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S1 Chemicals and Materials 

The tin chloride pentahydrate (SnCl4·5H2O, ≥99.0%), thioacetamide (C2H5NS, ≥99.0%), 

potassium bicarbonate (KHCO3, ≥99.5%), and ethanol (C2H5OH, ≥99.7%) were all purchased 

from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Graphite powder (XF011 

7782-42-5) and Carbon black (XFI15 7440-44-0) were obtained from XFNANO Materials Tech 

Co., Ltd. All the chemicals were used without further purification. Ultrapure Millipore water 

(18.2 MΩ) was used in all experiments.  

S2 Electrochemical Measurements  

Electrochemical measurements were performed in a three-electrode system at an electrochemical 

station (CHI660E). SnS2-xOx/CC doesn’t require any treatment and can be used as a supporting 

electrode for electrochemical carbon dioxide reduction directly. Controlled potential electrolysis 

of CO2 was conducted in an H-cell (separated by Nafion 115) containing 75 mL of 0.5 M 

KHCO3 electrolyte at room temperature and under atmospheric pressure. The platinum network 

and Ag/AgCl electrode were used as the counter and reference electrodes, respectively. Gas 

products were analyzed by a thermal conductivity detector (TCD) (for H2 and CO) and a flame 

ionization detector (FID) (for alkanes and alkenes). Quantification of the products was 

performed using standard calibration gases. Liquid products were analyzed by quantitative 1H 

NMR spectroscopy with water suspension, and using dimethyl sulphoxide (DMSO) as an 

internal standard.  
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S3 Characterizations 

The TEM, HRTEM, HAADF-STEM, and EDX mapping of the SnS2/CC, SnS2-xOx/CC and 

SnO2/CC were carried out on a JEOL ARM-200F field-emission transmission electron 

microscope operating at 200 kV accelerating voltage. XRD patterns was recorded by using a 

Philips X’Pert Pro Super diffractometer with Cu-Kα radiation (λ=1.54178 Å). XPS measurement 

was performed on a VG ESCALAB MK II X-ray photoelectron spectrometer with an exciting 

source of Mg Kα = 1253.6 eV.  

S4 EXAFS Experimental Details 

The Sn K-edge (29200 eV) XAFS spectra were performed at BL14W1 station in Shanghai 

Synchrotron Radiation Facility (SSRF), China. The storage rings of SSRF were operated at 3.5 

GeV with the maximum current of 210 mA. During XAFS measurements, we calibrated the 

position of the absorption edge (E0) using Sn foil. And all the XAFS data were collected during 

one period of beam time. Each spectrum was measured three times to ensure the repeatability of 

the data (the positions of E0 were almost the same during the multiple scans). The position of E0 

is defined as the point corresponding to the maximum value in the derivative curves of the 

XANES spectra. 

S5 DFT Calculations 

The calculations were performed within the Density Functional Theory (DFT) framework 

implanted in Vienna ab initio Simulation Package (VASP)[2]. The interaction between ions and 

electrons was described in the Projector Augmented Wave (PAW) Method[4]. The electron 

exchange and correlation energy was described using the generalized gradient 

approximation-based Perdew–Burke–Erzenhorf (PBE) functional[3]. The models of armchair 

edges SnS2 and SnS2-xOx with a 1 × 3 × 3 supercell were chosen for the calculation. And all the 

atoms were fully relaxed during the calculations. A sufficiently large vacuum region of 15 Å was 

used for all the models to ensure the periodic images were well separated. The Brillouin-zone 

integrations were carried out using Monkhorst-Pack grids of special points. A gamma-centered (1 

× 3 × 1) k-point grid was used for SnS2 and SnS2-xOx supercell. To obtain the accurate structure, 

The plane-wave cutoff energy was set up to 500 eV. The force convergence was set to be <0.02 

eV Å−1, and the total energy convergence was set to be <10−5 eV.  

The free energy of the adsorbed state was calculated as follows based on the adsorption energy: 

ΔGHCOO* = ΔEHCOO* + ΔEZPE + U(T) – TΔS 

where ΔEHCOO* is the adsorption energy of hydrogen directly obtained from DFT calculations, 

ΔEZPE is the zero-point energy, U(T) is the heat capacity correction energy, and T is the 

temperature (T = 298.15 K), ΔS is the change in entropy. Herein, the Gibbs energy is corrected 

by using the VASPKIT code [6]. 
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S6 Supplementary Figures and Tables 
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Fig. S1 Electron Localization Function (ELF) for pristine SnS2 slab (a) and SnS2-xOx slab (b) 

 

Fig. S2 (a) Typical SEM images of SnS2/CC, (b) Typical TEM images of SnS2 nanosheets, (c) 

HRTEM image of pristine SnS2 nanosheets 

 

Fig. S3 (a) Typical SEM images of SnO2/CC, (b) Typical TEM images of SnO2 nanoplatelets 
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Fig. S4 EDX spectrum of SnS2-xOx nanosheets 
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Fig. S5 XRD patterns of pristine SnS2/CC, SnS2-xOx/CC, and SnO2/CC 
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Fig. S6 XPS survey spectra of pristine SnS2/CC, SnS2-xOx/CC, and SnO2/CC 
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Fig. S7 O 1s XPS spectra of SnS2-xOx/CC and SnO2/CC 
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Fig. S8 Sn 3d XPS spectra of pristine SnS2, SnS2-xOx, and SnO2 
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Fig. S9 O K-edge XAS spectra of SnS2-xOx and SnO2 
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Fig. S10 S L-edge XAS spectra of SnS2 and SnS2-xOx 
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Fig. S11 Normalized XANES spectra of Sn K-edge for Sn foil, SnS2, SnS2-xOx, and SnO2 
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Fig. S12 Synchrotron radiation XAFS measurements. The Fourier transforms FT(k3X(k)) of the 

extended X-ray absorption fine structure (EXAFS) for Sn K-edge of the pristine SnS2 (a), 

SnS2-xOx (c), and SnO2 (e). Sn K-edge EXAFS oscillation function k3X(k) for the pristine SnS2 

(b), SnS2-xOx (d), and SnO2 (e) 
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Fig. S13 Wavelet transform (WT) of Sn foil, SnS2, SnS2-xOx, and SnO2, respectively 
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Table S1 Best fitting EXAFS data for pristine SnS2, SnS2-xOx, and SnO2 

Sample Path CN R(Å) 
σ

2

(10
-3

Å
2

)  
ΔE

0
 (eV)       

SnS2 Sn-S 6.0 2.55 3.8 2.5 

SnO2-xOx 
Sn-S 4.3 2.56 5.0 4.7 

Sn-O 2.1 2.04 3.6 0.3 

SnO2 Sn-O 6.0 2.09 4.1 -2.7 

Note: For SnS2: K-range: 2.22-13.20; R-range: 1.47-3.87; amp: 0.85; For SnO2-xOx: K-range: 

2.36-13.61; R-range: 1.20-3.87; amp: 0.85; For Ag: K-range: 2.31-14.01; R-range: 1.09-3.90; 

amp: 0.90; CN; coordination number; R, bonding distance; σ2, Debye-Waller factor; ΔE0, inner 

potential shift. 
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Fig. S14 Linear sweep voltammetry curves (LSV) in the CO2 saturated 0.5 M KHCO3 

aqueous solution for pristine SnS2/CC, SnS2-xOx/CC, and SnO2/CC 
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Fig. S15 Plot of concentration with peak-area ratio of HCOOH/DSS. The standard curve showed 

good linear relation of peak-area ratio for HCOOH/DSS with HCOOH concentration (y= 

0.1485x, R2= 0.9996). 
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Fig. S16 Charging current density differences plotted against scan rates for pristine SnS2/CC, 

SnS2-xOx/CC 
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Fig. S17 CV curves of (a) pristine SnS2/CC and SnS2-xOx/CC with various scan rates 
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Fig. S18 Tafel plots of pristine SnS2/CC and SnS2-xOx/CC 
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Fig. S19 Nyquist plots of pristine SnS2/CC and SnS2-xOx/CC 
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Table S2 Structural parameters of SnS2-xOx/CC at the Sn K-edge extracted from quantitative 

EXAFS curve-fittings using the ARTEMIS module of IFEFFIT 

Sample Path CN R(Å) 
σ

2

(10
-3

Å
2

) 
ΔE

0
 (eV) 

OCV 
Sn-S 3.9 2.57 4.3 4.9 

Sn-O 2.5 2.03 4.5 -2.9 

-0.4 Sn-S 2.5 2.57 5.3 8.4 

Sn-O 3.6 2.05 3.07 2.5 

-0.9 Sn-S 2.5 2.58 7.8 9.3 

Sn-O 4.2 2.05 4.1 5.3 

After reaction Sn-S 2.5 2.58 7.5 9.6 

Sn-O 3.6 2.05 3.0 2.7 
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Fig. S20 (a) Least-squares curve-fitting analysis of operando EXAFS spectra at the Sn K-edge (b) 

Corresponding Re(k2χ(k)) oscillations 
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Fig. S21 XRD patterns of SnS2-xOx/CC before and after reaction 
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Fig. S22 Optimized adsorption configurations of HCOO* intermediates on the surface of the 

pristine SnS2 slab (a) and SnS2-xOx slab (b) 
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Fig. S23 Electron density difference plot of the HCOO* intermediate adsorption structure for 

pristine SnS2 slab (a) and SnS2-xOx slab (b). Yellow contours indicate electron accumulation and 

light green contours denote electron deletion. 
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