Nano-Micro Letters

Supporting Information for

Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI₂Br Solar Cells

Jie Xu¹, Jian Cui¹, Shaomin Yang¹, Yu Han¹, Xi Guo¹, Yuhang Che¹, Dongfang Xu¹, Chenyang Duan¹, Wenjing Zhao¹, Kunpeng Guo³, Wanli Ma⁴, Baomin Xu⁵, Jianxi Yao⁶, Zhike Liu^{1, *}, Shengzhong (Frank) Liu^{1, 2, *}

¹Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China

²iChEM, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China

³Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China

⁴Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China

⁵Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, P. R. China

⁶State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University, Beijing, 102206, P. R. China

*Corresponding authors. E-mail: <u>zhike2015@snnu.edu.cn</u> (Zhike Liu); <u>szliu@dicp.ac.cn</u> (Shengzhong (Frank) Liu)

Supplementary Figures and Tables

Fig. S1 Chemical formula of different imidazole-based ionic liquid

Fig. S2 3D reconstructed images of PbI₃⁻, I⁻, Br⁻, BF₄⁻, TiO₂⁻, SnO₂⁻ and N⁻ in CsPbI₂Br/BMMIMBF₄ perovskite film as obtained from the TOF-SIMS analysis

Nano-Micro Letters

Fig. S3 PL spectra of CsPbI₂Br film, CsPbI₂Br/BMMIMBF₄ film, CsPbI₂Br-Spiro film and CsPbI₂Br/BMMIMBF₄/Spiro film

Fig. S4 UPS spectra of (**a**, **b**) CsPbI₂Br film. **c**) Energy level diagrams for the CsPbI₂Br film. **d**) Cyclic voltammograms spectra for the BMMIMBF₄. (**e**) Schematic energy level alignment of CsPbI₂Br film and BMMIMBF₄

Nano-Micro Letters

Fig. S5 *J-V* curves of the FTO/TiO₂/Perovskite/Au and FTO/TiO₂/Perovskite(BMMIMBF₄)/Au devices

Fig. S6 ¹H NMR and ¹¹B NMR of BMMIMBF₄ solution with or without PbI₂ additive

Nano-Micro Letters

Fig. S7 ¹H NMR and ¹¹B NMR of BMMIMBF₄ solution with or without CsI additive

Fig. S8 (a) *J-V* curves of the CsPbI₂Br PSCs with different concentrations of IILs treatment. (b) XRD patterns, (c) UV-vis absorption spectra, (d) PL and (e) TRPL spectra of CsPbI₂Br perovskite films with different concentrations of BMMIMBF₄ treatment

Fig. S9 Box charts of (**a**) V_{oc} , (**b**) FF, (**c**) J_{sc} of the PSCs (50 samples) with BMMIMBF₄ treatment

Fig. S10 UV-vis absorption spectra of CsPbI₂Br film with different anion-based IILs treatment

Table S1 Fitting parameters of the TRPL spectra for the $CsPbI_2Br$ films with different cation-based IILs treatment

Samples	A ₁ (%)	$\tau_1(\mathrm{ns})$	$A_2(\%)$	τ_2 (ns)	τ_{ave} (ns)
Control	35.76	16.54	64.24	7.87	12.54
BMIMBF ₄	63.58	1.81	36.42	4.75	3.58
BMMIMBF ₄	28.52	5.05	71.48	2.16	3.56
PMIMBF ₄	49.57	7.06	50.43	2.64	5.84
HMIMBF ₄	56.78	3.60	43.22	7.69	6.13
HMMIMBF ₄	48.54	3.79	51.46	10.37	8.68

Table S2 FTIR wavenumber positions of different chemical bonds of BMMIMBF₄ with or without PbI_2 or CsI additive

Samples	C=C (cm ⁻¹)	C-N (cm ⁻¹)	C=N (cm ⁻¹)	B-F (cm ⁻¹)	C-H (cm ⁻¹)
BMMIMBF ₄	1539	1252	1466	1056	757
PbI ₂ +BMMIMBF ₄	1536	1240	1457	1025	747
CsI+BMMIMBF ₄	1538	1251	1467	1039	757

Table S3 NMR Relative chemical shift of BMMIMBF4 with or without PbI2 additive

Samples	Hb	H _c	He	H _d	Ha	H _f	H _g	H _h	F	B
	(pp	(pp	(pp	(pp	(pp	(pp	(pp	(pp	(pp	(pp
	m)	m)	m)	m)	m)	m)	m)	m)	m)	m)
BMMIMBF ₄	7.0	7.0	4.2	3.9	3.0	2.3	1.9	1.6	-138	-2.2
	7	4	5	6	3	1	9	9	.6	5
PbI ₂ +BMMI	7.0	7.0	4.2	3.9	3.0	2.2	1.9	1.6	-138	-1.8
MBF4	6	3	4	5	2	9	7	6	.5	3
Relative chemical shift	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.1	0.42

Table S4 NMR Relative chemical shift of BMMIMBF4 with or without CsI additive

Samples	Hb (pp m)	Hc (pp m)	He (pp m)	Hd (pp m)	Ha (pp m)	Hf (pp m)	Hg (pp m)	Hh (pp m)	F (ppm)	B (pp m)
BMMIMBF ₄	7.6	7.5	4.0	3.7	2.5	1.6	1.2	0.8	-148.	-1.7
	2	6	0	0	3	3	3	4	25	9
CsI+BMMI	7.5	7.5	4.0	3.7	2.5	1.6	1.2	0.8	-147.	-2.2
MBF_4	9	8	7	1	5	4	4	5	73	9
Relative										
chemical	0.03	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.42	0.50
shift										

BMMIMBF ₄	V _{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
Control	1.27	15.62	76.74	15.25
0.01 wt%	1.27	15.75	78.72	15.77
0.02 wt%	1.29	15.74	78.78	16.01
0.03 wt%	1.29	15.91	80.48	16.47
0.04 wt%	1.27	15.77	78.53	15.73

Table S5 Summary of the photovoltaic parameters of the $CsPbI_2Br$ PSCs with different concentrations of BMMIMBF₄ treatment

Table S6 Fitting parameters of the TRPL spectra for the CsPbI₂Br films with different concentrations of BMMIMBF₄ treatment

Samples	$A_{1}(\%)$	τ_1 (ns)	$A_{2}(\%)$	τ_2 (ns)	$ au_{ave}$ (ns)
Control	61.41	22.76	38.59	7.14	20.19
0.01 wt%	87.70	4.46	12.30	11.7	6.42
0.02 wt%	30.39	8.92	69.61	3.52	6.36
0.03 wt%	11.57	9.35	88.43	3.57	5.04
0.04 wt%	88.85	2.52	11.15	7.22	3.76

Table S7 EIS fitting parameters for the CsPbI2Br and CsPbI2Br/BMMIMBF4 PSCs

Samples	$R_{s}\left(\Omega ight)$	$R_{tr}\left(\Omega ight)$	C_{tr} (F)	R_{rec} (k Ω)	C_{rec} (F)
Control	2.87	754.7	1.10×10 ⁻⁷	2.35	1.10×10 ⁻⁷
BMMIMBF ₄	2.43	493.9	1.46×10 ⁻⁷	6.89	7.44×10 ⁻⁷

Samples	$R_{s}\left(\Omega ight)$	$R_{tr}\left(\Omega ight)$	$C_{tr}(\mathbf{F})$	$R_{rec}(\mathrm{k}\Omega)$	C_{rec} (F)
Control	2.87	754.7	1.10×10 ⁻⁷	2.35	1.10×10 ⁻⁷
BMMIMBF ₄	2.43	493.9	1.46×10 ⁻⁷	6.89	7.44×10 ⁻⁷
BMMIMCl	3.03	715.4	1.28×10 ⁻⁷	3.68	2.79×10 ⁻⁷
BMMIMPF ₆	2.12	852.2	1.06×10 ⁻⁷	3.06	2.11×10 ⁻⁷
BMIMBr	5.29	903.4	1.04×10 ⁻⁷	2.62	1.76×10 ⁻⁷
BMIMI	3.89	887.6	1.05×10 ⁻⁷	2.89	2.76×10 ⁻⁷

Table S8 EIS fitting parameters for the CsPbI2Br PSCs with different anion-basedIILs treatment

Table S9 Fitting parameters of the TRPL spectra for the $CsPbI_2Br$ films with different anion-based IILs treatment

Samples	$A_{1}(\%)$	τ_l (ns)	$A_{2}(\%)$	τ_2 (ns)	τ_{ave} (ns)
Control	35.76	16.54	64.24	7.87	12.54
BMMIMBF ₄	47.00	6.58	53.00	2.38	5.36
BMMIMCl	48.24	7.41	51.76	3.14	6.07
BMMIMPF ₆	51.36	8.30	48.64	2.68	6.98
BMIMBr	44.62	7.00	55.38	3.19	5.6
BMIMI	49.06	7.20	50.94	2.64	5.9