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S1 Experimental Section 

S1.1 Chemicals 

Sodium molybdate(VI) dihydrate (Na2MoO4·2H2O), alpha, alpha'-Dibromo-p-xylene (97 wt%), 

paraformaldehyde (96 wt%), potassium hydroxide (KOH, ≥85.0 wt%), sulfuric acid (95.0～
98.0%), hydrochloric acid (36.0~38.0 wt%) and ethanol (≥ 99.7 wt%) were purchased from 

Sinopharm Chemical Reagent Co. Ltd. Hydrogen bromide (33 wt% in acetic acid) and 

commercial molybdenum phosphide (99.5%) were purchased from Aladdin. Carbon rod was 

purchased from Shandong Haike Chemical Group Co., Nafion solution (5 wt% in a mixture of 

lower aliphatic alcohols and water) and platinum on carbon (Pt/C, 10 wt%) were purchased 

from Sigma-Aldrich Co. LLC. All reagents were used without further purification. 

S1.2 Material Synthesis 

S1.2.1 Synthesis of p-xylylenediphosphonic acid (H4xdp) [S1]:  

The ligand was synthesized by reacting alpha, alpha'-Dibromo-p-xylene with triethyl phosphite 

and followed by refluxing the obtained oil with conc. hydrochloric acid according to the 

literature method. Block colorless crystals were obtained from the water solution by slow 

evaporation. 

S1.2.2 Synthesis of [(MoO2)2(xdp)(H2O)2]·2H2O [S1] 

Mo-MOF precursor was prepared according to previous work [S1]. In a typical procedure, 

Na2MoO4·2H2O (0.240 g, 1.0 mmol) was stirred together with p-xylylenediphosphonic acid 

(H4xdp) (0.140 g, 0.5 mmol) in 16ml deionised water. The pH of the solution was adjusted to 

pH 1 by dropwise addition of conc. hydrochloric acid. The acidified solution was then placed 

in a 25 cm3 Ace pressure tube and heated at 120 °C for 15 h. The resultant white crystalline 

material was thoroughly washed with deionised water several times and dried at 80 °C for 12 h 

under vacuum. 
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S1.2.3 Preparation of MoP@PC Nanowires  

In a typical procedure, 500 mg Mo-MOF precursor was placed in a porcelain boat. Then, the 

boat was heated at 900 °C under a constant flow of N2 at 30 mL min−1 for 120 min with the 

warming rate of 20 °C min-1. The final black powder was collected when the temperature 

dropped to room temperature under N2.  

S1.3 Electrochemical Activation  

The in-situ electrochemical activation was carried out in 0.5 M H2SO4 under a N2 atmosphere 

to avoid possible oxidation caused by O2 in air. This was conducted by using the three-electrode 

system of CHI 760E electrochemical workstation (CH Instruments, Inc., Shanghai). MoP@PC 

was used as the working electrode, carbon rod was used as the counter electrode, Ag/AgCl 

(saturated KCl-filled) was used as the reference electrode. The electrochemical activation was 

performed by cycle voltammetry (CV) from -0.2 to 0.2 V vs RHE in 0.5M H2SO4, portion of 

the activation is shown in Fig. S7. 

S1.4 Characterization 

The crystal structure of sample was characterized by powder X-ray diffraction (XRD) 

(PANalytical Inc.) using Cu Kα irradiation operating at 45 KV and 40 mA with a fixed slit. 

Morphology of sample was observed by a JEOL JSM-7500F (Japan) Field Emission Scanning 

Electron Microscopy (FESEM). TEM (HRTEM) images were measured using a JEOL 

JEM2100F (Japan)Transmission Electron Microscope for investigating the information on 

lattice and fringe. Nitrogen sorption isotherms were measured at 77 K using an Autosorb 

volumetric gas sorption analyzer (Quantachrome, USA). TGA was conducted on a thermal 

analyzer (Mettler Toledo TGA/SDTA85, Canada) from room temperature to 1000 °C in N2 

atmosphere. X-ray photoelectron spectroscopy (XPS) analyses were performed with a Thermo 

ESCALAB 250 (USA) spectrometer using an Al Kα (1486.6 eV) photon source. Raman 

spectrum was recorded using JY HR800 under ambient conditions. The X-ray absorption near 

edge structure (XANES) measurement was performed at Singapore Synchrotron Light Source, 

facility for catalysis research (XAFCA) beamline. 

Electrochemical measurements were performed at room temperature, catalyst ink was typically 

made by dispersing 20 mg of catalyst in 2 mL ethanol. After adding 0.5 mL of 0.05 wt% of 

Nafion solution (Gashub, Singapore) and ultrasonication, an aliquot of 5 µL was pipetted onto 

the glassy carbon electrode (0.0706 cm2) to reach the catalyst loading of 0.56 mg cm−2. In a 

three-electrode configuration, Polarization curves were collected by CHI 760E electrochemical 

workstation at room temperature. Carbon rod as the counter electrode, Ag/AgCl and saturated 

calomel electrode (SCE) were used as the reference electrodes in acid and alkaline electrolyte, 

respectively. All the potentials shown were recorded with respect to the reversible hydrogen 

electrode (RHE) without IR correction. Current density was normalized to the geometrical area 

of the working electrode. Polarization data are collected at the scan rate of 5 mV s−1 on a rotation 

disk electrode under 2000 rpm. EISs were carried out in a potentiostatic mode in the frequency 

range of 106 to 1 Hz with the amplitude of 5 mV.  

S1.5 Electrochemically Active Surface Area 

The electrochemically capacitance measurements were conducted by cyclic voltammograms 

from 0.10 to 0.30 V with various scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mV s-1) as 

shown in Fig. S5. The capacitive currents were measured in a potential where no faradic 

processes were observed. According to the previous report [2], the specific capacitance, a flat 

standard with 1 cm2 of real surface area, is approximately 40 μF cm-2. Thus, the electrochemical 

active surface area can be calculated by following Eq. (S1): 

AECSA=
electrochemical capacitance

40 Μf cm-2 per cmECSA
2  

(S1) 
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 S1.6 Calculated Electrochemically Active Surface Area 

MoP@PC: 

MoP@PC =
0.9 mF cm-2

40 μF cm-2 per cmECSA
2 = 22.9 cm2 

A-MoP@PC: 

A-MoP@PC =
5.2 mF cm-2

40 μF cm-2 per cmECSA
2 = 148.7 cm2 

S1.7 DFT Calculations 

All calculations were performed using Vienna Ab-initio Simulation Package (VASP) of MedeA 

software, the generalized gradient approximation (GGA) of Perdew−Becke−Ernzerhof (PBE) 

is used for the exchange-correlation functional [S3-S5] The MoP@C240 model was built by 

encapsulating a MoP cluster with a graphitic carbon cage C240, which performed well in 

previous study [S6, S7]. In the construction of model MoP@C239P1, and C239P1, P atom was 

introduced by substituting C atom in the carbon cage. All structures were fully relaxed to the 

ground state and spin-polarization was considered in all calculations. The convergence of 

energy and forces were set to 1 × 10−4 eV and 0.01 eV Å-1, respectively. An energy cutoff of 

400 eV and a Gamma k-point sampling were found to get convergent geometry. For HER, the 

free energies of the intermediates were obtained by ΔG(H*) = ΔE(H*) + ΔZPE − TΔS, where 

ΔE(H*), ΔZPE and ΔS is the binding energy, zero-point energy change and entropy change of 

adsorption H, respectively. The ΔZPE and ΔS were obtained according to the method reported 

by Norskov [S8, S9].  

The adsorption energy (Eads) is given by  

Eads = Eadsorbed slab + adsorbate – (Eadsorbed slab + Eadsorbate) 

where Eadsorbed slab + adsorbate, Eadsorbed slab, and Eadsorbate correspond to the total energy of the 

optimized system, the adsorbed slab, and the isolated adsorbate molecule, respectively. 

S2 Supplementary Figures and Tables 

 

Fig. S1 XRD patterns of Mo-MOF 
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Fig. S2 TGA of Mo-MOF precursor in N2 atmosphere 

 

Fig. S3 N2 adsorption/desorption isotherm at 77 K of Mo-MOF 

 

Fig. S4 LSV curves of MoP calcined at 900-1100 ℃ in 0.5 M H2SO4 
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Fig. S5 a) N2 adsorption/desorption isotherm at 77 K and b) corresponding NLDFT pore 

diameter distribution of MoP@PC 

 

Fig. S6 XPS spectrum of MoP@PC and A-MoP@PC 

 

Fig. S7 CV curves of A-MoP@PC activation for different time 
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Fig. S8 Cyclic voltammograms of a) MoP@PC and b) A-MoP@PC after activation with 

various scan rates

 

Fig. S9 a) N2 adsorption/desorption isotherm at 77 K and b) corresponding NLDFT pore 

diameter distribution of A-MoP@PC 

 

Fig. S10 a) and b) SEM image of A-MoP@PC after the stability test 
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Fig. S11 a) TEM and b) HRTEM of A-MoP@PC after the stability test 

 

Fig. S12 High resolution XPS of a) Mo 3d, b) P 2p, c) C 1s and d) O 1s of A-MoP@PC after 

the stability test 

 

Fig. S13 HER polarization curves of MoP@PC activation for different time after addition of 5 

mM SCN- ions in 0.5 M H2SO4 
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Fig. S14 Chronoamperometric stability test of commericial MoP for HER in a) 0.5 M H2SO4 

and b) 1.0 M KOH 

 

 

Fig. S15 a-c Computational models of C. d-f Configurations of adsorbates of structures on C 

for HER 
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Fig. S16 a-c Computational models of PC. d-f Configurations of adsorbates of structures on 

PC for HER 

 

 

Fig. S17 a-c Computational models of A-MoP@C. d-f Configurations of adsorbates of 

structures on A-MoP@C for HER 
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Fig. S18 a-c Computational models of A-MoP@PC. d-f Configurations of adsorbates of 

structures on A-MoP@PC for HER 

 

 

Fig. S19 Tafel plots of MoP@PC, A-MoP@PC and Pt/C in 1.0 M KOH 
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Table S1 Comparison of HER activity for A-MoP@PC and recently reported noble metal-free 

hydrogen evolution catalysts 

Catalyst η10（mV） 
Tafel slope 

(mV dec-1) 
Electrolyte Refs. 

N@MoPCx 108 69.4 0.5 M H2SO4 [S2] 

MoS2-Me-10% 136 37 0.5 M H2SO4 [S10] 

WS2 137 54 0.5 M H2SO4 [S11] 

N-MoS2/CN 114 46.8 0.5 M H2SO4 [S12] 

Cu3P@NPPC 89 76 0.5 M H2SO4 [S13] 

meso-Fe-MoS2/CoMo2S4 122 90 1.0 M KOH [S14] 

O-CoP 98 59.9 1.0 M KOH [S15] 

Fe-N4 SAs/NPC 202 123 1.0 M KOH [S16] 

NiCoFe@C 260 105 1.0 M KOH [S17] 

Mn-doped NiS2/Ni foam 71 57 1.0 M KOH [S18] 

MoP@NCHSs 92 62 1.0 M KOH [S19] 

0.02Ni–MoP 
102 

162 

58.1 

102.6 

0.5 M H2SO4 

1.0 M KOH 
[S20] 

Fe3C-Co/NC 
298 

238 

100.3 

108.8 

0.5 M H2SO4 

1.0 M KOH 
[S21] 

CoP/NiCoP NTs 
125 

133 

71 

88 

0.5 M H2SO4 

1.0 M KOH 
[S22] 

np-η-MoC NSs 
122 

119 

53 

39 

0.5 M H2SO4 

1.0 M KOH 
[S23] 

MoP@NPSC 
71 

50 

75 

45 

0.5 M H2SO4 

1.0 M KOH 
[S24] 

Ti-MoP 93.6 44.5 0.5 M H2SO4 [S25] 

MoP/CDs 70 77.49 1.0 M KOH [S26] 

P-MoP/Mo2N 
89 

89 

53 

78 

0.5 M H2SO4 

1.0 M KOH 
[S27] 

N-MoP-800 
175 

125 

69 

69 

0.5 M H2SO4 

1.0 M KOH 
[S28] 

Ni2P/MoP-CC 
290 

78 

63 

64 

0.5 M H2SO4 

1.0 M KOH 
[S29] 

A-MoP@PC 
68 

67 

41 

40 

0.5 M H2SO4 

1.0 M KOH 
This work 
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