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Biomass‑Derived Carbon Heterostructures 
Enable Environmentally Adaptive Wideband 
Electromagnetic Wave Absorbers
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Huiyang Bian1, Zhihong Yang3, Yanjun Li1 *, Hualiang Lv2 *, Solomon Adera5 *, 
Xiaoguang Wang2,4 *

HIGHLIGHTS

• A novel, non-porous carbon structure was obtained through pyrolysis of biomass heterostructures consisting of cellulose and lignin.

• The novel class of biomass-derived carbon materials exhibit an enhanced electromagnetic (EM) loss capability due to the nano-antenna 
structure created by in-situ growth of carbon nanofibers on carbon nanosheets.

• The designed carbon materials exhibit good hydrophobicity and acid/base resistance, suggesting a stable EM absorption performance 
in diverse environmental conditions, thus making it a good candidate for real world conditions.

ABSTRACT Although advances in wireless technologies such as miniature and 
wearable electronics have improved the quality of our lives, the ubiquitous use of 
electronics comes at the expense of increased exposure to electromagnetic (EM) 
radiation. Up to date, extensive efforts have been made to develop high-performance 
EM absorbers based on synthetic materials. However, the design of an EM absorber 
with both exceptional EM dissipation ability and good environmental adaptability 
remains a substantial challenge. Here, we report the design of a class of carbon het-
erostructures via hierarchical assembly of graphitized lignocellulose derived from 
bamboo. Specifically, the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna, which results in an enhancement 
of the conductive loss. In addition, we show that the composition of cellulose and lignin in the precursor significantly influences the shape 
of the assembly and the formation of covalent bonds, which affect the dielectric response-ability and the surface hydrophobicity (the 
apparent contact angle of water can reach 135°). Finally, we demonstrate that the obtained carbon heterostructure maintains its wideband 
EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world envi-
ronment, including exposure to rainwater with slightly acidic/alkaline pH values. Overall, the advances reported in this work provide new 
design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.
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1 Introduction

Wireless communication techniques kick-started a grand 
technical revolution that has significantly improved the 
quality of human life. However, the frequent utilization of 
wireless electronics has led to the prevalence of electromag-
netic (EM) pollution, which now ranks fourth after water, 
air, and noise pollution [1–3]. To mitigate EM pollution, EM 
absorbing materials have attracted lots of attention for their 
ability to convert ambient EM waves into Joule heat [4–6]. 
Extensive efforts have been made in the past to develop EM 
absorbers with wideband EM absorption [7–9]. However, 
most of the current EM absorbing materials, including mag-
netic materials [10, 11], metal oxides [12, 13], and sulfides 
[14, 15], cannot be used in real-world environments due to 
their poor environmental adaptability, poor water resist-
ance, and temperature sensitivity [16, 17]. For example, 
EM absorbers are often used as coating layers in outdoor 
conditions. Thus, EM absorbers resistant to water and acidic 
conditions are highly desirable to avoid degradation in per-
formance after exposure to acid rain. Although polymeric 
absorbers have been shown to possess high hydrophobicity, 
their low dielectric loss leads to poor EM absorption perfor-
mance [18, 19]. Thus, the development of high-performance 
EM absorbers with good environmental adaptability will be 
beneficial for real-world applications.

Recently, carbon-based materials, which can be cat-
egorized into materials with a high degree of graphitiza-
tion (e.g., graphene, metallic carbon nanotubes (CNTs), 
and graphite) and moderate/low degree of graphitization 
[20–22], have attracted significant attention for their use 
as EM absorbers based on four main reasons. First, carbon 
materials are naturally resistant to acidic mediums due to the 
strong covalent bonds between the carbon atoms [23–25]. 
Second, most carbon materials are either non-graphitized or 
graphitized to only a limited degree [26–28], resulting in the 
prevalence of hydrophobic bonds, which confer the material 
with hydrophobic properties. Third, carbon materials’ intrin-
sic conductivity and dipole dependence enhance their EM 
absorption performance [29–32]. Lastly, carbon materials 
have ultralow density and are naturally abundant compared 
to synthetic metallic and polymeric materials [33–35]. Based 
on the above-stated properties of carbon materials, it is evi-
dent that carbon-based materials can serve as promising can-
didates for making EM absorbers for outdoor applications. 

However, the realization of this potential remains elusive 
due to the following reasons. First, previous studies have 
shown that the ultrahigh dielectric value of highly gra-
phitized carbon materials causes poor impedance matching 
ability, resulting in poor EM absorption [36–38]. Second, 
it is difficult to achieve effective, wideband EM absorption 
in moderate/low-graphitized carbon materials, even with 
the good impedance matching. Third, carbon materials are 
produced using a chemical method that inevitably produces 
a high ratio of hydrophilic bonds (e.g., –OH, –COOH, 
and –COH), affecting their hydrophobicity and acid resist-
ance. Lastly, although previous studies have shown that the 
performance of EM absorbers is affected by the chemical 
component and nanostructure [39, 40], the manipulation 
of carbon materials’ structure to tune the EM absorption 
has been largely unexplored. The above-stated limitations 
have prevented the development of weather-resistant carbon 
material-based EM absorbers.

Carbon materials derived from biomass such as bamboo 
have been extensively used as electromagnetic wave absorbers 
due to their low cost, simple synthesis procedure, and poten-
tial dielectric loss ability [41, 42]. While promising, current 
biomass-derived carbon materials cannot exhibit a wideband 
EM absorption at a thin thickness (< 2.0 mm) due to their lim-
ited EM loss capability [43]. As an alternative strategy, car-
bon material-based composites consisting of biomass-derived 
carbon materials and other components, such as magnetic 
metals, transitional metal oxides, etc., have attracted growing 
attention, aiming to enhance and incorporate other loss abili-
ties [44–46]. Although the carbon material-based composite 
approach shows some promise, the numerous intrinsic merits 
of single-component carbon material-based EM absorbers, 
such as ultralow density and good chemical stability, are lost. 
Therefore, designing biomass-derived carbon materials-
based EM absorbers with lightweight, wideband, and thin 
thickness remains challenging. The key design challenge is 
how to enhance the poor dielectric loss ability and the poor 
hydrophobic property of the carbonized biomass materials, 
which are caused by (1) the intrinsic porous structures derived 
from the characteristic morphology of their precursors, (2) 
the commonly used, low carbonization temperature (i.e., 
600–800 °C), and (3) the presence of hydrophilic functional 
groups at the surface of the carbonized materials.

Herein, we report the synthesis of graphitized biomass-
derived carbon materials (GC) with different structures and 
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graphitization degrees through pyrolysis of bamboo-derived 
lignocellulosic nanofibers (LCNFs). By characterizing the 
composition and crystallinity of the graphitized carbon 
materials using X-ray diffraction (XRD) and Raman spec-
troscopy, we find that the ratio of cellulose to lignin plays a 
critical role in the nanostructure formed by the graphitized 
bamboo-based carbon materials. Cellulose/lignin ratios 
of 5:1 and 8:1 lead to the coexistence of nanofibers with 
high crystallinity and nanosheets with high-density defects, 
whereas ratios of 4:1 and 30:1 give rise to only nanosheet 
structures. Importantly, graphitized carbon materials with 
the cellulose to lignin ratio of 8:1 exhibits the broadest effec-
tive frequency bandwidth ( fE , 4.2 GHz), the lowest reflec-
tion loss value ( RLmin, − 51.0 dB), the thinnest matching 
thickness (1.95 mm), good hydrophobicity, and acid/alkali 
corrosion resistance and proved to be the most ideal EM 
filler for outdoor applications. Finally, we elucidate the EM 
absorption mechanism of GCs based on impedance match-
ing, polarization, and conductive loss.

2  Experimental Section

2.1  Materials

Bamboo residues were obtained from Zhuangchi Home 
Technology Co. Ltd., (Jiangxi, China). p-toluenesulfonic 
acid (p-TsOH) was an analytical reagent purchased from 
Aladdin Chemical Co. Ltd., Shanghai, China. We prepared 
all aqueous solutions with deionized water from a Barnstead 
Nanopure Diamond Laboratory Water System.

2.2  Synthesis of Lignocellulosic Nanofibers

Natural bamboo residues were steam-exploded at 190 °C for 
10 min to yield bamboo fibers. Lignocellulosic nanofibrils 
(LCNFs) were isolated from the obtained bamboo fibers 
through hydrolysis of 5 g (oven-dry weight) bamboo fibers, 
and they were reacted with 100 g of prepared p-toluenesul-
fonic acid (20–80%, w/w) at 50–80 °C for 30–90 min under 
continuous stirring of 400 rpm. Afterward, 50 mL of deion-
ized (DI) water was added to quench the reaction. The resid-
ual solids were separated through filtration under a vacuum 
and washed with DI water. We tuned the cellulose and lignin 
content in the residual solids by adjusting the acid concentra-
tion, reaction temperature, and reaction time. Subsequently, 

mechanical fibrillation was carried out by feeding 1% (w/w) 
residual solid suspension into a high-pressure homogenizer 
(FB-110Q, Litu Mechanical Equipment Engineering Co. 
Ltd., Shanghai, China) operating at a pressure of 600 bar 
five times to produce LCNF. The detailed parameters for the 
preparation of LCNFs are listed in Table S1.

2.3  Synthesis of Multi‑Dimensional Carbon Composites

GCs were prepared by temperature-programmed pyrolysis. 
Precisely, the prepared LCNFs were placed into a tubu-
lar furnace under an  N2 stream. After purging air by fill-
ing  N2 in the furnace for 30 min, the furnace temperature 
was increased to 1000 °C at a heating rate of 10 °C  min−1. 
After refluxing for 1 h at 1000 °C, the samples were further 
heated to 1500 °C at a heating rate of 5 °C  min−1, fol-
lowed by another 2 h of reflux. Finally, the GCs were col-
lected and cooled down to the ambient temperature under 
 N2 protection. The nomenclature of our samples is shown 
in Table S1.

2.4  Characterization

The nanostructure, morphology, and chemical bonds of the 
synthesized carbon materials were characterized by atomic 
force microscope (AFM; Asylum Research MFP-3D Bio 
AFM, Oxford Instruments Company), scanning electron 
microscope (SEM; Quanta 200, FEI Company), high-res-
olution transmission electron microscope (HR-TEM; FEI 
Tecnai G2 F20 S-TWIN), X-ray diffraction (XRD; Bruker 
D8 Advance powder X-ray diffractometer), X-ray photoelec-
tron spectroscopy (XPS; AXIS UltraDLD, Shimadzu, Al Ka 
X-ray source, 150 W), Raman spectroscopy (Renishaw in-
via Raman micro-spectrometer, 532 nm laser), and Fourier 
transform infrared spectroscopy (FT-IR, Thermo Scientific 
Nicolet 6700).

The cellulose and lignin content of the LCNFs were deter-
mined based on the procedure developed by the National 
Renewable Energy Laboratory, as previously reported. The 
electromagnetic properties of the samples were determined 
by the coaxial line method using an Agilent PNA N5224A 
vector network analyzer with a filler loading rate of 15% 
(w/w) in paraffin. EM absorbing performance of the speci-
mens was evaluated using the reflection loss (RL) values, 
which are calculated as:
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where εr (εr = �� − j��� , where j denotes imaginary part sym-
bol, and �′ �′′ are the real and imaginary parts of permittiv-
ity) is the relative complex permittivity, μr (μr = �� − j��� , 
where �′ and �′′ are the real and imaginary parts of per-
meability) is the relative complex permeability, f is the 
microwave frequency, d is the specimen thickness, c is the 
light velocity, and Z0 and Zin are the characteristic imped-
ance of free space and the input impedance of the absorber, 
respectively.

Hydrochloric acid or sodium hydroxide was used to pre-
pare weak acid and weak base solutions with pH of 5.6 
or 8.5, respectively, to investigate the stability of the EM 
absorbers under acid/base conditions. The samples were 
immersed in the respective solutions for 7 days. Afterward, 
the samples were centrifuged, washed, and dried. The coax-
ial line method was used to measure the electromagnetic 
properties, and the corresponding EM absorption parameters 
were calculated.

3  Results and Discussion

3.1  Characterization of Lignocellulosic Nanofibers

As described in the Introduction, the EM absorption per-
formance is determined by the constituent component and 
nanostructure of the EM absorbers. Previous studies have 
shown that the direct utilization of the biomass for fabricat-
ing EM absorbers results in poor EM absorption due to its 
poor dielectric loss. The biomass has to be graphitized to 
enhance its EM performance by improving the conductive 
loss and polarization behavior. In this study, we sought to 
develop EM absorbers using a carbonized biomass precur-
sor (lignocellulosic nanofibers (LCNFs)) and tune the EM 
absorption performance by adjusting the composition and 
structure of two components, lignin, and cellulose. Specifi-
cally, we synthesized several LCNFs with ratios of cellulose 
to lignin varying from 4:1, 5:1, 8:1, to 30:1. The precursors 
corresponding to the above ratios were termed LCNFs-4, 
LCNFs-5, LCNFs-8, and LCNFs-30, respectively. Consider-
ing the fact that the direct visualization of soft organic mol-
ecules like cellulose/lignin using SEM/TEM is extremely 

(1)Zin = Z0
(
�r∕�r

)1∕2
tanh

[
j(2�fd∕c)

(
�r�r

)1∕2]

(2)RL = 20 log10
|
|
|

(
Zin − Z0

)
∕
(
Zin + Z0

)|
|
|

challenging, owing to the possible decomposition of the 
organic molecules under a high-energy electron beam [47], 
we characterized the structures of the LCNFs using AFM. 
The nanofiber structures were observed in all LCNFs, as 
shown in Fig. 1a–d. As the cellulose composition in the 
LCNF (the ratio of cellulose to lignin) is increased, the den-
sity of nanofibers decreased, and no additional nanostruc-
tures were identified. We sought to use high-resolution AFM 
to explore the specific characteristics of the LCNFs compo-
nents. In AFM imaging, different components would exhibit 
distinct appearances upon exposure to the high-resolution 
alternating current (AC) in the air topography model. As 
shown in the representative high-resolution AFM images, 
the backbones of the nanofibers were dark. At the same time, 
their surfaces were observed to be modified with individual 
bright clusters (represented by white arrows in Fig. 1e–h). 
Additionally, the height associated with the bright clusters 
was larger than that of the backbones, as shown in the inset 
of Fig. 1e. Moreover, two distinct contrasts were observed in 
the corresponding phase conversion images (Fig. 1i–l). The 
above observation reveals that the two biomass components, 
i.e., cellulose and lignin, form heterojunctions.

Inspection of the above AFM images suggests that one 
component of the LCNFs possesses a nanofiber structure, 
whereas the other component possesses an irregular struc-
ture. To distinguish the nanofiber heterojunctions, we sought 
to analyze the molecular arrangement to determine the 
structure that yields nanofibers and the attached amorphous 
particles, respectively, because the structure depends on the 
molecular arrangement and degree of polymerization of the 
monomers. Intrinsically, lignin comprises three types of 
monomers, namely p-coumaryl, coniferyl, and sinapyl alco-
hol [48]. At a low degree of polymerization, the as-prepared 
lignin are nanoparticles with sizes depending on the degree 
of polymerization. The nanoparticles would form an inter-
connected bulk phase as the polymerization increases. The 
cellulose is fabricated using the linear chains of glucopyra-
nose monomer joined by β-(1,4) glycosidic bonds [49], 
resulting in a single direction of molecular arrangement. 
Therefore, the as-prepared cellulose has a 1D nanofiber 
structure, as shown in the enlarged image marked by a white 
dashed box in Figs. 1i and S1a–c. The highlighted dots in 
the topography image (Fig. S1a) correspond to the observed 
peaks in the height curve (Fig. S1b) and the dark contrast 
dots in AFM phase image (Fig. S1c). These observations 
support our hypothesis that lignin molecules are modified 
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on the surface of cellulose fibers with their natural properties 
maintained after hydrolysis treatment, and that the nanofiber 
framework in the LCNFs belongs to cellulose and supports 
lignin growth, which contrasts with the behaviors of pure 
lignin and cellulose (namely C-lignin and C-cellulose; Figs. 
S1d–g). These results lead us to hypothesize that the adja-
cent nanofibers coated by lignin are easier to link with each 
other through a dehydration reaction between the two –OH 
groups, resulting in a crosslinked structure at a low cellulose 
to lignin ratio.

Next, we sought to analyze the crystal structures of these 
LCNFs. Figure S2 shows the crystal structure and chemical 
bonds of these LCNFs. We observed two diffraction peaks 
at ~ 16° and 23°, corresponding to the (101) and (002) crystal 
planes of cellulose, respectively, as shown in Fig. S2a. C and 
O were observed in all LCNFs as shown in the XPS spectra 
in Fig. S2b. We note here that H is a light element and can-
not be detected by XPS. We observe that the proportion of 

O in the samples increases with an increase in the cellulose 
content. By fitting the high-resolution  O1s peaks, the spec-
tra for all the LCNFs can be deconvoluted into three peaks 
at 532.0, 532.9, and 533.9 eV, corresponding to C=O of 
the lignin, C–O of the cellulose, and phenolic oxygen of 
the lignin, respectively (Fig. S2c). Next, we used the fitting 
peak surface area to quantify the cellulose to lignin ratio. 
We find that as the cellulose to lignin ratio increases from 
4:1 to 30:1, the percentage of C–O increases from 76 to 
93%, and the total percentage of C=O and phenolic oxygen 
decreases from 24 to 7%, suggesting the removal of lignin 
from the LCNFs. As shown in Fig. S2c, we observed three 
deconvoluted peaks for  C1s at 283.8, 285.0, and 286.5 eV, 
corresponding to C=O in lignin, C–C and C–H in holocellu-
lose, and C–O in phenols and ethers of lignin and holocellu-
lose, respectively. As the ratio of cellulose to lignin increases 
from 4:1 to 30:1, the percentage of C = O decreases from 
15 to 7%, which is in agreement with the result of  O1s. The 

(a) (b) (c) (d)
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LCNF-8

1 μmLCNF-5 1 μmLCNF-4 1 μm
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Fig. 1  AFM imaging of LCNF morphologies. a–d AFM topography images of LCNF-4, LCNF-5, LCNF-8, and LCNF-30. e–h High-resolution 
AFM topography images of the white dashed boxes in a–d. i–l Corresponding AFM phase images of e–h. The white arrows indicate the adhe-
sive lignin on the surface of the cellulose
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XPS results, combined with the AFM imaging, lead us to 
draw the following three conclusions. First, LCNFs form a 
nanofiber heterojunction in which the 1D nanofiber of cel-
lulose serves as the framework for the subsequent lignin 
coating. Second, the reduced lignin content facilitates the 
dispersion ability of the nanofibers. Third, the dipolar cova-
lent bonds ratio in the LCNF precursors affects the degree 
of graphitization after the carbonization.

3.2  Structural Characterization of Biomass‑Derived 
Carbon Materials

Past research has reported the conversion of cellulose and 
lignin from LCNFs into graphitized carbons during carboni-
zation [50]. In our next set of experiments, we carbonized 
the above LCNFs, i.e., LCNFs-4, LCNFs-5, LCNFs-8, and 

LCNFs-30, to obtain carbonized materials, namely GC-4, 
GC-5, GC-8, and GC-30, respectively. The structure of the 
GC-4, GC-5, GC-8, and GC-30 was examined using FE-
SEM, as shown in Fig. 2a–d. The GC-4 and GC-5 samples 
exhibit thick nanosheet structures with high surface rough-
ness (Fig. 2a, b, e, f). Both the nanofibers and nanosheets 
were observed in GC-8 (Fig. 2c, g). In addition, GC-30 
exhibits only nanosheet structures with a thinner thickness 
(few nanometers, similar to graphene) compared to that 
of GC-4 and GC-5 (Fig. 2d, h). To provide more evidence 
regarding the structural evolution, particularly for nanofib-
ers, we imaged the nanosheets and nanofibers in GC-8 
using TEM, high-resolution TEM, and electron diffraction, 
as shown in Fig. 2i–l. The lattice spacing of the nanosheet 
structure reveals low crystallinity, which is consistent with 
the selected electron diffraction pattern (SEAD, inset in 

Fig. 2  Morphology and crystallinity of GCs. a–d FE-SEM images of GC-4, GC-5, GC-8, and GC-30. e–h Enlarged images of the regions 
marked by white dashed boxes in a-d. The white arrows show the nanofibers embedded in the nanosheets. i, k Representative TEM images of 
nanosheets and nanofibers from GC-8. Inset shows the corresponding SEAD pattern. j, l High-resolution TEM images of the selected areas in i 
and k. Inset shows the structure diagram
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Fig. 2i). In contrast, the distinct lattice spacing identified 
at the edge of the nanofiber was measured to be 0.24 nm, 
corresponding to the (002) crystal plane of graphene. In 
addition, the hexagonal lattice obtained from SEAD agrees 
with that of graphene (inset of Fig. 2l). These results suggest 
that the nanofibers have a higher degree of crystallinity than 
the nanosheets. For graphitized carbon, high crystallinity 
indicates a higher graphitization degree leading to higher 
dielectric values.

The above structural analysis raises two questions. First, 
why are the thickness of nanosheet structures of GC-4 and 
GC-30 different? Second, why can the nanofiber structure 
only be observed in GC-5 and GC-8 samples but not in GC-4 
and GC-30? Therefore, we performed additional experi-
ments by carbonizing pure lignin and cellulose to gain more 
insights to answer the above questions. The FE-SEM images 
in Fig. 3, show the carbonized lignin was transformed into 
an assembly of nanosheets (Fig. 3a) with a smooth surface 
(Fig. 3b, c), similar to MXenes [51]. In contrast, the carbon-
ized cellulose was converted into a thin nanosheet struc-
ture with a high surface roughness (Fig. 3d–f), similar to 
the structure of GC-30. Furthermore, we studied the crys-
tal phase structure of the GCs along with carbonized pure 
lignin and cellulose using XRD. As shown in Fig. S3, the 

samples exhibit two peaks at 2θ = 25.36° and 43.18°, cor-
responding to the (002) and (101) planes of graphite-like 
carbon, respectively (Fig. S3). An additional sharp diffrac-
tion peak at 2θ =  ~ 10° was observed in all GC samples, and 
its intensity decreased with a decrease in the lignin content. 
According to a previous study [52], this peak indicates the 
(111) crystal plane of fullerene-like cage structures, attrib-
uted to non-hexagonal defects of a corrugated sheet. Thus, 
the carbonized precursor with a higher ratio of cellulose to 
lignin suppresses such defects (i.e., non-sp2 bonds includ-
ing sp3/sp–C–C bonds and dipole O-containing bonds, and 
the stacking layers), this defect suppression is attributed to 
graphitization.

Previous research has reported that oxygen-containing 
functional groups can induce electronic dipole polarization 
under alternating electromagnetic fields [53]. To provide 
insights into the structure of GCs, we performed FT-IR 
measurements to characterize the functional group features 
of the GCs. As shown in Fig. S4, the absorption band at 
3432.6, 1637.2 (sharp band), 1536.9–1295.9 (broadband), 
and 1066.4   cm−1 correspond to the stretching vibration 
of –OH, C–C, C=O, and C–O groups, respectively. We 
note here that C=O and C–O groups are from the alkyl 
aromatic structures. These results suggest that even after 

Fig. 3  Morphology of carbonized lignin and cellulose. a–c SEM images of C-lignin. d–f SEM images of C-cellulose
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carbonization at 1500 °C, the GCs still possess some oxy-
gen-containing functional groups. The XPS spectrum in Fig. 
S5 also shows that the C–OH and C–OOH groups still exist, 
although their content decreases with a decrease in the lignin 
content of the precursors, which are in accordance with the 
XRD and FT-IR spectra.

Based on the XRD and FE-SEM images of carbonized 
lignin and cellulose, we hypothesize that the nanosheet 
structure in the GC-30 is formed by the self-assembly of 
carbonized lignin and cellulose. The carbonized cellulose 
plays a dominant role in the carbon nanostructure. Two pos-
sible routes may be responsible for the thick nanosheet struc-
ture of GC-4. First, the thick nanosheet originates from the 
self-assembly of carbonized lignin and cellulose, in which 
the carbonized lignin plays a dominant role on the carbon 
nanosheets. However, it is difficult to determine the under-
lying reason for the high surface roughness. The other pos-
sible route is that the carbonized lignin forms the matrix and 
disperses the carbonized cellulose. The coated lignin on the 
surface of the cellulose nanofiber can crosslink with adjacent 
lignin. After carbonization, a thick nanosheet may form with 
the carbonized nanofiber embedded within the nanosheets. 
The SEM images show that the crystallinity of the GC-4 
nanosheet is lower than that of GC-30, which agrees with 
the XRD result. We hypothesize that the insertion of the 
carbonized nanofiber between the nanosheets in the case of 
GC-5 and GC-8 will be difficult due to the reduced carbon-
ized lignin content, which supports our observation of the 
presence of nanofibers in GC-5 and GC-8 (Fig. 2f, g). We 
also comment here that the absence of nanofibers in the thin 
nanosheets in GC-30 is because of the limited nanofibril 

cellulose content and the weak dispersion ability caused by 
the low lignin content (Fig. 4). The large number of hydroxyl 
groups on the cellulose surface leads to the formation of a 
densely crosslinked structure via intermolecular hydrogen 
bonding. During carbonization, the 3D molecular structure 
of the cellulose would turn to a 2D structure after releasing 
–OH bonds. Meanwhile, degradation of lignin at high tem-
peratures produces  CH4 gas and yields carbon atoms, which 
further grow on the 2D molecular structure of the carbonized 
cellulose at 1500 °C [54]. Such a combined carbonization 
and chemical vapor deposition process leads to the forma-
tion of intact nanosheets with the decomposed cellulose-
derived carbon nanofibers as the main body. Although the 
defect concentration in GC-5, GC-8, and GC-30 is less than 
GC-4, layer dislocation or stacking occurs in the assembly 
process, resulting in a higher ratio of D and G bands in the 
corresponding Raman spectrum (Fig. S6).

3.3  EM Absorption Behavior of Biomass‑Derived 
Carbon Materials

Next, we sought to investigate the effects of the obtained 
carbon materials’ structure and composition on their EM 
absorption performance. Figure 5 shows the EM absorption 
performance of GCs with a broad thickness of 1.0–5.0 mm. 
EM absorbers are required to exhibit a broad frequency 
absorption region (termed as an effective absorption region) 
with a small thickness (commonly less than 2.0 mm) to meet 
the requirements for commercial applications. As shown in 
Fig. S7, the minimum RL value ≤ −10dB (termed as effec-
tive absorption region, fE ) with a small thickness (commonly 

carbon sheet

CO2 H2O

carbon fiber

(a) (b) (c)

(d) (e) (f)

Fig. 4  Schematic illustration of the transformation of GCs from heterogeneous structures (e.g., nanofiber and nanosheet) to nanosheet structures
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less than 2.0 mm). The minimum RL value ( RLmin ) of car-
bonized pure lignin (C-lignin) is larger than − 10 dB and 
the RLmin value of carbonized pure cellulose (C-cellulose) 
is ~ −13.7 dB, as shown in Fig. S7, suggesting their poor EM 
absorption performances. In contrast, for GCs, GC-4 has a 
RLmin value of − 22.8 dB at a higher thickness (~ 5.0 mm, 
Fig. 5a), whereas the ||RLmin

|
| of GC-5 increases to 47.2 dB 

with a corresponding thickness of 2.70 mm (Fig. 5b). The 
|
|RLmin

|
| of GC-8 is 51.0  dB with a thickness as thin as 

1.95 mm, which meets the requirement for practical appli-
cation (Fig. 5c), and the ||RLmin

|
| of GC-30 reduces to 12.2 dB 

with a matching thickness of 1.20 mm (Fig. 5d).
As shown in Fig. 5, with an increase in the thickness, the 

absorption peak shifts to a lower frequency region, which can be 
described using the following 1/4 wavelength cancelation law:

where tm and fm are the matching thickness and match-
ing frequency for the strongest absorption peak, respec-
tively. Equation (3) indicates that tm and fm are inversely 
proportional to each other. We note here that when tm and 
fm satisfy this equation, the reflected EM waves both from 

(3)tm = nc∕4fm
(
�r�r

)1∕2
(n = 1, 3, 5,…)

the air-absorber surface and the absorber-conductive back-
ground interface are out of phase by 180°, resulting in 
extinction at the air-absorber interface and a corresponding 
minimum RL value. Figure 5e, f plots the curves of fE for 
GCs with thickness below 2.0 mm, which are obtained from 
their 3D coloring of RL images. The maximal fE regions of 
GC-5, GC-8, and GC-30 are 4.0, 4.2, and 2.4 GHz, with a 
thickness of about 1.6, 1.6, and 1.4 mm, respectively. We 
note here that GC-8 possesses the broadest fE with a thick-
ness comparable to the recently reported pure carbon-based 
EM absorbers (listed in Table 1).

To the best of our knowledge, impedance matching and 
EM dissipation performance are the two key factors that 
determine the EM absorption capacity of a material. The for-
mer determines the ratio of incoming EM waves to the EM 
waves that get into the interior of the absorber, whereas the 
latter determines the ability of the absorber to convert EM 
into Joule heat. Both performances are determined by the 
dielectric parameters for non-magnetic materials, namely �′ 
and �′′ . The �′ value represents the ability to store electrical 
energy, and the �′′ value represents the dielectric loss ability, 
which results from the conductive and polarization–relaxa-
tion loss. To ascertain the EM absorption mechanism of 
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GCs, we compared the permittivity of all GCs with that of 
C-cellulose and C-lignin. As shown in Fig. 6a, the �′ and �′′ 
values of C-lignin remained constant at about 3.8 and 0.1, 
respectively, over a wide frequency region (2–18.0 GHz). 
This indicates that C-lignin has a good impedance match-
ing performance but a poor dielectric loss ability, which is 
caused by its poor conductive loss due to its intrinsically 
low crystallinity. This is the main reason underlying its poor 
EM absorption ability. The �′ and �′′ values of C-cellulose 
are observed in Fig. 6b to range from 29.4 to 12.5 and from 
20.2 to 7.5, respectively. The increased crystallinity, evi-
denced by the enhanced diffraction peaks associated with 
(002) and (101) planes in the XRD spectra and the decreased 
ID∕IG value in the Raman spectrum, results in a higher �′ 
value, indicating an enhanced ability to store electrical 
energy. When the incident electromagnetic wave reaches 
the absorber, it generates a large amount of induced current 
within the absorber, resulting in more reflection and less 
transmission of EMs at the interface between air and the 
absorber/paraffin composites. As a result, an extremely high 
�
′ value deteriorates the corresponding impedance match-

ing performance via inducing excessive conductivity [64], 
implying that C-cellulose exhibits a poor EM absorption 
performance even if the material possesses a competitive 
ε″ value.

To elucidate on the permittivity variation for these GCs, 
the �′ and �′′ ratios of GC to C-cellulose are displayed in 
Fig. 6c, d (the corresponding measured dielectric values 
are shown in Fig. S8). We observe that all the �′ ratios of 
GCs were smaller than 1.0 except for GC-30, which pos-
sesses �′ ratios slightly larger than 1.0 at the local frequency 
region from 11.2 to 15.0 GHz. Such a phenomenon suggests 
a reduced �′ value compared to C-cellulose. The reduced 
�
′ value implies enhanced impedance matching ability in 

GCs compared with C-cellulose, and the �′ ratios gradually 
increase from GC-4 to GC-30, suggesting that carbonized 
precursors with a higher cellulose content result in a larger 
�
′ value. In addition, the �′′ ratios displayed in Fig. 6d fol-

low the same trend as the �′ ratios, and the GC-30 has the 
largest �′′ ratios.

Next, we discuss the polarization loss of the GC materi-
als. We note here that since the paraffin wax is non-magnetic 
and amorphous with ultralow dielectric parameters, its EM 
absorption performance is negligible. Regarding the polari-
zation–relaxation process, the plot of �′ versus �′′ gives a 
single semicircle, normally denoted as the Cole–Cole semi-
circle, according to the classic Debye theory [65]. Specifi-
cally, the relative complex permittivity can be calculated as:

(4)�r = �∞ +
�s − �∞

1 + j2�f �
= �

� − j�

Table 1  EM absorption performance of different carbon materials

Filler Matrix Filler loading RLmin (dB) fE (GHz) Range (GHz) References

NRGO/MWCNTs Paraffin 15% − 53.3
(2.0 mm)

5.2
(2.0 mm)

11.1–16.3 [55]

NRGO/MWCNTs binary aerogel Paraffin 10% − 35.1
(2.0 mm)

3.9
(1.5 mm)

12.1–18.0 [56]

Residual carbon Paraffin 20% − 6.8 N/A N/A [57]
GCs
HCNTs

Paraffin 10% − 44.8
(3.4 mm)

6.0
(3.1 mm)

8.0–14.0 [58]

B, N-CNTs Paraffin 10% − 40.0
(2.0 mm)

4.9
(2.0 mm)

10.5–15.4 [59]

MCHMs Paraffin 10% − 51.0
(4.0 mm)

7.1
(2.0 mm)

10.7–17.8 [60]

RGO Paraffin 3.0% − 25.6
(4.0 mm)

4.3
(4.0 mm)

8.5–12.8 [61]

CNTs/CF Paraffin 1.0% − 44.5
(3.0 mm)

7.4
(3.0 mm)

10.5–17.9 [62]

carbon planar helixes Paraffin 30% − 38.0
(3.7 mm)

3.5
(3.7 mm)

11.0–14.5 [63]

GC-8 Paraffin 15% − 51.0
(2.0 mm)

4.2
(1.6 mm)

12.5–16.7 This work
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where �s , �∞ , � are the static permittivity, the relative die-
lectric permittivity at a high-frequency limit, and polariza-
tion–relaxation time, respectively. After the separation of the 
real and imaginary parts, �′ and �′′ can be written as:

Based on Eqs. (4) and (5), the �� − �
�� can be written as 

[66, 67]:

In this work, the effective absorption region was mainly 
located at a high-frequency range (i.e., 10–18.0 GHz) with 
thickness < 2.0 mm (Fig. 5e, f), so that the correspond-
ing plots of �′ versus �′′ of the GCs were focused on this 
frequency range to deduce if the polarization effect plays 
an important role in EM dissipation. To elucidate on the 
polarization mechanism of GCs, the �′ versus �′′ curves of 
C-lignin and C-cellulose are also plotted as insets in Fig. 6a, 

(5)�
� = �∞ +

�s − �∞

1 + (2�f )2�2

(6)�
�� = �∞ +

2�f �(�s − �∞)

1 + (2�f )2�2

(7)
(

�
� −

�S + �∞

2

)2

+
(
�s��

)2
=
(
�S − �∞

2

)2

b. First, two Cole–Cole semicircle profiles were observed 
in both C-lignin and C-cellulose, and the difference in these 
two semicircular profiles might be attributed to the differ-
ence in polarization relaxation intensity. We note here that 
the probable polarization at high frequency region (i.e., 
10.0–18.0 GHz) results from dipole polarization [68].

Considering the fact that the formation of dipole-relax-
ation polarization in the presence of an applied microwave 
field depends on the presence of dipoles and their orienta-
tion, we propose a mechanism to explain the differences in 
the two Cole–Cole semicircle profiles. C-lignin and C-cel-
lulose contain various defects, such as vacancies and dipolar 
bonds (e.g., C–O and C=OH). These defects have direction 
only if they are in the symmetrical graphitized area. In low-
graphitized C-lignin, it has a high concentration of defects, 
which contribute to the polarization. Unlike C-lignin, C-cel-
lulose has a higher graphitized area and it can induce dipole 
polarization when its defects concentrate in this area. The 
variation in the distributions and types of defects in the gra-
phitized area greatly affects the polarization intensity and 
changes in the Cole–Cole semicircles (Fig. 6g). We note 
here that although the dipole-polarization behavior of GCs 
can be understood, the polarization intensity is difficult to 
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quantify using current analytical techniques. As shown in 
Figs. 6 and S9, the dipole relaxation contributes to the EM 
dissipation and all GCs have two Cole–Cole semicircles.

We comment here that dipole relaxation behavior alone 
is insufficient to understand why the GC-8 sample had 
the broadest effective absorption band. To provide further 
insights, we discuss the role of conductive loss. The free-
electron theory indicates that the conductive loss intensity 
is proportional to microwave conductivity ( � ) [34]. In the 
microwave region, the energy is insufficient to excite more 
carriers and hasten their mobility, thus the microwave con-
ductivity is equal to its static conductivity. According to 
the equivalent circuit theory [69], the static conductivity of 
carbon materials is proportional to its graphitization degree 
and nanostructure. Therefore, the conductive loss involves 
two steps: (1) materials self-respond to the electrical field 
and convert it into microcurrents, and (2) materials induce 
electronic transportation to form conductive loss. In step 
(1), the incident direction is important to determine the inci-
dent ratio, which strongly correlates to the carbon material 
nanostructure.

In GC materials, the characteristic nanosheet possesses 
structural characteristics of both central symmetry and axial 
symmetry, so that GC materials can maximize the use of 
electric field energy to drive the transport of electrons and 
form microcurrents. In GC-4, the poor graphitization results 
in a large resistivity, which leads to small conductive loss. 
In GC-5 and GC-8 that have both nanosheet and nanofiber 
structures, the nanosheet plays a key role in the formation 
of microcurrent, which tends to be transported through the 
highly conductive nanofibers. Since the nanofibers possess 
a larger aspect ratio, it prolongs the loss path and gener-
ates a considerable conductive loss. Therefore, GC-8 has a 
higher conductive loss than GC-5 owing to the high number 
density of nanofibers. GC-30, which only exhibits nanosheet 
structure, has high electrical utilization and small resistivity. 
Thus, the intensity of the EM-generated current in GC-30 
is strong, which greatly shortens the propagation depth of 
an incident EM wave inside the absorber according to the 
skin depth theory and reduces the effective conductive loss. 
Based on the analysis of the EM parameters, the excellent 
EM absorption performance displayed by GC-8 can be 
attributed to the synergistic effect between the highly con-
ductive carbon nanofibers and the graphite-like nanosheets 
with low conductivity, the interfacial polarization effect 

of these two structures, and the dipole polarization effect 
caused by the defects formed and multiple carbon heterocy-
cles, are illustrated in Fig. S10 [70, 71].

3.4  Hydrophobicity and Acid/Base Stability of GC‑8

In the final set of experiments, we sought to test the hydro-
phobicity and acid/base stability of GC materials under real 
environmental conditions. As shown in Fig. 7a, the appar-
ent contact angle of water droplets on an EM film consist-
ing of 15% GC-8 was measured to be ~ 135°, suggesting 
an enhanced hydrophobicity. We attribute the enhanced 
hydrophobicity to the significant removal of –O and –H 
during the carbonization process. In addition to water, the 
apparent contact angles of milk, coffee, and soy sauce on 
the film were greater than 120°, indicating a good omni-
phobicity. Furthermore, we tested the chemical stability of 
the GC materials by immersing GC-8 in either an acid solu-
tion with a pH value of 5.6 (which imitates the pH value 
of acid rain) or an alkaline solution with a pH of 8.5. The 
results in Figs. 7b, c and S11 indicate that after seven days 
of incubation in the acid or base solution, the EM dissipation 
performance of GC-8 remains unchanged in terms of broad 
fE and low RLmin . Additional SEM imaging (Fig. 7d, e) does 
not show measurable changes in GC-8 after seven days of 
immersion, suggesting a good acid/alkaline stability. The 
above analysis demonstrates that the GC-8 samples exhibit 
outstanding EM absorption and good environmental adapt-
ability, showing good potential for real-world application.

4  Conclusions

This work reports the synthesis of graphitized carbon 
(GC)-based heterostructures consisting of nanofibers and 
nanosheets via pyrolysis of bamboo-derived lignocellu-
losic nanofibrils. Through manipulation of nanostructure 
shape and covalent bonds, an effective EM absorber with a 
broad fE (4.2 GHz) from 12.5 to 16.7 GHz at a thickness of 
1.60 mm, as well as the thinnest required matching thickness 
(1.95 mm) for the lowest ||RLmin

|| of − 51.0 dB at 11.7 GHz, 
was obtained using precursors with a cellulose to lignin ratio 
of 8:1. Furthermore, the biomass-derived carbon materials 
exhibit enhanced hydrophobicity and acid/alkali resistance. 
Overall, the results reported in this work provide design 
principles for a new class of biomass-derived EM absorbers 



Nano-Micro Lett.           (2022) 14:11  Page 13 of 16    11 

1 3

that possess exceptional EM dissipation abilities and exhibit 
good environmental adaptabilities for outdoor application.
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