Supporting Information for

Organic Solvent Assisted Intercalation and Collection for

Ti₃C₂T_x MXene with Controllable Sizes and Improved Yield

Danyao Qu¹, Yingying Jian¹, Lihao Guo¹, Chen Su¹, Ning Tang², Xingmao Zhang¹, Wenwen Hu², Zheng Wang¹, Zhenhuan Zhao¹, Peng Zhong¹, Peipei Li¹, Tao Du^{1, *}, Hossam Haick^{3, *}, and Weiwei Wu^{1, *}

¹School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710126, P. R. China

²School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China

³Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel

*Corresponding authors. E-mail: <u>taodu@xidian.edu.cn</u> (Tao Du); <u>hhossam@technion.ac.il</u> (Hossam Haick); <u>wwwu@xidian.edu.cn</u> (Weiwei Wu)

Supplementary Tables and Figures

Fig. S1 Digital photographs of (a) supernatant and sediment after adding DCM and centrifugation at speed of 2,000 rpm (Step 6). (b) the synthesized $O-Ti_3C_2T_x$ solution placed for one week at room temperature (left) and the diluted solution showing Tyndall

scattering effect (right). (c) the O-Ti₃C₂T_x film with diameter 40 mm made by vacuumassisted filtration, indicating the good film-forming ability. (d) the Swagelok threeelectrode setup used in electrochemical measurements. (e) Schematic representation of a Swagelok cell. The glassy carbon electrodes were used as current collectors for both the working and the counter electrodes. The prepared $Ti_3C_2T_x$ films were punched to the desired size and were directly used as the working electrode without addition of any binder. The freestanding overcapactive activated carbon electrode was used as the counter electrode. The Ag/AgCl electrode in 1 M KCl was used as the reference electrode. Two pieces of Celgard paper (3501) were used as the separator between the working electrode and the counter electrode. The deaerated 3 M H₂SO₄ was used as the electrolyte.

Fig. S2 SEM images of (a) $S-Ti_3C_2T_x-1$, (b) $S-Ti_3C_2T_x-6$ flakes through Route II, and (c) $O-Ti_3C_2T_x-1$, (d) $O-Ti_3C_2T_x-6$ flakes through Route III

Fig. S3 TEM images of (a) S-Ti₃C₂T_x-2, (b) S-Ti₃C₂T_x-3, (c) S-Ti₃C₂T_x-4, (d) S-Ti₃C₂T_x-5 flakes

Fig. S4 TEM images of (a) O-Ti₃C₂T_x-2, (b) O-Ti₃C₂T_x-3, (c) O-Ti₃C₂T_x-4, (d) O-Ti₃C₂T_x-5 flakes

Fig. S5 High-resolution TEM image of O-Ti₃C₂T_x

а	120 100 100	40 130 200 200	26 36 36	²⁰ 0-Ti ₃ C ₂ T _x -3	0-TisCaTx-4	0-Ti ₃ C ₂ T x-5	8 0-Ti ₂ C ₂ T _x -6
Flake-area distribution	δ _m Avg. 0.16 μm ² Ares (um ²)	⁵ ₂₀ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	500 Avg. 1.18 μm ² 60 1 2 3 4 5 0 7 4 4 10 Area (μm ²)	Avg. 1.79 μm ²	δ Avg. 2.40 μm ² δ 4 1 2 3 4 5 6 7 6 4 10 Area (μm ²)	ⁿ ⁴ ¹ ² ³ ⁴ ⁴ ⁴ ⁵ ⁴ ⁵ ⁴ ⁶ ⁷ ⁷ ⁸ ⁶ ⁷ ⁸ ⁶ ⁷ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸	5 π Avg. 4.60 μm ² 4 1 2 3 4 5 7 7 μ = 1 Area (μm ²)
b Representative TEM images	Enteral suze=0.48 µm 30 <u>0 mm</u> 0.43 µm	Lateral str=1.12 pm	Laters size 1.75 Lm 5 <u>00 nm</u>	Lateral size=2.12 µm 5 <u>00 nm</u>	Lateral siza=2.16 µm 50 <u>0 n</u> m	Lateral size=2.79 _m . 50 <u>0 n</u> m	Annun 465 (m [.] Lateral eize-322 (m . 580-rim
Area [µm ²]	0.16±0.09	0.47±0.34	1.18±0.58	1.79±0.84	2.40±1.00	3.58±1.19	4.60±1.98
Lateral size [µm]	0.45±0.16	0.75±0.14	1.28±0.18	1.62±0.19	1.79±0.20	2.23±0.31	3.02±0.49
C Film sheet resistance maps						Provide a state of the state of	
Sheet resistance [Avg.] $[\Omega \text{ sq}^{+}]$	1.882040	1.302450	0.8849400	0.8018200	0.6690150	0.3276050	0.5765573
Film thickness [µm]	5	6	5	3	3	5	2
Conductivity [S cm ⁻¹]	1062.7	1279.6	2260.0	4157.2	4982.4	6104.9	8672.2

Fig. S6 S-Ti₃C₂T_x and O-Ti₃C₂T_x flakes size, structure, and conductivity. (a) Flake-area distribution diagrams, (b) Representative TEM images of $Ti_3C_2T_x$ flakes. Blue lines

outline the area of $Ti_3C_2T_x$ flakes, and white lines outline the lateral size of $Ti_3C_2T_x$ flakes. TEM-derived area and lateral size distributions were determined by measuring the area and lateral size of 100 flakes. The average values of flakes area and lateral size list below. (c) Sheet resistance (Rs) maps of $Ti_3C_2T_x$ films fabricated by vacuum filtration. The average values of Rs and corresponding film thickness (d) list below. The conductivity, σ (S cm⁻¹), was calculated by $\sigma=1/(Rs \times d)$

Fig. S7 TEM images for O-Ti₃C₂T_x-1 to O-Ti₃C₂T_x-6 flakes of gram-level preparation

Fig. S8 Energy-dispersive X-ray spectroscopy (EDS) spectra of (a) $S-Ti_3C_2T_x$ and (b) $O-Ti_3C_2T_x$

Nano-Micro Letters

Fig. S11 Galvanostatic charge-discharge (GCD) profiles of O-Ti₃C₂T_x-3

Fig. S12 CV profiles of O-Ti₃C₂T_x-1 to O-Ti₃C₂T_x-6 film electrodes at scan rates from 2 mV s⁻¹ to 10 V s⁻¹

Fig. S13 Volumetric capacitance of O-Ti₃C₂T_x-1 to O-Ti₃C₂T_x-6 film electrodes at different scan rates

Fig. S14 (a) CV profiles of S-Ti₃C₂T_x, (b) Gravimetric capacitance of S-Ti₃C₂T_x film electrode at different scan rates

	Ti (at%)	C (at%)	O (at%)	F (at%)
S-Ti ₃ C ₂ T _x	29.22	40.69	17.00	13.09
$O-Ti_3C_2T_x$	30.12	45.89	15.19	8.80

Table S1 Summary of atomic ratios of S-Ti_3C_2T_x and O-Ti_3C_2T_x

Cycle	m (g)	(g)	c (g mL ⁻¹)	m _{dis} (g)	Total production (g)
1	$m_1 = 0.0547$				
	$m_2 = 0.0533$				
	$m_3 = 0.0534$	0.0536	0.01072	1.2864	
	$m_4 = 0.0533$				
	m5=0.0533				
	$m_1 = 0.0480$				
	$m_2 = 0.0479$				
2	$m_3 = 0.0477$	0.04788	0.009576	0.76608	
	$m_4 = 0.0480$				
	$m_5 = 0.0478$				4 62028
	$m_1 = 0.0276$				4.02320 Vield $- 46.20\%$
	$m_2 = 0.0268$		0.005516	1.54448	
3	$m_3 = 0.0281$	0.02758			
	$m_4 = 0.0276$				
	$m_5 = 0.0278$				
	$m_1 = 0.0230$				
4	$m_2 = 0.0230$				
	$m_3 = 0.0230$	0.02302	0.004604	0.82872	
	$m_4 = 0.0231$				
	m5=0.0230				
5	$m_1 = 0.0056$	0.00562	0.001124	0.1124	

Table S2 Yield calculation of gram-level preparation for O-Ti₃C₂T_x

	$m_2 = 0.0055$				
	$m_3 = 0.0056$				
	$m_4 = 0.0057$				
	$m_5 = 0.0057$				
	$m_1 = 0.0046$				
	$m_2 = 0.0044$				
6	$m_3=0.0044$	0.00456	0.000912	0.0912	
	$m_4 = 0.0046$				
	$m_5 = 0.0048$				

The volumes of dispersion in step 8 in each cycle were accurately measured which denoted as V_{dis} . Then, the dispersion of each cycle was extracted for five parts with 5 ml of each part. After freeze-drying, the O-Ti₃C₂T_x products of each part were weighted and denoted as m_1 to m_5 . The mass concentration of the dispersion can be calculated by the following equation: $c = \frac{\overline{m}}{V}$, where \overline{m} is the average mass of five parts, V is 5 ml. So far, the mass of O-Ti₃C₂T_x products in dispersion of each cycle (denote as m_{dis}) can be calculated by the following equation: $m_{dis} = cV_{dis}$. The yield of gram-level preparation was calculated by total mass of O-Ti₃C₂T_x products in the dispersion dividing by the mass of Ti₃AlC₂ powders (10 g).

Table S3 A brief summary of capacitive performance of pristine $Ti_3C_2T_x$

Materials	Synthesis methods	Lateral Size	Electrolyte	Gravimetric capacitance	Rate performance ª	Refs.
S-pristine Ti ₃ C ₂ T _x	HCl/HF	150 nm	$3M H_2 SO_4$	~300 F g ⁻¹ @ 5 mV s ⁻¹	~70% at 1000mV s ⁻¹	[S1]
L-pristine Ti ₃ C ₂ T _x	HCl/HF	1.28 μm	$3M H_2 SO_4$	~290 F g ⁻¹ @ 5 mV s ⁻¹	~20.7% at 1000 mV s ⁻¹	[S1]
Pristine Ti ₃ C ₂ T _x	HCl/LiF	< 1 µm	$3M H_2 SO_4$	348 F g ⁻¹ @ 5 mV s ⁻¹	~30.2% at 1000 mV s ⁻¹	[S2]
Pure Ti ₃ C ₂ T _x	HCl/LiF	/	$3M H_2 SO_4$	303 F g ⁻¹ @ 2 mV s ⁻¹	34% at 500 mV s ⁻¹	[S3]
Pure Ti ₃ C ₂ T _x	HCl/LiF	0.5 - 1.5 μm	1M H ₂ SO ₄	245 F g ⁻¹ @ 2 mV s ⁻¹	~83% at 100 mV s ⁻¹	[S4]
Pure Ti ₃ C ₂ T _x	HCl/LiF	~1 µm	$3M H_2 SO_4$	290 F g ⁻¹ @ 2 mV s ⁻¹	69% at 1000 mV s ⁻¹	[85]
Pure Ti ₃ C ₂ T _x	HCl/LiF	~200-300 nm	$3M H_2 SO_4$	~260 F g ⁻¹ @ 10 mV s ⁻¹	~60% at 1000 mV s ⁻¹	[S6]
Pristine Ti ₃ C ₂ T _x	HCl/HF	/	1M H ₂ SO ₄	~300 F g ⁻¹ @ 5 mV s ⁻¹	~43.3% at 1000 mV s ⁻¹	[S7]
$O-Ti_3C_2T_x-3$	OAIC	1.62 μm	$3M H_2 SO_4$	352 F g ⁻¹ @ 2 mV s ⁻¹	74.7% at 1000 mV s ⁻¹	This work

[a]. Rate performance was collected by reported data or calcultated according to gravimetric capacitance at the indicated scan rate compared to the values in column 5.

Supplementary References

- [S1] J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11, 2003025 (2021). <u>https://doi.org/10.1002/aenm.202003025</u>
- [S2] W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 0, 1902977 (2019). <u>https://doi.org/10.1002/adma.201902977</u>
- [S3] Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). <u>https://doi.org/10.1002/advs.201800750</u>
- [S4] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 516, 78-81 (2014). <u>https://doi.org/10.1038/nature13970</u>
- [S5] K. Maleski, C.E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491-24498 (2018). https://doi.org/10.1021/acsami.8b04662
- [S6] Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thicknessindependent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409-412 (2018). <u>https://doi.org/10.1038/s41586-018-0109-z</u>
- [S7] J. Tang, T.S. Mathis, N. Kurra, A. Sarycheva, X. Xiao et al., Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. 58, 17849-17855 (2019). <u>https://doi.org/10.1002/anie.201911604</u>