Supporting Information for

Nano/Micro-Confined Water in Graphene Hydrogel as Superadsorbents for Water Purification

Yiran Sun¹, Fei Yu²*, Cong Li³, Xiaohu Dai^{1, 5}, Jie Ma^{1, 4, 5, *}

¹State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China

²College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, People's Republic of China

³Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA

⁴Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China

⁵Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China

S1 Materials and Chemicals

All chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) in analytical purity and used without further purification. All solutions were prepared using deionized water.

The adsorption capacity of CIP (Qe, mg g⁻¹) was calculated as Eq. S1:

$$\boldsymbol{Q}_{\boldsymbol{e}} = \frac{(\boldsymbol{C}_0 - \boldsymbol{C}_{\boldsymbol{e}})\boldsymbol{V}}{\boldsymbol{m}} \tag{S1}$$

Where C_0 represents the initial CIP concentration (mg L⁻¹), Ce represents the equilibrium CIP concentration (mg L⁻¹), V represents the solution volume (L), and m represents the weight of the adsorbent (g).

S2 Langmuir Model

The form of the Langmuir isotherm can be represented by Eq. S2:

$$q_e = q_m \frac{K_L C_e}{1 + K_L C_e} \tag{S2}$$

where q_e is the adsorption capacity of contaminate (mg g⁻¹), C_e denotes the equilibrium concentration of contaminate in solution (mg L⁻¹); K_L represents the Langmuir constant (L mg⁻¹) that relates to the affinity of binding sites, and q_m is a theoretical limit of adsorption capacity when the monolayer surface is fully covered with contaminate molecules to assist in the comparison of adsorption performance (mg g⁻¹). Furthermore, the effect of the isotherm shape was studied to understand whether an adsorption system is favorable or not. Another important parameter, R_L, called the separation factor or equilibrium parameter, which can be used to determine the feasibility of adsorption in a given concentration range over adsorbent, was also evaluated from the relation:

$$R_{L} = \frac{1}{1 + K_{L}C_{0}}$$
(S3)

where K_L is the Langmuir adsorption constant (l/mg) and C_0 is the initial contaminate concentration. Ho and McKay established that (1) $0 < R_L < 1$ for favorable adsorption; (2) $R_L>1$ for unfavorable adsorption; (3) $R_L=1$ for linear adsorption; and (4) $R_L=0$ for irreversible adsorption.

S3 Freundlich Model

The Freundlich isotherm model has the following form:

$$q_e = K_F C_e^{1/n} \tag{S4}$$

where q_e is the adsorption capacity of contaminate (mg g⁻¹), C_e is the equilibrium concentration of contaminate in solution (mg L⁻¹); K_F and n are the Freundlich constants, which represent the adsorption capacity and the adsorption strength, respectively. The magnitude of 1/n quantifies the favorability of adsorption and the degree of heterogeneity of the adsorbent surface.

S4 Supplementary Tables and Figures

Abbreviation	Definition	Description				
GH-1.5	GH that prepared at pH=1.5	The GO dispersion is pH=1.5, other procedure is				
011-1.5	On that prepared at pri-1.5	presented in "2.1 Preparation of GH"				
GH-3.5	GH that prepared at pH=3.5	The GO dispersion is pH=3.5, other procedure is				
GH-5.5	On that prepared at pri-5.5	presented in "2.1 Preparation of GH"				
GH-5.5	GH that prepared at pH=5.5	The GO dispersion is pH=5.5, other procedure is				
011-5.5	On that prepared at pri=5.5	presented in "2.1 Preparation of GH"				
GH-8.5	GH that prepared at pH=8.5	The GO dispersion is pH=8.5, other procedure is				
011 0.5	Off that propared at pri=0.5	presented in "2.1 Preparation of GH"				
GH-12	GH that prepared at pH=12	The GO dispersion is pH=12, other procedure is				
		presented in "2.1 Preparation of GH"				
GA-1.5	GA that prepared at pH=1.5	The freeze-drying product of GH-1.5				
GA-3.5	GA that prepared at pH=3.5	The freeze-drying product of GH-3.5				
GA-5.5	GA that prepared at pH=5.5	The freeze-drying product of GH-5.5				
GA-8.5	GA that prepared at pH=8.5	The freeze-drying product of GH-8.5				
GA-12	GA that prepared at pH=12	The freeze-drying product of GH-12				
V _{micro}	Pore volume of micropores	Calculated according to the HK model				
V _{meso}	Pore volume of mesopores	Calculated according to the BJH and HK model				
V_{macro}	Pore Volume volume of macropores	Calculated according to the BJH and HK model				
SSA _{micro}	SSA of micropores	Calculated according to the SSA and BJH model				
SSA _{meso}	SSA of mesopores	Calculated according to the SSA and BJH model				
SSA _{macro}	SSA of macropores	Calculated according to the SSA and BJH model				
M_{GH}	Mass of a GH sample	The mean value of 10 GH samples				
M_{GA}	Mass of a GA sample	The mean value of 10 GA samples				
M _c	Mass of confined water in a GH sample	(M _{GH} - M _{GA}) * (I ₃ +I ₄)				
	Mass of bulk water in a GH	(M _{GH} - M _{GA}) * (I ₁ +I ₂)				
M_b	sample	(1110A) (1112)				
	Total SSA normalized per	SSA * M _{GA}				
SSA_M	GH sample					
	SSA of micropores	$SSA_{micro} * M_{GA}$				
SSA _{Mmicro}	normalized per GH sample					
	SSA of mesopores	SSA _{meso} * M _{GA}				
SSA _{Mmeso}	normalized per GH sample					
	SSA of macropores	SSA _{macro} * M _{GA}				
SSA _{Mmacro}	normalized per GH sample					
	Adsorption capacity	Qe* M_{GA} / (percentage content of hydroxy and				
	normalized by content of					
Q/OFG	oxygen-containing					
	functional groups per GH					
	sample					

Table S1 Abbreviations that appear in this manuscript and their meanings

Samples	SSA	SSA _{micro}	SSA _{meso}	SSA _{macro}	Mean D	V _{micro}	V _{meso}	V _{macro}	V
GA-1.5	197.15	38.580	149.89	8.68	10.035	0.078	0.240	0.229	0.495
GA-3.5	131.55	74.05	53.20	4.31	7.837	0.055	0.111	0.111	0.258
GA-5.5	245.55	91.370	152.22	1.96	4.371	0.099	0.174	0.047	0.268
GA-8.5	311.96	127.26	183.03	1.68	4.076	0.129	0.215	0.036	0.318
GA-12	315.66	142.74	171.97	0.96	3.520	0.131	0.186	0.019	0.278

Table S2 BET surface area and related data for GA samples

Table S3 Langmuir and Freundlich model parameters for CIP adsorption isotherms on the GH samples

Adsorbent	Langmuir		Freundli	Freundlich		
Ausorbein	KL (L mg ⁻¹)	Qm (mg g ⁻¹)	\mathbf{R}_2	KF	n	R_2
GH-1.5	0.0062	243.04	0.981	6.56	1.76	0.944
GH-3.5	0.0036	396.16	0.991	4.46	1.487	0.975
GH-5.5	0.0046	367.19	0.995	6.54	1.62	0.986
GH-8.5	0.0042	414.37	0.996	6.20	1.56	0.979
GH-12	0.0043	442.91	0.996	6.81	1.57	0.977

Samples	M _c	$M_{O\%}$	M_b	SSA _M	SSA _{Mmicro}	SSA _{Mmeso}	SSA _{Mmacro}
GH-1.5	0.287	0.001	0.294	1.468	0.287	1.116	0.065
GH-3.5	0.306	0.001	0.348	1.050	0.591	0.425	0.034
GH-5.5	0.315	0.001	0.497	1.883	0.701	1.167	0.015
GH-8.5	0.328	0.002	0.412	2.244	0.915	1.316	0.012
GH-12	0.409	0.003	0.325	2.589	1.171	1.410	0.008

Table S5 The regression statistics of the relationship between Q/OFG and mass of confined water and bulk water

Parameter	Value
Multiple R	0.992
R Square	0.985
Adjusted R Square	0.970
Standard Error	0.372
Observed Value	5

Table S6 Variance analysis of the relationship between Q/OFG and mass of confined water and bulk water

	df	SS	MS	F	Significance F
Regression analysis	2	17.883	8.941	64.780	0.015
Residual error	2	0.276	0.138		
Total	4	18.159			

	Coefficients	Standard error	t Stat	P-value
Intercept	-9.455	1.660	-5.695	0.029
M_b	0.002	0.002	0.945	0.444
Mc	0.045	0.004	11.376	0.008

Table S7 The regression parameters of the relationship between Q/OFG and mass of confined water and bulk water

Fig. S1 500g weight supported by 3 graphene hydrogels

Fig. S2 FT-IR spectra of a GO and GA-12 and b GA

Fig. S3 a AFM image of GH-12 and b corresponding height profile \$55/\$7

Fig. S4 Residual solutions after self-assembly process at different dispersion pH values

Fig. S5 a-e Contact angle of GA samples

Fig. S6 Adsorption capacity of GH samples for CIP under different contact times

Fig. S7 The linear fitting results for a SSA_M (SSA of one GH sample), b SSAMmacro (SSA of the macropores in one GH sample), c SSAMmeso (SSA of the mesopores in one GH sample)

Fig. S8 The adsorption capacity of four porous adsorbents with (wet) and without (dry) confined water. The four adsorbents are Beta (SiO₂/Al₂O₃, pore diameter: 0.55-0.7nm), MOF (pore diameter: 0.8 nm), Activated Carbon (pore diameter: 2.0-2.2nm), and CMK-13 (mesoporous carbon, pore diameter: 3.8-4.0nm)