Supporting Information for

Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-

Stability and Its Application in Electrochemical CO₂ Reduction

Keqiang Chen^{1, 2}, Kun Qi¹, Tong Zhou³, Tingqiang Yang¹, Yupeng Zhang^{1, *}, Zhinan Guo¹, Chang-Keun Lim^{2, 4}, Jiayong Zhang⁵, Igor Žutić³, Han Zhang^{1, *}, Paras N. Prasad^{2, *}

¹Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

²Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA

³Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA

⁴Department of Chemical and Materials Engineering, School of Engineering, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan

⁵Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China

*Corresponding authors. E-mail: ypzhang@szu.edu.cn (Y.Z.), hzhang@szu.edu.cn (H.Z.), pnprasad@buffalo.edu (P.N.P.)

Supplementary Figures and Tables

Fig. S1 Schematic of the purification process for the preparation of water-dispersible CsPbBr₃ nanocrystals. The as-synthesized curde solution (marked as I) was directly centrifuged at 9000 rpm for 10 min. The suspension was discarded, and the precipitate

(marked as II) was re-dispersed by 10 mL hexane. Subsequently, another centrifugation process was carried out at 9000 rpm for 10 min, the suspension and the precipitate (nonluminescent) were marked as III and IV, respectively. Then, 2 mL of water was mixed separately with III and IV, which were marked as V and VI. After sonication, strong PL emission can be found from the oil phase (dispersed in hexane, makred as h-CsPbBr₃) and water phase (dispersed in water, makred as w-CsPbBr₃), respectively.

Fig. S2 XRD patterns of **III**, **IV**, **V** (h-CsPbBr₃), and **VI** (w-CsPbBr₃), which can be indexed as a mixture of CsBr/Cs₄PbBr₆ (**III** and **IV**), CsPbBr₃ (h-CsPbBr₃) or a mixture of CsBr/CsPbBr₃ (w-CsPbBr₃), respectively

Fig. S3 FTIR spectroscopy of h-CsPbBr₃ (red) and w-CsPbBr₃ (green)

Fig. S4 TEM (a) and HRTEM (b) images of h-CsPbBr₃

Fig. S5 Size distribution histograms of h-CsPbBr₃ and w-CsPbBr₃ NCs. The data were collected from 100 NCs for each sample

Fig. S6 Unrelaxed (original) polyhedral and ball-and-stick models of CsPbBr₃ with PbX₂ terminated surface: (**a**) (**d**) initial structure; (**b**) (**e**) Br-vacancy structure; (**c**) (**f**) CsBr passivated structure. Blue, gray, brown, red, and pink spheres represent Cs, Pb, Br, O, and H atoms, respectively

Fig. S7 Relaxed ball-and-stick models of CsPbBr₃ with various structures after adsorbing one or two water molecules: (a) initial structure with one water molecule;
(b) Br-vacancy structure with one water molecule; (c) CsBr passivated structure with

one water molecule; (d) initial structure with two water molecules; (e) Br-vacancy structure with two water molecules; (f) CsBr passivated structure with two water molecules. Blue, gray, brown, red, and pink spheres represent Cs, Pb, Br, O, and H atoms, respectively

Fig. S8 Zeta potential of CsPbBr3 NCs solution

Fig. S9 Schematic graph of the EDL around the surface of CsPbBr3 NCs

Fig. S10 (a) TEM image of the CsPbBr₃ NCs after the CO₂ reduction reaction; (b) CP curve of the CsPbBr₃ NCs with a constant current density of 25mA cm⁻²

Fig. S11 (**a**) Faradic efficiencies for the h-CsPbBr₃ NCs CO₂ RR; (**b**) chronopotentiometry curve (long-term stability) of h-CsPbBr₃ NCs in 0.1 M KHCO₃ for 20 hours

Fig. S12 Binding configurations between Cs atoms and CO2

Table S1 Statistics of the deviations of the Pb–Br bond lengths and the Pb–Br–Pb bond angles of CsPbBr₃ models under the adsorption of water molecules. The crystal structure and bond angles are difined as following figure:

	No. of water	Position	Pb-Br bond length (Å)						$\mathbf{D}^*(\mathbf{\hat{\lambda}})$
			left	right	up	down	front	behind	- D (A)
Initial structure	/	1 st layer	2.937	2.937	2.937	2.937	2.937	2.937	0
		2 nd layer	2.937	2.937	2.937	2.937	2.937	2.937	0
PbBr ₂ terminated (Figure 4a and 4g)	One	1 st layer	3.158	2.851	2.683	3.258	2.983	3.002	0.196
	water	2 nd layer	2.85	3.035	2.823	3.094	2.91	2.977	0.097
	Two	1 st layer	3.677	2.848	2.885	3.786	2.903	3.379	0.496
	water	2 nd layer	2.949	2.94	2.788	3.139	2.952	2.94	0.103
Br- vacancy (Figure 4b and 4h)	One	1 st layer	3.058	2.85	NA	2.942	3.05	2.839	0.094
	water	2 nd layer	2.946	2.952	3.025	3.042	2.939	2.94	0.056
	Two	1 st layer	3.064	2.768	NA	3.068	2.921	2.983	0.113
	water	2 nd layer	2.96	2.968	3.073	3.075	2.957	2.968	0.082
CsBr passivated (Figure 4c and 4i)	One	1 st layer	2.941	2.948	2.984	2.982	2.943	2.946	0.027
	water	2 nd layer	2.937	2.938	2.948	2.991	2.937	2.937	0.023
	Two	1 st layer	2.934	2.952	2.998	2.983	2.944	2.941	0.032
	water	2 nd layer	2.939	2.935	2.947	2.997	2.937	2.937	0.025

* Standard deviation from the original Pb-Br bond length.

	No. of water	Pb-Br-Pb bond length (°)									
		α_1	β_1	Υ_{I}	D* (Å)	α_2	β_2	Υ_2	D* (Å)		
Initial structure	/	90.000	90.000	90.000	0.000	90.000	90.000	90.000	0.000		
PbBr ₂ terminated (Figure 4a and 4g)	One water	91.777	79.06	80.109	8.577	88.687	86.646	87.186	2.639		
	Two water	99.136	76.106	71.53	14.348	89.812	85.345	87.29	3.112		
Br-vacancy (Figure 4b and 4h)	One water	89.927	84.625	85.679	3.982	90.026	89.503	91.929	1.15		
	Two water	93.73	83.708	84.579	5.256	88.012	88.284	94.861	3.19		
CsBr passivated (Figure 4c and 4i)	One water	89.797	86.57	86.928	2.661	89.866	90.378	90.151	0.248		
	Two water	89.402	86.503	86.912	2.715	90.125	90.498	90.583	0.448		

* Standard deviation from the original Pb-Br-Pb bond angle.