S2]      |
| MXene/ZnO                                                                  | -26.3                    | 17.4      | 1.4   | 4         | [S3]      |
| MXene/Ni <sub>0.5</sub> Zn <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub>   | -42.5                    | 13.5      | 3     | 6.5       | [S4]      |
| MXene/PVB/Ba <sub>3</sub> Co <sub>2</sub> Fe <sub>24</sub> O <sub>41</sub> | -46.3                    | 5.8       | 1.6   | 2.8       | [S5]      |
| MXene/Ni-modified                                                          | -18.2                    | 16.2      | 6.3   | 1.5       | [S6]      |
| MXene/Co <sub>3</sub> O <sub>4</sub>                                       | -34.5                    | 14        | 6.3   | 2.0       | [S7]      |
| MXene/FeCo                                                                 | -17.86                   | -         | 8.8   | 1.6       | [S8]      |
| MXene/CoFe                                                                 | -36.29                   | 8.56      | 2.64  | 2.2       | [S9]      |
| MXene/TiO <sub>2</sub> /MoS <sub>2</sub>                                   | ~ -16                    | ~ 9.8     | 2.6   | 2.5       | [S10]     |
| MXene/Fe <sub>3</sub> O <sub>4</sub> /PANI                                 | -40.3                    | 15.3      | 5.2   | 1.9       | [S11]     |
| MXene/Ni chain                                                             | -49.9                    | 11.9      | 2.1   | 1.75      | [S12]     |
| MXene/carbonyl iron                                                        | -15.52                   | 12.8      | 8.16  | 1         | [S13]     |
| MXene/Ni                                                                   | -24.3                    | 9.8       | 2.6   | 2.2       | [S14]     |
| MXene-CNTs/Ni                                                              | -56.4                    | 7.82      | 3.95  | 2.4       | this work |

 Table S1 Comparison of MA performance among the reported MXene-based composites and the as-prepared MXene-CNTs/Ni composites

#### The basic principle of geometric phase analysis (GPA) is as follows:

For a perfect crystal, a HRTEM can be described as a Fourier series:

$$I(\mathbf{r}) = \sum_{g} H_g \, e^{2\pi i g \cdot \mathbf{r}}$$

Where I(r) is the image intensity at the position r, g is the periodicities of the Bragg reflections, the Fourier coefficients  $H_g$  can be described as:

$$H(g) = A_a e^{ip_g}$$

Where  $A_g$  is the amplitude of the set of sinusoidal lattice fringes g,  $P_g$  is the lateral position of the fringes in the original image.

In real image conditions, the Fourier coefficient  $H_g$  has conjugate symmetry. Image strength can be expressed as the following real number function:

$$I(r) = A_0 + \sum_{g>0} 2A_g \cos(2\pi g \cdot r + p_g)$$

When processing the actually captured high-resolution image, the lattice image is subjected to fast Fourier transform processing to obtain an inverted space bitmap. A specific  $\pm g$  direction lattice is selected by a mask to obtain a specific direction stripe

information, and then an inverse Fourier transform is performed to obtain a lattice fringe  $B_g(r)$  in the specific direction:

$$B_g(r) = 2A_g \cos\left(2\pi g \cdot r + p_g\right)$$

In order to describe the lattice changes caused by distortion and defects in the material, the amplitude and phase of the lattice fringes should be expressed by the functions  $A_g(r)$  and  $P_g(r)$  for the position  $\pi$ , which should be written as:

$$B_g(r) = 2A_g(r)\cos\left(2\pi g \cdot r + p_g(r)\right)$$

#### **Supplementary References**

- [S1] M. Ning, J. Li, B. Kuang, C. Wang, D. Su et al., One-step fabrication of Ndoped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Appl. Surface Sci. 447, 244-253 (2018). https://doi.org/10.1016/j.apsusc.2018.03.242
- [S2] M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti<sub>3</sub>C<sub>2</sub> MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011-21019 (2016). https://doi.org/10.1021/acsami.6b06455
- [S3] Y. Qian, H. Wei, J. Dong, Y. Du, X. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757-10762 (2017). <u>https://doi.org/10.1016/j.ceramint.2017.05.082</u>
- [S4] Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li et al., Facile preparation of in situ coated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> composites and their electromagnetic performance. RSC Adv. 7(40), 24698-24708 (2017). <u>https://doi.org/10.1039/c7ra03402d</u>
- [S5] H. Yang, J. Dai, X. Liu, Y. Lin, J. Wang et al., Layered PVB/Ba<sub>3</sub>Co<sub>2</sub>Fe<sub>24</sub>O<sub>41</sub>/Ti<sub>3</sub>C<sub>2</sub> MXene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179-186 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.057
- [S6] W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng et al., Ni-modified Ti<sub>3</sub>C<sub>2</sub> MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2(12), 2320-2326 (2018). <u>https://doi.org/10.1039/c8qm00436f</u>
- [S7] R. Deng, B. Chen, H. Li, K. Zhang, T. Zhang et al., MXene/Co<sub>3</sub>O<sub>4</sub> composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surface Sci. 488, 921-930 (2019). https://doi.org/10.1016/j.apsusc.2019.05.058
- [S8] J. He, D. Shan, S. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-

decorated Ti<sub>3</sub>C<sub>2</sub> MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. **492**, (2019). https://doi.org/10.1016/j.jmmm.2019.165639

- [S9] C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> composites as high efficient microwave absorption materials. Appl. Surface Sci. 494, 540-550 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.07.208</u>
- [S10] H. Wang, H. Ma. The electromagnetic and microwave absorbing properties of MoS<sub>2</sub> modified Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanocomposites. J. Mater. Sci-Mater. Electron. **30**(16), 15250-15256 (2019). <u>https://doi.org/10.1007/s10854-019-01897-7</u>
- [S11] Y. Wang, X. Gao, L. Zhang, X. Wu, Q. Wang et al., Synthesis of Ti<sub>3</sub>C<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>/PANI hierarchical architecture composite as an efficient wideband electromagnetic absorber. Appl. Surface Sci. 480, 830-838 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.03.049</u>
- [S12] L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11(28), 25399-25409 (2019). https://doi.org/10.1021/acsami.9b07294
- [S13] S. Yan, C. Cao, J. He, L. He, Z. Qu. Investigation on the electromagnetic and broadband microwave absorption properties of Ti<sub>3</sub>C<sub>2</sub> MXene/flaky carbonyl iron composites. J. Mater. Sci-Mater. Electron. **30**(7), 6537-6543 (2019). <u>https://doi.org/10.1007/s10854-019-00959-0</u>
- [S14] Y. Liu, S. Zhang, X. Su, J. Xu, Y. Li, Enhanced microwave absorption properties of Ti<sub>3</sub>C<sub>2</sub> MXene powders decorated with Ni particles. J. Mater. Sci. 55(24), 10339-10350 (2020). <u>https://doi.org/10.1007/s10853-020-04739-8</u>