Supporting Information for

All-Climate Aluminum-Ion Batteries Based on Binder-Free

MOF-Derived FeS₂@C/CNT Cathode

Yuxiang Hu¹, Hongjiao Huang², Deshuang Yu², Xinyi Wang¹, Linlin Li², Han Hu³, Xiaobo Zhu¹, Shengjie Peng^{2, *}, Lianzhou Wang^{1, *}

¹ Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia

² Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106 P. R. China

³ State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, P. R. China University of Petroleum (East China), Qingdao 266580, P. R. China

*Corresponding authors. E-mail: l.wang@uq.edu.au (Lianzhou Wang); pengshengjie@nuaa.edu.cn (Shengjie Peng)

Supplementary Figures and Tables

Fig. S1 SEM image of Fe-MOF on a large scale

Fig. S2 a), **b**) SEM and **c**), **d**) TEM images of the etched Fe-MOF with yolk-shell structure

Fig. S3 SEM image of Fe-MOF after etching by acid at 140 °C for 2 h

Fig. S4 SEM image of Fe-MOF after etching by acid at 140 °C for 6 h

Fig. S5 a) XRD pattern and **b)** TGA curve of FeS₂@C. The TGA curve, which evaluates the weight of FeS₂ in FeS₂@C, was measured over a temperature range from 30 °C to 900 °C in an atmosphere of air. It can be observed that the weight loss is around 40%. The weight loss is ascribed to two reactions: carbon to CO₂ (reaction 1) and FeS₂ oxidized to Fe₃O₄ (reaction 2). Based on the weight loss in TGA result and following Eq. (S1) (where *M* indicates molecular weight, and *m* represents the mass of the samples), it can be calculated that the carbon weight is about 10 *wt*% in FeS₂@C.

$$C+O_2=CO_2$$
 reaction (1)

$$3FeS_2 + 8O_2 = Fe_2O_3 + 6SO_2 \qquad \text{reaction (2)}$$

$$FeS_2(wt\%) = 100 \times (3M_{FeS2}/M_{Fe2O3}) \times (m_{Fe2O3}/m_{FeS2@C})$$
(S1)

Fig. S6 Initial discharge-charge curves of the FeS₂@C/CNT and FeS₂/C electrode

Nano-Micro Letters

Fig. S7 XPS spectra of S 2p of the FeS₂ electrode at **a**) pristine, **b**) discharged, and **c**) charged stage. XPS spectra of Fe 2p of FeS₂ electrode at d) pristine, **e**) discharged, and **f**) charged stage. After fully discharged, the peak shift to the lower binding energy with the peak around 160.5 eV, which is ascribed to the S²⁻ in FeS. Meanwhile, there still existed remaining peaks contributed by S_2^{2-} from FeS₂ due to the inactive materials in the cathode. After fully recharged, the peaks shifted back the higher binding energy ascribing to the S_2^{2-} of FeS₂, which further proved the proposed reaction. Regards to the Fe 2p spectra, the postive shift of the peaks confirmed the formation of the FeS after fully discharged. The recovery of the Fe 2p peak after fully recharged further proved the reversibility of the proposed reaction.

	a/Å	b/Å	c/Å	α/degrees	β/v	γ/ degrees	V/Å ³
Fe_4S_8	5.405215	5.405215	5.405215	90	90	90	157.921
$Fe_{12}S_{12}$	6.019331	6.019331	11.16354	90	90	120	350.291
Al ₁₂ S ₁₈	6.610146	6.610146	17.28143	90	90	120	653.932

 Table S1 Simulation result of the involved materials during the discharge-charge process

Fig. S8 a) and b) TEM image of $FeS_2@C/CNT$ electrode after 50th and 200th cycles, respectively

Fig. S9 a) XRD and b) SEM image of micro-sphere FeS₂ bulk, respectively

Fig. S10 SEM image of the micro-sphere $\text{FeS}_2 \mathbf{a}$) before cycled and \mathbf{b}) after cycled for 50 times

Nano-Micro Letters

	FeS ₂ /N-C	FeS ₂
Ebase	-798.492	-369.06
E _{A1}	-0.197	-0.197
E _{base} + E _{Al}	-800.446	-370.668
ΔE	-1.755	-1.406

The hydrogen and water adsorption energy on various surfaces is defined as Eq. (S2):

$$\Delta E_{ads} = E_{base-Al} - E_{base} - E_{Al} \tag{S2}$$

where $E_{base-Al}$ is the total energy of the slab model with Al adsorption, E_{base} is the energy of a clean slab surface, and E_{Al} is that for Al species.

Fig. S11 Contact angle of the IL under **a**) -25°C, **b**) 0 °C, and **c**) 25 °C. **d**) the relative ionic conductivity of the IL electrolyte under various temperatures

Fig. S12 Cycling stability of the $FeS_2@C/CNT$ at a high temperature of 50 °C. Although previous literature reported the inferior cycling stability of batteries at high temperature, the $FeS_2@C/CNT$ maintained stable capacity and coulombic efficiency at 50 °C, which was ascribed to the void yolk-shell structure and well-protected carbon layer. Meanwhile, the interaction between FeS_2 and N-doped carbon was discussed in the simulation part.