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Supplementary Tables and Figures 

 

Fig. S1 Optical image and height profile of printed ITO channel. The film was printed with 

0.2 M ITO precursor ink, exhibiting typical coffee-ring effect where the center area is thinner 

than the edges. 
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Fig. S2 Electrical properties of printed Al2O3 insulating layer based on a metal-insulator-

metal (MIM) structure. (a) Areal capacitance of Al2O3 film in the frequency range from 1 kHz 

to 1 MHz. The frequency-dependent capacitance behaviors may result from orientation 

polarization and space charge polarization in solution-processed Al2O3 dielectric films. The 

capacitance of the printed Al2O3 films was extrapolated to be 128 nF cm-2 at 1 Hz. (b) Current 

density of the printed Al2O3 dielectric with applied electric field. The tests were conducted 

based on a metal-insulator-metal structure with highly doped Si (p++) as bottom electrode, 

printed Al2O3 as insulating layer, and thermal-evaporated Au films via shadow masks as 

patterned top electrodes. The device holds an area of 100 µm × 100 µm. The Al2O3 film 

exhibited a low leakage current density of 2.3 × 10−5 A cm-2 at electric field strength of 1 

MV/cm, and breakdown occurred until the electric field reached 1.6 MV cm-1.  

 

Fig. S3. Histograms showing the distribution of different parameters of the ITO TFTs. (a) 

Distribution of saturation mobility (µsat). (b) Distribution of threshold voltage (Vth). (c) 

Distribution of subthreshold swing (SS). (d) Distribution of current on/off ratios (Ion/off) 
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Fig. S4 Probabilistic histograms of the mobility (µsat) and subthreshold voltage (Vth) values of 

40 printed devices from 2 batches. (a) Devices located at 5 different areas in each substrate 

were measured: top left (TL), top right (TR), bottom left (BL), bottom right (BR), and center 

area (C). 4 TFTs at each area were measured. In total, the parameters from 40 TFTs were 

collected (2 substrates × 5 area × 4 devices). (b) Transfer curves for all statistical devices. (c-

d) Average µsat and Vth values from two batches, showing high uniformity with deviations less 

than 15% 

 

 

Fig. S5 The electrical characteristics of ITO TFTs on Si/SiO2 substrates. Transfer (a) and 

output characteristics (b) of printed ITO TFTs fabricated on Si substrate with 100 nm thick 

SiO2 gate dielectric with annealing temperature of 350 ºC in air. The device exhibited 

electrical properties with μsat = 11.8 cm2 V−1 s−1, Vth = 2.2 V, SS = 1.5 V dec-1, Ion/off = 5.2×105, 

and Dit = 5.3×1012 cm-2 eV-1. S/D electrodes of 50 nm thick Al was thermally evaporated via a 

shadow mask, forming channel L/W = 200/1000 µm.  
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Fig. S6 Electrical stability of fully printed ITO TFTs. (a, b) Time-dependent transfer curves 

of the fully printed ITO TFTs under NBS (Vgs = -3 V) (a) and PBS (Vgs = 3 V) (b). (c) The 

detailed plots of threshold voltage shifts (ΔVth) as a function of stress time of the ITO TFT. 

The negative shift of Vth under NBS can be attributed to the attraction of oxygen vacancies at 

the channel/dielectric interface and the repelling of electrons towards back channel. And the 

positive shift under PBS results from the electron trapping at or near the active 

channel/dielectric interfaces.  

 

Fig. S7 Electrical stability of fully printed ITO TFTs under white light illumination. Evolution 

of transfer curves of the ITO TFTs as a function of (a) NBIS and (b) PBIS. (c) Threshold 

voltage shifts (ΔVth) as a function of bias stress time. The NBIS/PBIS was performed in air at 

room temperature under white LED light illumination (3000 lux), and the applied gate bias 

was -/+ 1 V, respectively. 

 

Fig. S8 X-ray diffraction patterns of printed ITO and Al2O3 films on SiO2 substrates. The 

XRD patterns revealed the printed ITO film is polycrystalline and Al2O3 film is amorphous.    
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Fig. S9 XPS analysis of ITO films with different thicknesses. XPS O-1s spectra collected 

from printed (a) ITO channel (10 nm thick) and (b) ITO contacts (18 nm thick) films 

 

Fig. S10 The electrical characteristics of ITO TFTs with different channel thicknesses. (a) 

Cross-sectional scanning of ITO channel films by AFM. Inset illustrates the structure of the 

fully printed TFT. (b) Transfer curves of fully-printed TFTs with different channel 

thicknesses. (c) Extracted μsat and Vth as a function of ITO thickness 

 

Fig. S11 Analysis of contact resistivity by gated four-probe (GFP) measurements. ITO 

channel was spin-coated on Si/SiO2 substrate and patterned by photolithography and wet 

etching. Cr/Au (3/30 nm) electrodes were patterned and deposited via e-beam evaporation. 
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The contact resistance between the 10 nm, 18 nm ITO channel and the Cr/Au electrode 

decreases with the increase of the gate voltage. Thicker ITO has lower contact resistance. 

Inset illustrates optical images of the ITO GFP devices.  

 

Fig. S12 XPS depth profile of the ITO/Al2O3 heterostructures as a function of etching time. 

(a) In-3d, (b) Sn-3d (c) Al-2p, and (d) O-1s core-level XPS spectra of the ITO/Al2O3 films, 

where the intensities of In-3d and Sn-3d peaks decrease with time while that of Al-2p shows 

opposite trend.  

 

Table S1 Comparation of inverters performance based on solution-processed metal oxide TFTs 

Deposition 

method 

Channel 

materials 
Inverter load 

Vdd  

(V) 

Gain  

(V/V) 
References 

Spin-coating 

In2O3 Resistor 4 9.7 [S1] 

In2O3 Resistor 2.5 5 [S2] 

In2O3 Resistor 3 6 [S3] 

In2O3 Resistor 10 10.6 [S4] 

ZTO CMOS 40 10 [S5] 

ZTO NMOS 15 23.2 [S6] 

ZTO Resistor 2.5 7.3 [S7] 
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ZnO CMOS 1 18 [S8] 

IZO Resistor 4 4.46 [S9] 

IGZO CMOS 40 50 [S10] 

IGZO CMOS 50 5 [S11] 

IGZO NMOS 10 1.83 [S12] 

ZnO NMOS 15 70 [S13] 

IGZO Resistor 5 19.8 [S14] 

Inkjet-printing 

In2O3 CMOS 1.5 18 [S15] 

In2O3 Resistor 4 16 [S16] 

In2O3 CMOS 1.5 21 [S17] 

ZnO Resistor 2 8 [S18] 

IGZO CMOS 10.5 12 [S19] 

In2O3 NMOS 20 45 [S20] 

IGZO NMOS 0.5 2.5 [S21] 

Fully-printing 
IGO Resistor 2 5 [S22] 

ITO NMOS 3 181 This work 
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