A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi₂S₃ nanosheets

Xinwei Chen¹, Tao Wang¹, Jia Shi¹, Shuyue Zheng², Wen Lv¹, Yutong Han¹, Min Zeng¹, Jianhua Yang¹, Nantao Hu¹, Yanjie Su¹, Hao Wei¹, Zhihua Zhou¹, Zhi Yang^{1*}, Yafei Zhang^{1*}

¹ Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, Institute of Marine Equipment, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

² Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.

*Corresponding authors. E-mail address: zhiyang@sjtu.edu.cn and yfzhang@sjtu.edu.cn.

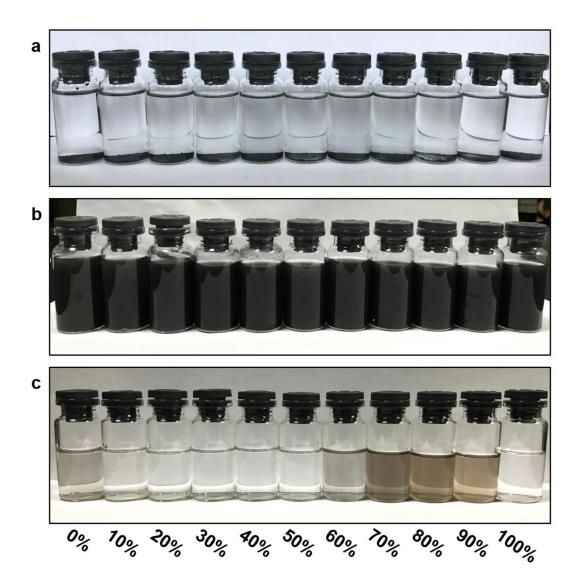


Fig. S1 Photographs of Bi_2S_3 dispersions in various ethanol/water mixtures: a Before and b after ultrasonication treatment for 8 h. c Supernatant collection by centrifugation at 3000 rpm.

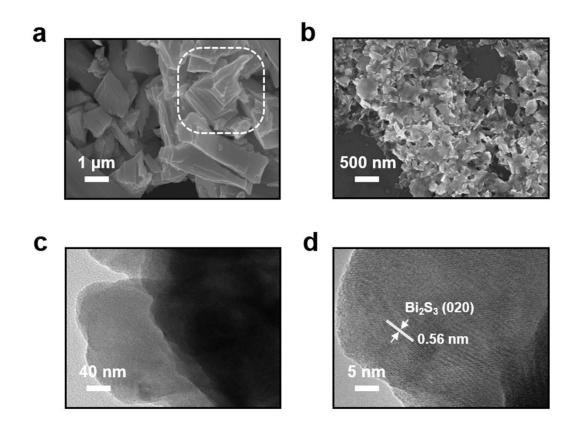


Fig. S2 SEM image of Bi_2S_3 samples before **a** and after **b** Liquid phase stripping. **c** and **d** TEM and HR-TEM images of Bi_2S_3 NSs.

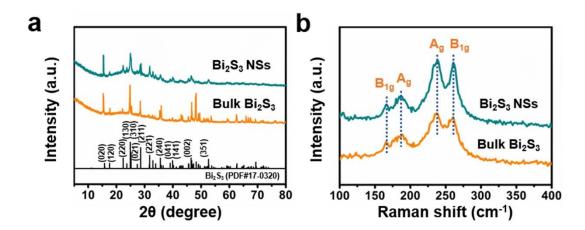


Fig. S3 XRD patterns a and Raman spectra b of bulk Bi₂S₃ and Bi₂S₃ NSs.

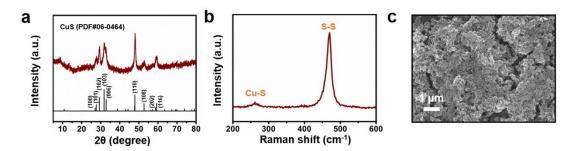


Fig. S4 a XRD pattern b Raman spectra and c SEM image of CuS sample.

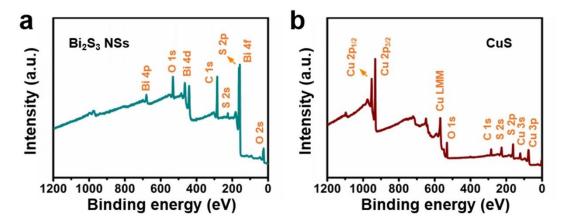


Fig. S5 Full XPS survey spectrums of $a \operatorname{Bi}_2S_3$ NSs and $b \operatorname{CuS}$.

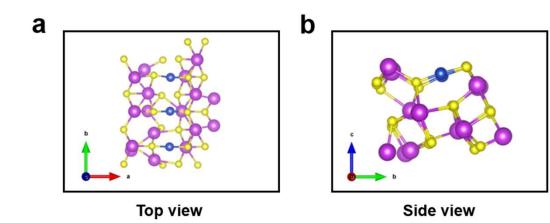
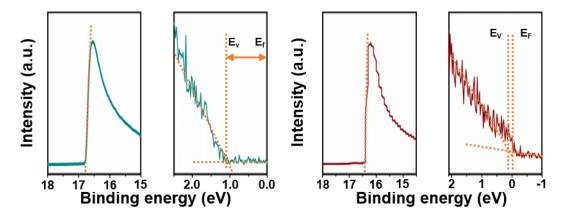



Fig. S6 The atomic structure of CuS-Bi₂S₃.

Fig. S7 UPS spectra of **a** Bi_2S_3 and **b** CuS: the secondary electron cut-off energy region (left) and low binding energy region (right) of each.

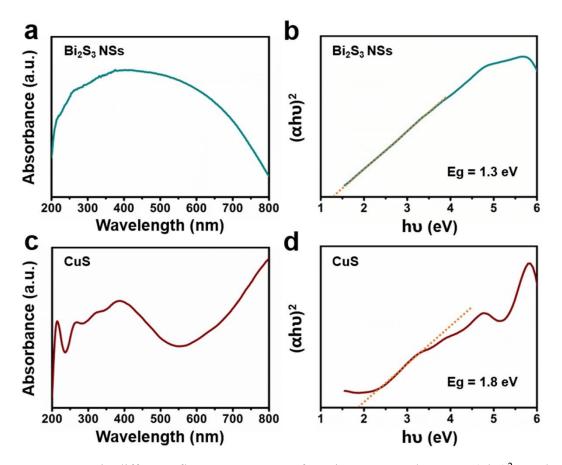


Fig. S8 UV-vis diffuse reflectance spectra of a Bi_2S_3 NSs and c CuS. $(\alpha hv)^2$ v.s. hv curve of b Bi_2S_3 NSs and d CuS.

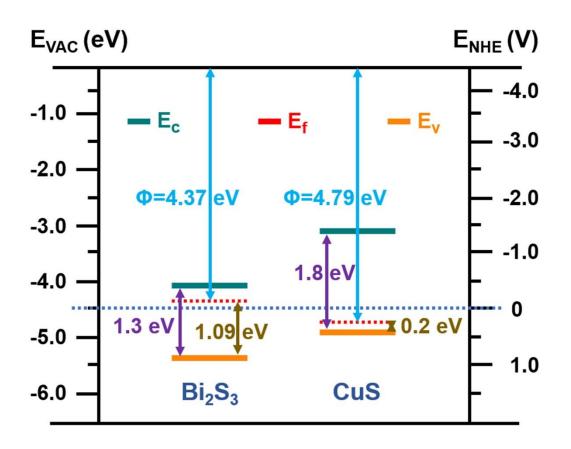


Fig. S9 Energy level diagram between interfacial materials CuS and Bi_2S_3 and schematic diagram of the charge transfer process.

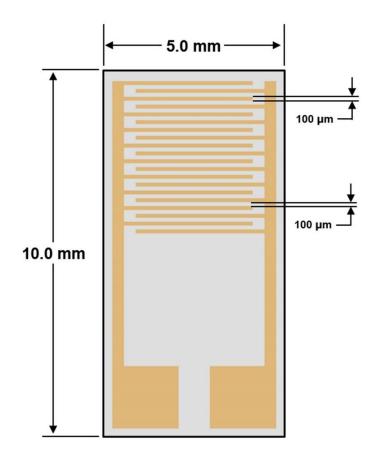


Fig. S10 Structure diagram of the flexible interdigital electrode.

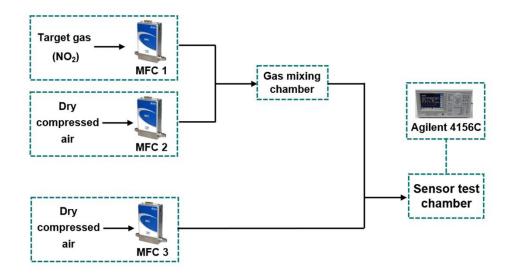
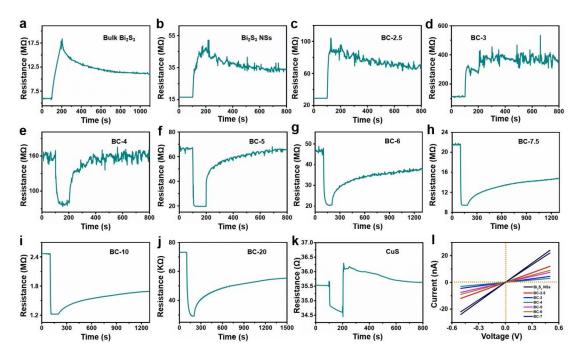



Fig. S11 Schematic diagram of the homemade gas-control system.

Fig. S12 a-k Sensitive response at a concentration to 10 ppm NO₂ through a dynamic gas-sensing room temperature testing for bulk pure Bi₂S₃, Bi₂S₃ NSs, BC-2.5, BC-3, BC-4, BC-5, BC-6, BC-7.5, BC-10, BC-20, and pure CuS. I *I-V* curves of Bi₂S₃, different content of CuS QDs/Bi₂S₃ NSs and CuS-based gas sensors.

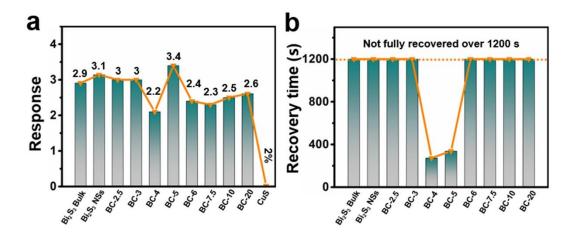


Fig. S13 a Response and b recovery performances of Bi_2S_3 , different content of CuS QDs/ Bi_2S_3 NSs, and CuS-based gas sensors to 10 ppm NO₂.

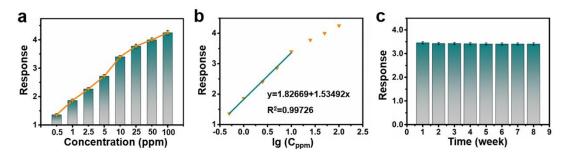
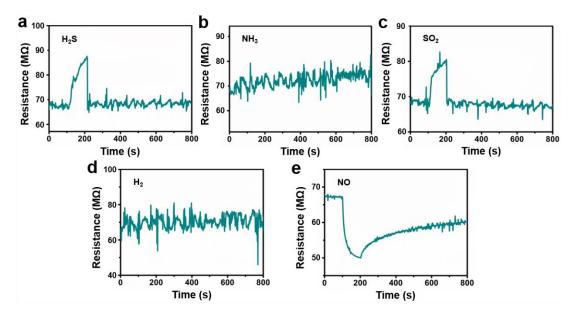



Fig. S14 a The response value of BC-5 sensor to different concentrations of NO_2 and its error bars. b The response of BC-5-based sensor as a function of the logarithm of the NO_2 concentration. c Long-term stability of BC-5-based sensor.

Fig. S15 The selectivity of the BC-5-based sensor to 10 ppm different target gases of **a** H_2S , **b** NH_3 , **c** SO_2 , **d** H_2 and **e** NO.

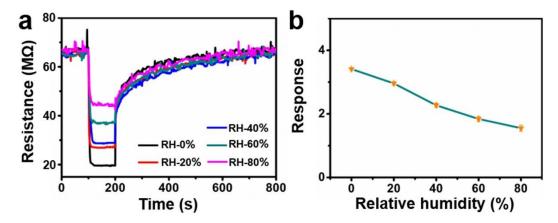
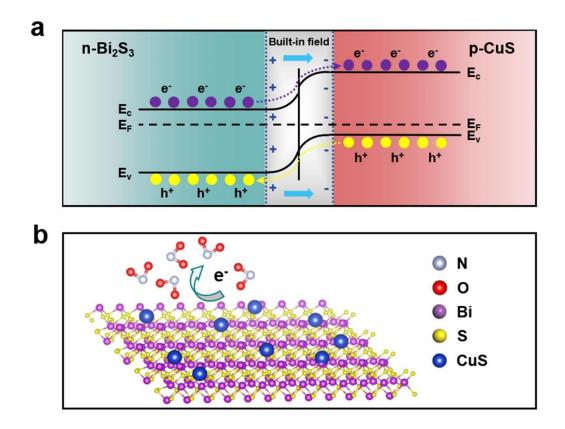



Fig. S16 Sensing characteristics of the sensor to 10 ppm NO_2 at different humidity levels.

Fig. S17 a Energy band structures of CuS QDs/Bi₂S₃ NSs heterostructure in air. **b** the proposed sensing mechanism of the heterostructure.

Fig. S18 The schematic circuit diagram of the flexible printed circuit board: a Data acquisition and communication circuit. b Sensor front-end circuit. c USB/Wireless charging circuit.

Fig. S19 a Photograph of the flexible circuit and electrode used in the current work (placed next to a school logo and 1 RMB coin for comparison). **b** Photographs of Bluetooth signal connection of wearable sensor device. **c** Photographs of wireless sensor signal acquisition process of the wearable sensor device.

Binding structure	Atoms	Bond	Length (Å)	
	N (from NO ₂)		1.070	
nl	Cu (CuS-Bi ₂ S ₃)	Cu-N	1.978	
	O (from NO ₂)	D' O	2.025	
n2	Bi (CuS-Bi ₂ S ₃)	Bi-O	2.018	
n3	O (from NO ₂)	Cu-O	2.396	
	Bi/Cu (CuS-Bi ₂ S ₃)	Bi-O	2.557	
n4	O (from NO ₂)	Cra O	2.555	
	Cu (CuS-Bi ₂ S ₃)	Cu-O	2.567	

Table S1 The bond length of M-O on NO₂-CuS-Bi₂S₃ structure.

Binding structure	Atoms	Charge	Charge transfer
	Ν	4.4197582	-0.5802418
	0	6.5942103	0.5942103
n2	0	6.6273451	0.6273451
	Total-NO ₂		0.6413136
n4	Ν	4.4885298	-0.5114702
	Ο	6.598587	0.598587
	Ο	6.6327922	0.6327922
	Tota	nl-NO ₂	0.719909

Table S2 The charge and charge transfer of NO_2 correlated to Fig. 5.

Binding structure	Atoms	Charge (e)	Charge transfer (e)
	Cul	10.59286	-0.40714
	Cu2	10.59062	-0.40938
	Cu3	10.58872	-0.41128
	S 1	6.800926	0.800926
Cref Di C	S2	6.751016	0.751016
CuS-Bi ₂ S ₃	S3	6.768011	0.768011
	S4	6.763804	0.763804
	S5	6.771819	0.771819
	S 6	6.74335	0.74335
-	Tota	al-CuS	3.371122

 Table S3 The charge and charge transfer of CuS correlated to Fig. 3d.

	R		R
Bulk Bi ₂ S ₃	6.4 MΩ	BC-6	48 MΩ
Bi ₂ S ₃ NSs	17 MΩ	BC-7.5	21.5 MΩ
BC-2.5	30 MΩ	BC-10	2.5 ΜΩ
BC-3	110 MΩ	BC-20	73 KΩ
BC-4	160 MΩ	CuS	35.5 Ω
BC-5	66 ΜΩ		

Table S4 Resistance values of bulk Bi_2S_3 , Bi_2S_3 NSs, CuS, and different complex amounts of CuS QDs/ Bi_2S_3 heterostructures.

			$\tau_{rec.}(s)$	LOD (ppb)	Ref.
0	4 ^a	250	150	10	1
	380% ^b	500	Can't recover	-	2
	75% °	600	1200	0.7	3
5	44% ^c	140	630	43.5	4
	32.1% ^d	300	Can't recover	2.8	5
0	3.4 °	18	338	78	This work
	5	380% ^b 75% ^c 5 44% ^c 32.1% ^d	380%b 500 75%c 600 5 44%c 140 32.1%d 300	380%b 500 Can't recover 75%c 600 1200 5 44%c 140 630 32.1%d 300 Can't recover	$380\%^b$ 500 Can't recover- $75\%^c$ 600 1200 0.7 $44\%^c$ 140 630 43.5 $32.1\%^d$ 300 Can't recover 2.8

Table S5 The room-temperature sensing performance comparison of NO₂ flexible gas sensors with different sensing materials.

Conc.: Gas concentration; Temp.: Operating temperature; $\tau_{rec.}$: Recovery time; RT: Room temperature.

^a I_g/I_a .

^b $\Delta I/I_0$

^c $\Delta R/R_a$.

^d $\Delta G/G$.

 $^{\rm e}R_{\rm g}/R_{\rm a}$.

References

 [1] S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li, N. Tran, Z. Li, Y. Xiong, M.E. Zaghloul, Development of a cloud-based epidermal MoSe₂ device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019). <u>https://doi.org/10.1002/adfm.201900138</u>

[2] M.A. Islam, H. Li, S. Moon, S.S. Han, H.-S. Chung, J. Ma, C. Yoo, T.-J. Ko, K.H. Oh, Y.J. Jung, Y.W. Jung, Vertically aligned 2D MoS₂ layers with strain-engineered serpentine patterns for high-performance stretchable gas sensors: experimental and theoretical demonstration. ACS Appl. Mater. Interfaces **12**(47), 53174–53183 (2020). https://doi.org/10.1021/acsami.0c17540

[3] Y. Huang, W. Jiao, Z. Chu, S. Wang, L. Chen, X. Nie, R. Wang, X. He, High sensitivity, humidity-independent, flexible NO₂ and NH₃ gas sensors based on SnS₂ hybrid functional graphene ink. ACS Appl. Mater. Interfaces **12**(1), 997–1004 (2020). <u>https://doi.org/10.1021/acsami.9b14952</u>

[4] W. Li, R. Chen, W. Qi, L. Cai, Y. Sun, M. Sun, C. Li, X. Yang, L. Xiang, D. Xie, T. Ren, Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO₂ e-textile gas sensor. ACS Sens. **4**(10), 2809–2818 (2019). <u>https://doi.org/10.1021/acssensors.9b01509</u>

[5] J. Wu, Z. Wu, H. Ding, Y. Wei, W. Huang, X. Yang, Z. Li, L. Qiu, X. Wang, Threedimensional graphene hydrogel decorated with SnO₂ for high-performance NO₂ sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces **12**(2), 2634–2643 (2020). <u>https://doi.org/10.1021/acsami.9b18098</u>