Supporting Information for

Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect

Kun Liang^{1, 2}, Dingwei Li^{1, 2}, Huihui Ren^{1, 2}, Momo Zhao^{1, 3}, Hong Wang³, Mengfan Ding⁴, Guangwei Xu⁴, Xiaolong Zhao⁴, Shibing Long⁴, Siyuan Zhu⁵, Pei Sheng⁵, Wenbin Li^{1, 6}, Xiao Lin⁷, and Bowen Zhu^{1, 6, *}

¹Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, P. R. China

²Zhejiang University, Hangzhou 310027, P. R. China

³Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China

⁴School of Microelectronics, University of Science and Technology of China, Hefei 230026, P. R. China

⁵Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, P. R. China

⁶Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, P. R. China

⁷School of Science, Westlake University, Hangzhou 310024, P. R. China

*Corresponding author. E-mail: <u>zhubowen@westlake.edu.cn (</u>Bowen Zhu)

Supplementary Tables and Figures

Fig. S1 Optical image and height profile of printed ITO channel. The film was printed with 0.2 M ITO precursor ink, exhibiting typical coffee-ring effect where the center area is thinner than the edges.

Fig. S2 Electrical properties of printed Al₂O₃ insulating layer based on a metal-insulatormetal (MIM) structure. (**a**) Areal capacitance of Al₂O₃ film in the frequency range from 1 kHz to 1 MHz. The frequency-dependent capacitance behaviors may result from orientation polarization and space charge polarization in solution-processed Al₂O₃ dielectric films. The capacitance of the printed Al₂O₃ films was extrapolated to be 128 nF cm⁻² at 1 Hz. (**b**) Current density of the printed Al₂O₃ dielectric with applied electric field. The tests were conducted based on a metal-insulator-metal structure with highly doped Si (p^{++}) as bottom electrode, printed Al₂O₃ as insulating layer, and thermal-evaporated Au films via shadow masks as patterned top electrodes. The device holds an area of 100 µm × 100 µm. The Al₂O₃ film exhibited a low leakage current density of 2.3×10^{-5} A cm⁻² at electric field strength of 1 MV/cm, and breakdown occurred until the electric field reached 1.6 MV cm⁻¹.

Fig. S3. Histograms showing the distribution of different parameters of the ITO TFTs. (**a**) Distribution of saturation mobility (μ_{sat}). (**b**) Distribution of threshold voltage (V_{th}). (**c**) Distribution of subthreshold swing (SS). (**d**) Distribution of current on/off ratios ($I_{on/off}$)

Nano-Micro Letters

Fig. S4 Probabilistic histograms of the mobility (μ_{sat}) and subthreshold voltage (V_{th}) values of 40 printed devices from 2 batches. (**a**) Devices located at 5 different areas in each substrate were measured: top left (TL), top right (TR), bottom left (BL), bottom right (BR), and center area (C). 4 TFTs at each area were measured. In total, the parameters from 40 TFTs were collected (2 substrates × 5 area × 4 devices). (**b**) Transfer curves for all statistical devices. (**c**-**d**) Average μ_{sat} and V_{th} values from two batches, showing high uniformity with deviations less than 15%

Fig. S5 The electrical characteristics of ITO TFTs on Si/SiO₂ substrates. Transfer (a) and output characteristics (b) of printed ITO TFTs fabricated on Si substrate with 100 nm thick SiO₂ gate dielectric with annealing temperature of 350 °C in air. The device exhibited electrical properties with $\mu_{sat} = 11.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $V_{th} = 2.2 \text{ V}$, $SS = 1.5 \text{ V} \text{ dec}^{-1}$, $I_{on/off} = 5.2 \times 10^5$, and $D_{it} = 5.3 \times 10^{12} \text{ cm}^{-2} \text{ eV}^{-1}$. S/D electrodes of 50 nm thick Al was thermally evaporated via a shadow mask, forming channel L/W = 200/1000 µm.

Fig. S6 Electrical stability of fully printed ITO TFTs. (**a**, **b**) Time-dependent transfer curves of the fully printed ITO TFTs under NBS ($V_{gs} = -3$ V) (**a**) and PBS ($V_{gs} = 3$ V) (**b**). (**c**) The detailed plots of threshold voltage shifts (ΔV_{th}) as a function of stress time of the ITO TFT. The negative shift of V_{th} under NBS can be attributed to the attraction of oxygen vacancies at the channel/dielectric interface and the repelling of electrons towards back channel. And the positive shift under PBS results from the electron trapping at or near the active channel/dielectric interfaces.

Fig. S7 Electrical stability of fully printed ITO TFTs under white light illumination. Evolution of transfer curves of the ITO TFTs as a function of (**a**) NBIS and (**b**) PBIS. (**c**) Threshold voltage shifts (ΔV_{th}) as a function of bias stress time. The NBIS/PBIS was performed in air at room temperature under white LED light illumination (3000 lux), and the applied gate bias was -/+ 1 V, respectively.

Fig. S8 X-ray diffraction patterns of printed ITO and Al₂O₃ films on SiO₂ substrates. The XRD patterns revealed the printed ITO film is polycrystalline and Al₂O₃ film is amorphous.

Fig. S9 XPS analysis of ITO films with different thicknesses. XPS O-1*s* spectra collected from printed (**a**) ITO channel (10 nm thick) and (**b**) ITO contacts (18 nm thick) films

Fig. S10 The electrical characteristics of ITO TFTs with different channel thicknesses. (a) Cross-sectional scanning of ITO channel films by AFM. Inset illustrates the structure of the fully printed TFT. (b) Transfer curves of fully-printed TFTs with different channel thicknesses. (c) Extracted μ_{sat} and V_{th} as a function of ITO thickness

Fig. S11 Analysis of contact resistivity by gated four-probe (GFP) measurements. ITO channel was spin-coated on Si/SiO₂ substrate and patterned by photolithography and wet etching. Cr/Au (3/30 nm) electrodes were patterned and deposited via e-beam evaporation.

The contact resistance between the 10 nm, 18 nm ITO channel and the Cr/Au electrode decreases with the increase of the gate voltage. Thicker ITO has lower contact resistance. Inset illustrates optical images of the ITO GFP devices.

Fig. S12 XPS depth profile of the ITO/Al₂O₃ heterostructures as a function of etching time. (a) In-3*d*, (b) Sn-3*d* (c) Al-2*p*, and (d) O-1*s* core-level XPS spectra of the ITO/Al₂O₃ films, where the intensities of In-3*d* and Sn-3*d* peaks decrease with time while that of Al-2*p* shows opposite trend.

Deposition method	Channel materials	Inverter load	V _{dd} (V)	Gain (V/V)	References
Spin-coating	In ₂ O ₃	Resistor	4	9.7	[S1]
	In_2O_3	Resistor	2.5	5	[S2]
	In_2O_3	Resistor	3	6	[S3]
	In_2O_3	Resistor	10	10.6	[S4]
	ZTO	CMOS	40	10	[S5]
	ZTO	NMOS	15	23.2	[S6]
	ZTO	Resistor	2.5	7.3	[S7]

Table S1 Comparation of inverters performance based on solution-processed metal oxide TFTs

	ZnO	CMOS	1	18	[S8]
	IZO	Resistor	4	4.46	[S 9]
	IGZO	CMOS	40	50	[S10]
	IGZO	CMOS	50	5	[S 11]
	IGZO	NMOS	10	1.83	[S12]
	ZnO	NMOS	15	70	[S13]
	IGZO	Resistor	5	19.8	[S14]
Inkjet-printing	In ₂ O ₃	CMOS	1.5	18	[S15]
	In ₂ O ₃	Resistor	4	16	[S 16]
	In ₂ O ₃	CMOS	1.5	21	[S17]
	ZnO	Resistor	2	8	[S18]
	IGZO	CMOS	10.5	12	[S19]
	In ₂ O ₃	NMOS	20	45	[S20]
	IGZO	NMOS	0.5	2.5	[S21]
Fully-printing	IGO	Resistor	2	5	[\$22]
	ITO	NMOS	3	181	This work

Supplementary References

- [S1] C. Fan, A. Liu, Y. Meng, Z. Guo, G. Liu et al., Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Trans. Electron Dev. 64, 4137 (2017). <u>https://doi.org/10.1109/TED.2017.2742060</u>
- [S2] L. Zhu, G. He, Y. Long, B. Yang, J. Lv, Eco-Friendly, Water-induced In₂O₃ thin films for high-performance thin-film transistors and inverters. IEEE Trans. Electron Dev. 65, 2870 (2018). <u>https://doi.org/10.1109/TED.2018.2824336</u>
- [S3] T. Zhao, C. Zhao, J. Zhang, I.Z. Mitrovic, E.G. Lim et al., Enhancement on the performance of eco-friendly solution-processed InO/AlO thin-film transistors via lithium incorporation. J. Alloy. Compd. 829, 154458 (2020). <u>https://doi.org/10.1016/j.jallcom.2020.154458</u>
- [S4] Z. Guo, A. Liu, Y. Meng, C. Fan, B. Shin et al., Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters. Ceram. Int. 43, 15194 (2017). <u>https://doi.org/10.1016/j.ceramint.2017.08.052</u>
- [S5] R.D. Chandra, M. Rao, K. Zhang, R.R. Prabhakar, C. Shi et al., Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics. ACS Appl. Mater. Interfaces 6, 773, (2014). <u>https://doi.org/10.1021/am401003k</u>

- [S6] S.-P. Tsai, C.-H. Chang, C.-J. Hsu, C.-C. Hu, Y.-T. Tsai et al., MESFETs and inverters based on amorphous zinc-tin-oxide thin films prepared at room temperature. ECS J. Solid State Sci. Technol. 4, 176 (2015). <u>https://doi.org/10.1063/1.5038941</u>
- [S7] B. Yang, G. He, Y. Zhang, C. Zhang, Y. Xia et al., Solution-processed DyOx for aging diffusion ZnSnO transistors and applications in low-voltage-operating logic circuits. IEEE Trans. Electron Dev. 66, 3479 (2019). https://doi.org/10.1109/TED.2019.2924089
- [S8] K.G. Cho, H.J. Kim, H.M. Yang, K.H. Seol, S.J. Lee et al., Sub-2 V, transfer-stamped organic/inorganic complementary inverters based on electrolyte-gated transistors. ACS Appl. Mater. Interfaces 10, 40672 (2018). <u>https://doi.org/10.1021/acsami.8b13140</u>
- [S9] G. He, W. Li, Z. Sun, M. Zhang, X. Chen, Potential solution-induced HfAlO dielectrics and their applications in low-voltage-operating transistors and high-gain inverters. RSC Adv. 8, 36584 (2018). <u>https://doi.org/10.1039/C8RA07813K</u>
- [S10] A. Liu, H. Zhu, Y.Y. Noh, Molecule charge transfer doping for p-channel solutionprocessed copper oxide transistors. Adv. Funct. Mater. 30, 2002625 (2020). <u>https://doi.org/10.1002/adfm.202002625</u>
- [S11] A. Liu, H. Zhu, W.T. Park, S.J. Kang, Y. Xu et al., Room-temperature solutionsynthesized p-type copper(i) iodide semiconductors for transparent thin-film transistors and complementary electronics. Adv. Mater. 30, 1802379 (2018). <u>https://doi.org/10.1002/adma.201802379</u>
- [S12] D. Kim, Y. Kim, K.-Y. Choi, D. Lee, H. Lee, A solution-processed operational amplifier using direct light-patterned a-InGaZnO TFTs. IEEE Trans. Electron Dev. 65, 1796 (2018). <u>https://doi.org/10.1109/TED.2018.2817689</u>
- [S13] F.F. Vidor, T. Meyers, K. Müller, G. I. Wirth, U. Hilleringmann, Inverter circuits on freestanding flexible substrate using ZnO nanoparticles for cost-efficient electronics. Solid-State Electron. 137, 16 (2017). <u>https://doi.org/10.1016/j.sse.2017.07.011</u>
- [S14] Y. Zhang, G. He, W. Wang, B. Yang, C. Zhang et al., Aqueous-solution-driven HfGdOx gate dielectrics for low-voltage-operated α-InGaZnO transistors and inverter circuits. J. Mater. Sci. Technol. 50, 1 (2020). https://doi.org/10.1016/j.jmst.2020.03.007
- [S15] T.T. Baby, S.K. Garlapati, S. Dehm, M. Häming, R. Kruk et al., A general route toward complete room temperature processing of printed and high performance oxide electronics. ACS Nano 9, 3075 (2015). <u>https://doi.org/10.1021/nn507326z</u>
- [S16] S.Y. Kim, K. Kim, Y.H. Hwang, J. Park, J. Jang et al., High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale 8, 17113 (2016). <u>https://doi.org/10.1039/C6NR05577J</u>
- [S17] S.K. Garlapati, T.T. Baby, S. Dehm, M. Hammad et al., Ink-jet printed CMOS electronics from oxide semiconductors. Small 11, 3591 (2015). <u>https://doi.org/10.1002/smll.201403288</u>
- [S18] K. Hong, S.H. Kim, K.H. Lee, C.D. Frisbie, Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater. 25, 3413 (2013). <u>https://doi.org/10.1002/adma.201300211</u>

- [S19] C. Chen, Q. Yang, G. Chen, H. Chen, T. Guo, Solution-processed oxide complementary inverter via laser annealing and inkjet printing. IEEE Trans. Electron Devices 66, 4888 (2019). <u>https://doi.org/10.1109/TED.2019.2941264</u>
- [S20] J. Leppaniemi, K. Eiroma, H.S. Majumdar, A. Alastalo, In₂O₃ thin-film transistors via inkjet printing for depletion-load nMOS inverters. IEEE Electron Device Lett. **37**, 445 (2016). <u>https://doi.org/10.1109/LED.2016.2529183</u>
- [S21] B.K. Sharma, A. Stoesser, S.K. Mondal, S.K. Garlapati, M.H. Fawey et al., Highperformance all-printed amorphous oxide FETs and logics with electronically compatible electrode/channel interface. ACS Appl. Mater. Interfaces 10, 22408 (2018). <u>https://doi.org/10.1021/acsami.8b04892</u>
- [S22] Y. Li, L. Lan, S. Hu, P. Gao, X. Dai et al., Fully printed top-gate metal–oxide thinfilm transistors based on scandium-zirconium-oxide dielectric. IEEE Trans. Electron Devices 66, 445 (2019). <u>https://doi.org/10.1109/TED.2018.2877979</u>