Supporting Information for

Biomass-Derived Carbon Heterostructures Enable Environmentally

Adaptive Wideband Electromagnetic Wave Absorbers

Zhichao Lou¹, Qiuyi Wang¹, Ufuoma I. Kara², Rajdeep S. Mamtani², Xiaodi Zhou¹, Huiyang Bian¹, Zhihong Yang³, Yanjun Li^{1, *}, Hualiang Lv^{2, *}, Solomon Adera^{5, *}, Xiaoguang Wang^{2, 4, *}

¹Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China

²Willian G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA

³Institute of Materials Research and Engineering, Agency for Sciences, Technology and Research, Singapore

⁴Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA

⁵Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

*Corresponding authors. E-mail: <u>nfcm2018@163.com</u> (Yanjun Li); <u>yexuexun5309@163.com</u> (Hualiang Lv); <u>sadera@umich.edu</u> (Solomon Adera); <u>wang.12206@osu.edu</u> (Xiaoguang Wang)

Supplementary Tables and Figures

Sample number	<i>p</i> -toluenesulfonic acid hydrolysis					pyrolysis
	Concentration	Temperature	Time	cellulose/lignin ratio	Nomenclature	Nomenclature
4	75 wt%	65 °C	60 min	4:1 w/w	LCNF-4	GC-4
5	40 wt%	80 °C	90 min	5:1 w/w	LCNF-5	GC-5
8	50 wt%	80 °C	60 min	8:1 w/w	LCNF-8	GC-8
30	80 wt%	80 °C	30 min	30:1 w/w	LCNF-30	GC-30

 Table S1 Sample preparation parameters and nomenclature

Nano-Micro Letters

Fig. S1 a-c AFM topographic image, height curve, and AFM phasic image of the framed area in Figure 1(i) of the main text. **d-g** Representative AFM topographic and phasic images of pure lignin (\mathbf{d}, \mathbf{e}) and cellulose (\mathbf{f}, \mathbf{g})

Fig. S2 (a) XRD curves of LCNF-4, LCNF-5, LCNF-8 and LCNF-30. (b) XPS survey curves of LCNF-4, LCNF-5, LCNF-8 and LCNF-30. (c, d) XPS curves of C_{1s} and O_{1s} with deconvoluted peaks

Nano-Micro Letters

Fig. S3 XRD curves of the carbonized samples

Fig. S4 FT-IR curves of the carbonized samples

Fig. S5 XPS survey curves of the carbonized samples. **b** XPS curves of C_{Is} with deconvoluted peaks

Nano-Micro Letters

Fig. S6 Raman spectroscopy curves of the carbonized samples

Fig. S7 2-D colored RL values of C-lignin and C-cellulose

Fig. S8 Curves of a real part and b imaginary part of the permittivity of GCs

Fig. S9 Cole-Cole plots of GC-4, GC-5 and GC-30

Fig. S10 Schematic illustration of electromagnetic loss mechanism

Fig. S11 2-D colored RL values of GC-8 after the 7-day incubation period in an aqueous solution of **a** pH=5.6 and **b** pH=8.5