Supporting Information for

In-Situ Monitoring the Potassium Ion Storage Enhancement in Iron

Selenide with Ether-Based Electrolyte

Xiaodan Li¹, Jinliang Li^{1,} *, Wenchen Zhuo¹, Zhibin Li¹, Liang Ma¹, Zhong Ji¹, Likun Pan², Wenjie Mai^{1,} *

¹Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China

²Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China

*Corresponding authors. E-mail: lijinliang@email.jnu.edu.cn (Jinliang Li); wenjiemai@email.jnu.edu.cn (Wenjie Mai)

Supplementary Tables and Figures

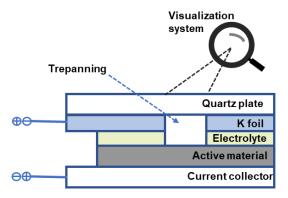


Fig. S1 Detail testing schematic of in-situ visualization

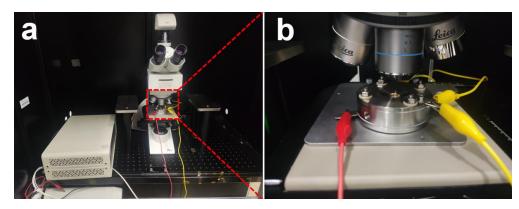
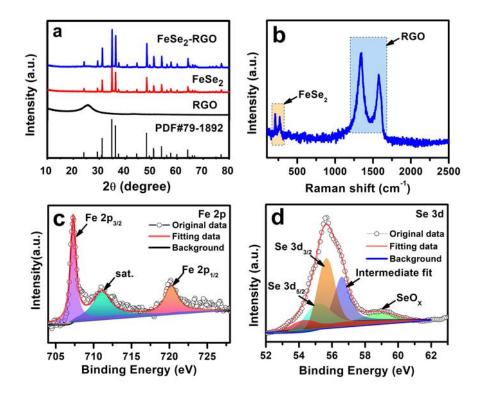
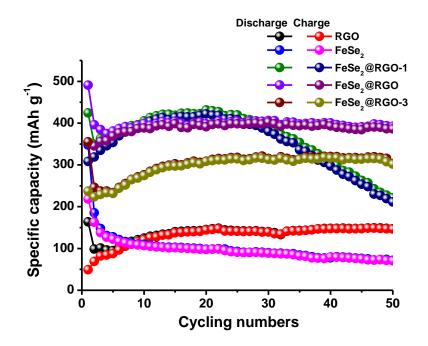




Fig. S2 Photograph of in-situ visualization testing system

Nano-Micro Letters

Fig. S3 (a) XRD patterns of RGO, FeSe₂ and FeSe₂@RGO; (b) Raman spectrum of FeSe₂@RGO; (c) Fe 2p and (d) Se 3d XPS spectra of FeSe₂@RGO

Fig. S4 Cycling performance of RGO, FeSe₂, FeSe₂@RGO-1, FeSe₂@RGO and FeSe₂@RGO-3 with DME-based electrolyte at a current density of 100 mA g⁻¹

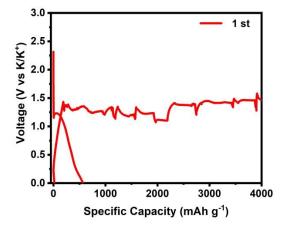


Fig. S5 GCD curves of FeSe₂-RGO electrode using DME- 1 based electrolyte

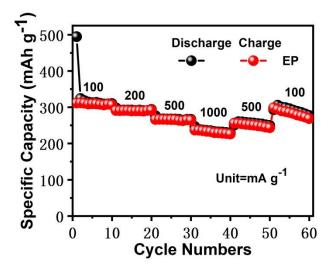


Fig. S6 Rate performance of FeSe₂-RGO electrode using EP-based electrolyte

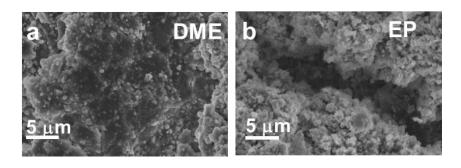
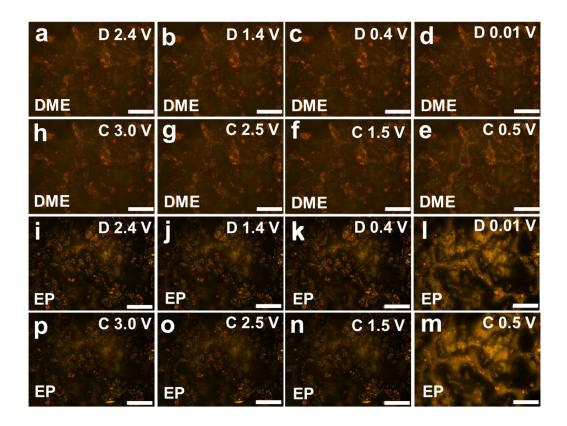
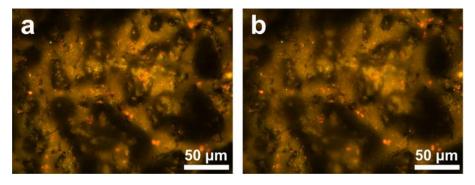




Fig. S7 SEM images of electrode in (a) DME-based and (b) EP-based electrolytes after cycles

Fig. S8 In situ visualization: (**a-h**) different potassiation-depotassiation states of FeSe₂@RGO electrode using DME-based electrolyte in the second cycle; (**i-p**) different potassiation-depotassiation states of FeSe₂@RGO electrode using EP-based electrolyte in the second cycle. The scale bar in each image is 50 μm.

Fig. S9 In situ visualization of FeSe₂@RGO electrode using EP-based electrolyte: (**a**) charging to 0.38 V in the first cycle; (**b**) charging to 0.12 V in the second cycle. It is found that huge morphological change in this state, indicating the appearance of inhomogeneous expansion.

Nano-Micro Letters

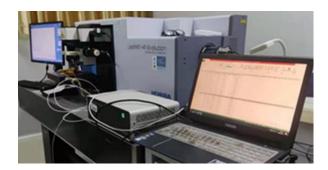


Fig. S10 Photograph of the practical in-situ Raman spectra testing system

Video S1 In-situ visualization of FeSe₂@RGO electrode using DME-based electrolyte in initial two cycles.

Video S2 In-situ visualization of FeSe₂@RGO electrode using EP-based electrolyte in initial two cycles.