Supporting Information for

Reversible Zn²⁺ Insertion in Tungsten Ion Activated Titanium

Dioxide Nanocrystals for Electrochromic Windows

Yi Liang¹, Sheng Cao^{1, *}, Qilin Wei¹, Ruosheng Zeng¹, Jialong Zhao¹, Haizeng Li^{2, *}, William W. Yu³, and Bingsuo Zou^{1, *}

¹MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China

²Institute of Frontier & Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China

³Department of Chemistry and Physics, Louisiana State University, Shreveport, LA 71115, US

*Corresponding authors. E-mail: <u>caosheng@gxu.edu.cn</u> (S. C.); <u>haizeng@sdu.edu.cn</u> (H. L.); <u>zoubs@gxu.edu.cn</u> (B. Z)

Supplementary Tables and Figures

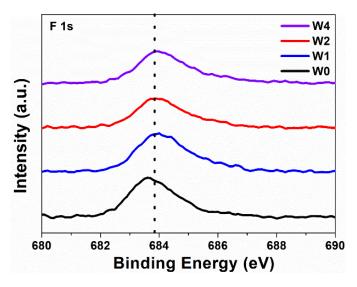
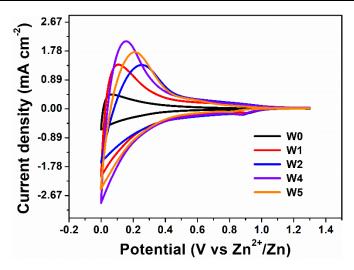



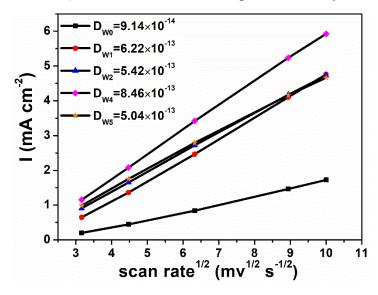
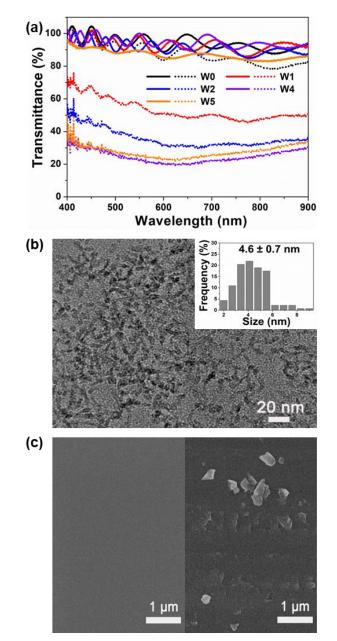
Fig. S1 F 1s peaks of W-doped TiO2 NCs with different doping level

As shown in Fig. S1, the F 1s XPS peaks of the doped TiO_2 NCs are all centered around 683.8 eV, which are attributed to the F-Ti bonds on the surface of the W-doped TiO_2 NC surface [S1, S2]. As there is no peak among the binding energy region between 688 and 689 eV, which indicates that the oxygen anion is not replaced by F anion in the lattice of TiO_2 [S3, S4].

Sample	W atom %		Ti ato	Ti atom %		O atom %	
	EDS	XPS	EDS	XPS	EDS	XPS	
W0	0	0	33.7	35.56	66.3	64.44	
W1	1.09	3.74	29.46	32.60	69.45	63.66	
W2	2.38	4.70	26.71	30.50	70.91	64.80	
W4	4.11	6.13	25.54	27.33	70.35	66.54	

 Table S1 Chemical compositions of W-doped TiO2 NCs with different W contents tested by EDS and XPS

Fig. S2 Voltammograms of doped TiO₂ NC films with W nominal doing level of 0% (W0), 5% (W1), 10% (W2), 20% (W4) and 25% (W5). The scan rate is 20 mV s⁻¹ in the 0-1.3 V (vs. Zn^{2+}/Zn) window in 1 M ZnSO₄ aqueous electrolyte.

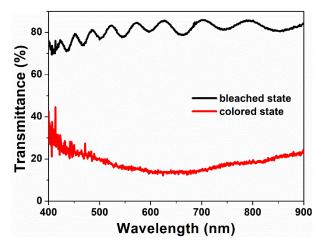

Fig. S3 Plot of I_P versus $v^{1/2}$ for the calculation of the effective diffusion coefficient Zn^{2+} in the electrochromic host

Figure S3 shows the relationship between peak current and scan rate of doped TiO₂ NC film with different W contents. The diffusion coefficients of Zn^{2+} in films thus can be calculated by Randles-Sevcik's equation [S5]. Accordingly, the diffusion coefficients of Zn^{2+} in W0, W1, W2, W4, and W5 are 9.14×10⁻¹⁴, 6.22×10⁻¹⁴, 5.42×10⁻¹⁴, 8.46×10⁻¹⁴, and 5.04×10⁻¹⁴ cm² s⁻¹, respectively. Compared with undoped TiO₂ NCs, the diffusion coefficient of Zn^{2+} in W doped TiO₂ NCs is higher, which indicates that W doping in TiO₂ NCs can activate the kinetics of Zn^{2+} based electrochromic.

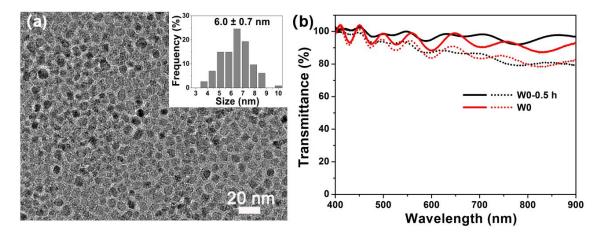


Fig. S4 (a) Optical transmittance spectra of doped TiO_2 NC films with W nominal doing level of 0% (W0), 5% (W1), 10% (W2), 20% (W4), and 25% (W5) at fully colored (dot lines) and bleached (solid lines) states. (b) TEM images of the W5 NCs. (c) SEM images of W4 (left) and W5 (right) NC film

Figure S4a shows that the transmittance modulation rates of W0, W1, W2, W4, and W5 films at 550 nm are 5%, 41.6%, 54.6%, 77.6%, and 64.6%, respectively. These results indicate that a moderate W doping level can significantly improve the Zn^{2+} active electrochromic properties of TiO₂ NCs, and the W4 film has the largest electrochromic modulation range due to its high Zn^{2+} electrochemical activity. The optical properties of W5 are worse than that of W4, which may be attributed to the decrease of grain width and increase of grain length in W5 NCs (Fig. S4b). Such a high aspect ratio makes the W5 NCs easier to be secondarily crystallized during the post-heat-treatment, and thus resulting in large particle size and non-uniformity size distribution in the W5 film (Fig. S4c) [S6-S8]. The presence of large particles may lead to the light scattering phenomenon, and thus resulting in a lower bleached transmittance of W5 film.

Fig. S5 Optical transmittance spectra of W4 film at bleached state and colored state where the electrolyte was selected as a baseline

Fig. S6 (a) TEM image and size distribution (insert) of W0-0.5h NCs. (b) Optical transmittance spectra of W0 and W0-0.5h NC films at fully colored (dot lines) and bleached (solid lines) states in 1M ZnSO₄ electrolyte

To reveal the effect of size on the electrochromic properties of NC films, we shorten the growth time of TiO_2 NCs to 30 minutes, and the as-obtained samples are expressed as W0-0.5h. The morphology of W0-0.5h NCs is shown in Fig. S6a. It is found that the

sample is pseudospherical, with the diameter distribution of 6 ± 0.7 nm. The electrochromic properties of W0-0.5h NC films were measured and as shown in Fig. S6b. The transmittance modulation range at 550 nm is 6%, which is similar to that of W0 NC film with 5%. This indicates that the size of NCs has limited effect on the Zn²⁺ electrochromic properties in our case.

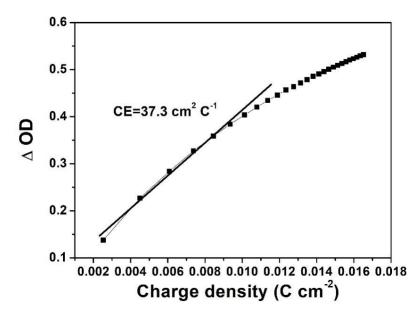
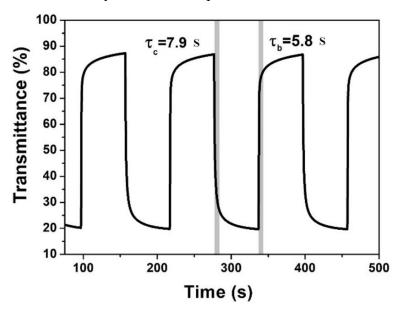



Fig. S7 Coloration efficiency of a W4 W-doped TiO₂ NCs at 550 nm

Fig. S8 Real-time transmittance changes of a W4 W-doped TiO₂ NC film at 633 nm in the 0-1.3 V window

	-1	response time	optical	Refs.
material	electrolyte	(s)	modulation (%)	
Ti anhatitata datan astar			76	[S9]
Ti-substituted tungsten	1 M	τ _c :14	(at 632.8 nm)	
molybdenum oxide nanowire	ZnSO ₄	(at 632.8 nm)	69	
bundles			(at 550 nm)	
			82	[S10]
WO nononatiolog	1 M	τ_b/τ_c :6.6/6.9	(at 632.8 nm)	
WO ₃ nanoparticles	ZnSO ₄	(at 632.8 nm)	73	
			(at 550 nm)	
a	1 M	$\tau_b/\tau_c:25/12.6$		[S11]
Sodium vanadium oxide nanorods	ZnSO ₄	(at 632.8 nm)		
			81	[S5]
	1 M	$\tau_{\rm b}/\tau_{\rm c}:3/2$	(633 nm)	
WO ₃ nanorods	ZnSO ₄	(at 550 nm)	72	
		× , ,	(550 nm)	
				This
		$\tau_b/\tau_c{:}2.2/10.4$	74.6	work
W-doped TiO ₂ NCs	1 M	(at 550 nm)	(at 550 nm)	
	ZnSO ₄		77	
		$\tau_{\rm b}/\tau_{\rm c}$:5.8/7.9	77	
		(at 633 nm)	(at 633 nm)	

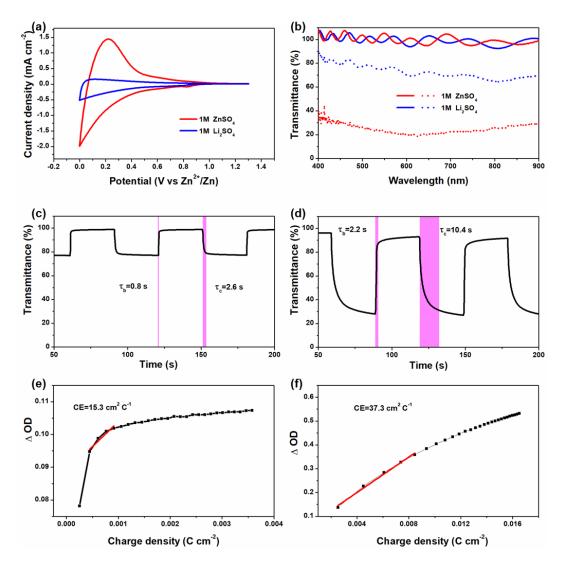

Table S2 Performance comparison of Zn^{2+} -based electrochromic films

Table S3 Typical electrochromic properties of TiO_2 reported in literatures

material	electrolyte	optical modulation (%)	response time (s)	cycle stability	CE (cm ² C ⁻¹)	Ref.
Nb-doped TiO ₂ NCs	1 M LiClO ₄	72 (at 550 nm)	τ _b /τ _c : 105/10 (at 550 nm)	200 cycles		[S12]
				1.3%		[S1]
Ta-doped	0.5 M	86.3	$\tau_b/\tau_c: 6.9/66.8$	decayed	33.2	
TiO ₂ NCs	Li-TFSI	(at 550 nm)	(at 550 nm)	after 2000	33.2	
				cycles		
				1.1%		[S2]
TiO _{2-x} NCs	1 M	95.4	$\tau_b/\tau_c: 9.6/35.1$	decayed	38.2	
110 _{2-x} 1105	LiClO ₄	(at 633 nm)	(at 633 nm)	after 2000	30.2	
				cycles		
				0.2%		[S13]
Ta-doped	1 M	89.1	$\tau_b/\tau_c:9.5/52.6$	decayed	29.7	
TiO ₂ NCs	LiClO ₄	(at 550 nm)	(at 550 nm)	after 2000	27.1	
				cycles		

WO ₃ /TiO ₂	0.1 M	82	τ_b/τ_c : ~1/~1			[S14]
nanotubes	HClO ₄	(at 600 nm)	(at 600 nm)			
WO3 nanoplates/ TiO2 NCs	1 M LiClO4	78* (at 600 nm)	$\tau_{\rm b}/\tau_{\rm c}$:6/6 (at 600 nm)	—	128.3	[S15]
W-doped TiO ₂ NCs	1 M ZnSO ₄	66 (at 550 nm)	τ _b /τ _c :2.7/9 (at 550 nm)	8.7% decayed after 1000 cycles	37.3	This work

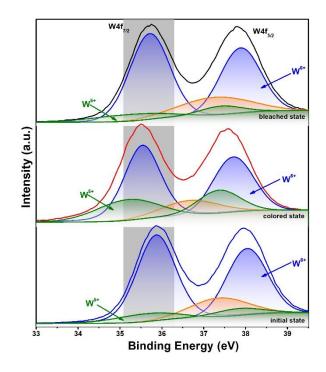
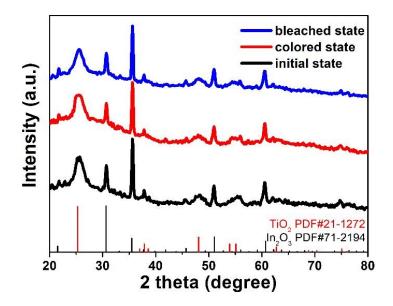
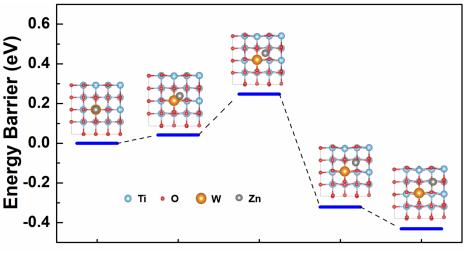

* This data is the test value of reflectivity.

Fig. S9 Electrochromic properties of W4 films in 1 M Li₂SO₄ and ZnSO₄ electrolyte. (a) Voltammetric cycles at 20 mV s⁻¹ in the 0-1.3V window. (b) Optical transmittance spectra of W4 NC films at fully colored (dot lines) and bleached (solid lines) states. (c) In-situ optical transmittance of W4 NC film at 550 nm in potential steps of the 0-1.3V window in Li₂SO₄ electrolyte. (d) In-situ optical transmittance of W4 NC film at 550 nm in potential steps of the 0-1.3V window in ZnSO₄ electrolyte. (e) Coloration

efficiency of a W4 film at 550 nm in Li_2SO_4 electrolyte. (f) Coloration efficiency of a W4 film at 550 nm in ZnSO₄ electrolyte.


Compared to the electrochromic performance achieved via using the ZnSO₄ electrolyte, the W4 electrode shows inferior electrochromic performance in the Li₂SO₄ electrolyte (Fig. S9a, b). As shown in Fig. S9a, the optical contrast tested in the Li₂SO₄ electrolyte is 408% lower than that tested in the ZnSO₄ electrolyte. Figure S9c-f that the response times and coloration efficiency of the W4 film in the electrolyte of Li₂SO₄ and ZnSO₄. The switching times of W4 film attained in Li₂SO₄ electrolyte are better than that tested in ZnSO₄ electrolyte, which is attributed to the fact that Li-ions are not effectively embedded into the lattice of TiO₂ in the same voltage window of 0-1.3V. In other words, the larger optical contrast will take longer switching times at the same switching speed and the W4 films have a larger optical contrast in a ZnSO₄ electrolyte is lower than that tested in ZnSO₄ electrolyte, which further confirms that Zn²⁺ is more electrochemically active to W4 films than Li⁺. The above results further confirm the significance of developing Zn²⁺-active electrochromic materials.


Fig. S10 Ex-situ high resolution XPS spectrum of W4f in the W-doped $TiO_2 NC$ film at the initial, colored (0 V) and bleached (1.3 V) states

It is reported that the peak Ti 3p overlaps with the peak W4f, the Ti 3p peak was thus separated when we fitted the XPS spectrum of W [S16]. Figure S10 shows that the W4f_{7/2} peak at initial state can be divided into two peaks, corresponding to W⁶⁺ 4f_{7/2} and W⁵⁺ 4f_{5/2} at 35.9 and 35.6 eV, respectively [S17]. The calculated area ratio of W⁵⁺ to W⁶⁺ is 1/7, which is consistent with the fact that the TiO₂ matrix remains electrically neutral after W replaced Ti [S18]. The XPS peak of W shifts to a low angle in the colored state, which may be due to the change of the coordination environment of W

with Zn and O atoms due to the insertion of Zn^{2+} ions [S10]. Due to the reduction of W^{6+} to W^{5+} in the process of Zn^{2+} ions intercalation, the area ratio of W^{5+} to W^{6+} is increased to 3/7. At the fully bleached state at 1.3 V, the W4f spectra almost return to the initial state after the deintercalation of Zn^{2+} . The reduction ratio of W^{6+} is much lower than that of T^{4+} , which indicates that W mainly plays the activate Zn^{2+} based electrochromic role in the doped TiO₂ system.

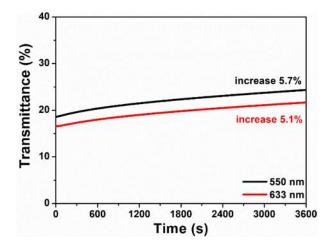
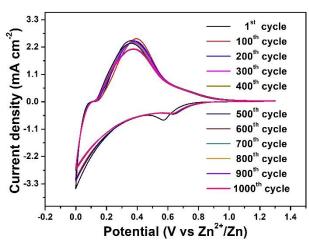


Fig. S11 Ex-situ XRD of W4 film during the Zn^{2+} active electrochromic process in the initial, colored (0 V) and bleached (1.3 V) states. In order to obtain strong XRD diffraction signal of NC film, ITO glass with weak XRD diffraction intensity was selected as the substrate for testing.



Relative diffusion coordinate

Fig. S12 The diffusion energy curves of isolated Zn^{2+} from one stable position to a neighboring one in the doped TiO₂ with W content of 2.1%

Fig. S13 Transmittance changes at 550 and 633 nm under the open-circuit condition after the W4 device was biased at 0 V for 30 s

Fig. S14 Voltammograms of the electrochromic device at 20 mV s⁻¹ in the 0-1.3 V window at 1st, 100th, up to 1000th cycles

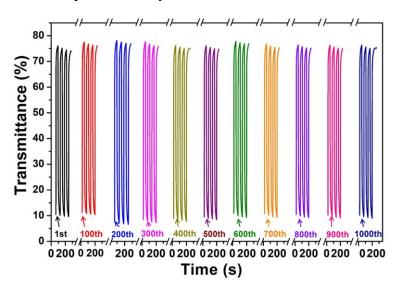


Fig. S15 Real-time transmission spectrum of the device during the cycling process

Cycles	$\tau_{c}(s)$	$\tau_{b}(s)$
1st	9	2.7
100th	8.6	4.7
200th	9.7	4.7
300th	9.2	4
400th	10.8	4
500th	10.4	4.6
600th	11.4	5.1
700th	10.8	4.1
800th	9.3	3.6
900th	9.7	3.2
1000th	10.3	3.9

Table S4 Coloration and bleaching time of the device for 1st, 100th, 200th, up to 1000th cycle

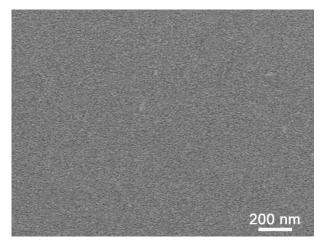


Fig. S16 SEM image of W4 NC film disassembled from device after 1000 cycles

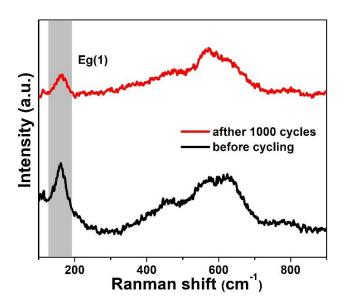


Fig. S17 Raman spectra of the W4 electrochromic device before and after 1000 cycles

year	material	electrolyte	response time (s)	optical modulation (%)	cycle stability (transmittance reduction)	Refs.
2019	Ti-substituted tungsten molybdenum oxide nanowire bundles	1 M ZnSO4		62 (at 633 nm)	31% decayed after 100 cycles	[\$9]
2019	WO ₃ nanoparticles	1 M ZnSO ₄ - AlCl ₃	τ _b /τ _c :5.7/10.3 (at 633 nm)	77 (at 633 nm)	43% decayed after 200 cycles	[S10]
2019	V ₃ O ₇ nanoparticles	1 M ZnSO ₄	τ _b /τ _c :10.4/28.6 (at 633 nm)	21 (at 633 nm)		[S19]
2020	WO _{3-x} nanocrystals	1 M ZnSO ₄	$\tau_{\rm b}/\tau_{\rm c}$:4.5/3.7 (at 633 nm)	76 (at 633 nm)		[S20]
2020	sodium vanadium oxide nanorods	1 M ZnSO ₄	$\tau_{\rm b}/\tau_{\rm c}$:23.2/34.8 (at 633 nm)	21 (at 633 nm)	38% decayed after 1000 cycles	[S 11]
2020	WO3 nanorods	1 M ZnSO ₄	τ_{b}/τ_{c} :7.4/7.2 (at 550 nm) τ_{b}/τ_{c} :4.7/12 (at 633 nm)	66 (at 550 nm) 75 (at 633 nm)	33% decayed after 500 cycles	[85]
2021	W-doped TiO ₂ nanocrystals	1 M ZnSO ₄	τ _b /τ _c :2.7/9 (at 550 nm)	66 (at 550 nm)	8.7% decayed after 1000 cycles	This work

Table S5 Performance comparison of Zn^{2+} -based electrochromic device

Supplementary References

- S. Cao, S. Zhang, T. Zhang, J.Y. Lee, Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO₂ nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. **30**, 4838-4846 (2018). https://doi.org/10.1021/acs.chemmater.8b02196
- [2] S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO_{2-x} nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. **32**, e2004686 (2020). <u>https://doi.org/10.1002/adma.202004686</u>
- [3] T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber et al., Nonaqueous synthesis of TiO₂ nanocrystals using TiF₄ to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751-6761 (2012). <u>https://doi.org/10.1021/ja300823a</u>
- [4] X. Wu, Z. Chen, G.Q.M. Lu, L. Wang, Nanosized anatase TiO₂ single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of

dye-sensitized solar cells. Adv. Funct. Mater. **21**, 4167-4172 (2011). https://doi.org/10.1002/adfm.201100828

- Q. Huang, S. Cao, Y. Liu, Y. Liang, J. Guo et al., Boosting the Zn²⁺-based electrochromic properties of tungsten oxide through morphology control. Sol. Energy Mater. Sol. Cells 220, 110853 (2021). https://doi.org/10.1016/j.solmat.2020.110853
- [6] R. Marder, R. Chaim, C. Estournès, Grain growth stagnation in fully dense nanocrystalline Y₂O₃ by spark plasma sintering. Mater. Sci. Eng. A 527, 1577-1585 (2010). <u>https://doi.org/10.1016/j.msea.2009.11.009</u>
- J. Wallot, P. Reynders, A.A. Herzing, C.J. Kiely, M.P. Harmer et al., Sintering of thin film nanocrystalline titania–tin oxide composites. J. Eur. Ceram. Soc. 28, 2225-2232 (2008). <u>https://doi.org/10.1016/j.jeurceramsoc.2008.02.019</u>
- [8] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. Int. J. Refract. Met. Hard Mater. 27, 288-299 (2009). <u>https://doi.org/10.1016/j.ijrmhm.2008.07.011</u>
- [9] H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn²⁺ ion intercalation cathodes. Adv. Mater. **31**, e1807065 (2019). <u>https://doi.org/10.1002/adma.201807065</u>
- [10] H. Li, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous hybrid Zn²⁺/Al³⁺ electrochromic batteries. Joule 3, 2268-2278 (2019). <u>https://doi.org/10.1016/j.joule.2019.06.021</u>
- [11] W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). <u>https://doi.org/10.1038/s41377-020-00366-9</u>
- [12] M. Barawi, L. De Trizio, R. Giannuzzi, G. Veramonti, L. Manna, M. Manca, Dual band electrochromic devices based on Nb-doped TiO₂ nanocrystalline electrodes. ACS Nano **11**, 3576-3584 (2017). <u>https://doi.org/10.1021/acsnano.6b06664</u>
- [13] S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dualband smart window with internal energy storage. Joule 3, 1152-1162 (2019). <u>https://doi.org/10.1016/j.joule.2018.12.010</u>
- K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, Composite WO₃/TiO₂ nanostructures for high electrochromic activity. ACS Appl. Mater. Interfaces 7, 2202-2213 (2015). <u>https://doi.org/10.1021/am5050696</u>
- [15] T. Dhandayuthapani, R. Sivakumar, D. Zheng, H. Xu, R. Ilangovan et al., WO₃/TiO₂ hierarchical nanostructures for electrochromic applications. Mater.

Sci. Semicond. Proc. **123**(2021) 105515. https://doi.org/10.1016/j.mssp.2020.105515

- [16] X. Zhang, F. Liu, Q.-L. Huang, G. Zhou, Z.-S. Wang, Dye-sensitized W-doped TiO₂ solar cells with a tunable conduction band and suppressed charge recombination. J. Phys. Chem. C **115**, 12665-12671 (2011). <u>https://doi.org/10.1021/jp201853c</u>
- [17] J. Guo, X. Guo, H. Sun, Y. Xie, X. Diao et al., Unprecedented electrochromic stability of a-WO_{3-x} thin films achieved by using a hybrid-cationic electrolyte. ACS Appl. Mater. Interfaces 13, 11067-11077 (2021). https://doi.org/10.1021/acsami.0c22921
- [18] D.-M. Chen, G. Xu, L. Miao, L.-H. Chen, S. Nakao et al., W-doped anatase TiO₂ transparent conductive oxide films: theory and experiment. J. Appl. Phys. 107, 063707 (2010). <u>https://doi.org/10.1063/1.3326940</u>
- [19] W. Zhang, H. Li, M. Al-Hussein, A.Y. Elezzabi, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanoparticles. Adv. Opt. Mater. 8 1901224 (2019). https://doi.org/10.1002/adom.201901224
- [20] L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink, Adv. Energy Mater. 10, 2000142 (2020). <u>https://doi.org/10.1002/aenm.202000142</u>