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S1 Experimental Section
S1.1 Preparation of Co2O3 nanosheets and the surface modification by CTAB
1.9 g CoCl2·6H2O and 0.8 g NaOH were added into the 160 mL deionized water and stirred till solid particle were completely dissolved. Next, the mixture was transferred to Teflon-lined stainless-steel autoclave for solvothermal reaction at 120 °C for 3 h. The autoclave was cooled to ambient temperature naturally. The product was successively washed by ethanol and distilled water for 3 times and then dried at 60°C. Co2O3 nanosheets were obtained when the as-synthesized Co(OH)2 nanosheets were put into the tube furnace and heat treated at 290 ℃ for 2h under air atmosphere. For the surface modification, Co2O3 nanosheets (1.0 g) and hexadecyltrimethylammonium bromide (CTAB, 0.5 g) were dispersed in deionized water (100 mL) with continuous magnetic stirring in a 60 °C water bath for 2 h. The product was washed with deionized water for several times and dried at 65 °C, and finally the modified hexagonal Co2O3 nanosheets were obtained.
S1.2 Preparation of Ni2O3 nanosheets and the surface modification by CTAB
2.0 g Ni(NO3)2·6H₂O was added into the 100 mL deionized water and stirred till solid particle were completely dissolved. With continuous magnetic stirring, 5 mL NH3·H2O was dropwise added to the solution. The mixture was transferred to Teflon-lined stainless-steel autoclave for solvothermal reaction at 150 °C for 12 h. The autoclave was cooled to ambient temperature naturally. The product was successively washed by ethanol and distilled water for 3 times and then dried at 60°C. Ni2O3 nanosheets were obtained when the as-synthesized Ni(OH)2 nanosheets were put into the tube furnace and heat treated at 350℃ for 2h under air atmosphere. For the surface modification, Ni2O3 nanosheets (1.0 g) and hexadecyltrimethylammonium bromide (CTAB, 0.5 g) were dispersed in deionized water (100 mL) with continuous magnetic stirring in a 60 °C water bath for 2 h. The product was washed with deionized water for several times and dried at 65 °C, and finally the modified hexagonal Ni2O3 nanosheets were obtained.
S1.3 Preparation of Co/RGO and Ni/RGO composite
GO suspension (100 mL, 10 mg·mL-1) were mixed with modified Co2O3 (4 mg) and Ni2O3 (4 mg) respectively, and the mixture was ultrasonic stirred evenly for 3 h by electrostatic adsorption process. Then the mixtures were sealed and refrigerated in the refrigerator, and treated by freeze-drying method (-65 ℃, 0.1 Pa) for 24 h. The above products were put into the tube furnace and heat treated at 350 ℃ for 2h under H2 atmosphere (60 mL·min-1). Finally, Co/RGO and Ni/RGO were obtained, respectively.
S1.4 Calculation details
All of the calculation results of Co/graphene and Ni/graphene were carried out by the Castep module of Materials Studio software based on density functional theory (DFT). The ion−electron interactions were described by the OTFG ultrasoft pseudopotential. The Generalized Gradient Approximation (GGA) method with Perdew−Burke−Ernzerhof (PBE) functional was adopted to solve the exchange and correlation functional energies. The cutoff energy and k-point mesh were determined as 500 eV and 2×3×1, respectively. The calculation accuracy was 1.0×10−5 eV per atom. The thickness of the vacuum layer along the c-axis is fixed at 20 Å.



S2 Supplementary Figures and Tables 
[image: ]Fig. S1. SEM images of a RGO, b Fe/RGO-1, c Fe/RGO-2, d Fe/RGO-3 and e Fe/RGO-4. f ICP measurement of samples.
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Fig. S2. XRD patterns a, b and Raman spectra c, d of samples.

[image: ]Fig. S3. a XPS survey, b C 1s spectra and c O 1s spectra of GO. 




[image: ]Fig. S4. Real part (µ') and imaginary part (µ") of permeability and permeability loss parameter (tan δμ) of a RGO composites and b Fe/RGO-2 composites at a low filling loading of 1-5 wt%.










[image: ]Fig. S5. RL value versus frequency for specific thickness values of a RGO composites and b Fe/RGO-2 composites at a low filling loading of 1-5 wt%.












[image: ]Fig. S6. Attenuation constant (ɑ) and intrinsic impedance ratio (Z) of a RGO composites and b Fe/RGO-2 composites at a low filling loading of 1-5 wt%.
From the attenuation point of view, the attenuation constant () can be expressed as follows and is an important factor to evaluate the dissipation effect for EMW [S1, S2].
                 (1)
Based on formula (1), the larger the imaginary part of EM parameters of the material is, the larger  is obtained, meaning more heat energy consumption are converted easily. From Fig. S6, the attenuation performance gradually increases with the increase of RGO and Fe/RGO filling ratio. The impedance matching ratio (Z) of samples can be calculated as [S3]: 
                                                      (2)
 and  are intrinsic impedance matches of the absorbing material and vacuum, respectively. The Z value of the absorbing material is closer to 1, the better the impedance match, so that more electromagnetic waves enter the material to promote the absorption of electromagnetic energy. The Z values exhibit the opposite trend compared to . With the increase of the filling ratio, the Z values gradually decrease due to the increase of electrical conductivity.

[image: ]
Fig. S7. Structure of Fe (110)/graphene (001) system (showing top view a and side view b) and charge density difference c, with purple and gray balls representing Fe atom and C atom, red contour denotes electron depletion region and blue contour refers to electron accumulation region.
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Fig. S8. Microstructural characterizations of graphene and Fe/graphene. a Raman spectra, b TEM image, c-f SAED patterns and g AFM topography signals of graphene. h TEM and i SAED pattern of Fe/graphene.








[image: ]Fig. S9. a µ' and b µ" of RGO, Fe/RGO-1, Fe/RGO-2, Fe/RGO-3 and Fe/RGO-4. c Magnetic hysteresis loops of Fe, Fe2O3, Fe/RGO-4.
Due to the low Fe content (0.32 ~1.22 wt%) in Fe/RGO composites, the u' and u" values of all samples are ≈1 and ≈0 (Fig. S9), and the saturation magnetization (Ms) value of Fe/RGO-4 was only 0.8 % of Fe (1.40 emu/g, 169.08 emu/g), indicating that Fe has no obvious magnetic loss at the measured frequency in the alternating EM field.
[image: ]
[bookmark: OLE_LINK52]Fig. S10. The RL values versus frequency and thickness for a-c RGO, d-f Fe/RGO-1, g-i Fe/RGO-2, j-l Fe/RGO-3 and m-o Fe/RGO-4. The region confined in the black lines corresponds to RL≤−10 dB.
[image: ]
[image: ]Fig. S11. RL values, simulated and experimental values of matching thicknesses under λ/4 condition, impedance matching values for a RGO, b Fe/RGO-2, c Fe/RGO-3 over 2-18 GHz.

Fig. S12. Cole-Cole curves of ε'-ε" and ε'- ε"p/f of a RGO, b Fe/RGO-1, c Fe/RGO-2, d Fe/RGO-3 and e Fe/RGO-4. 
Based on the Debye relaxation theory, the existence of polarization can be proved by the Cole-Cole semicircle, each semicircle of Cole-Cole expresses a Debye relaxation process [S4]. The ԑ' and ε" can be expressed as follows:
                                                (3)
                                 (4)
                                    (5)
where  is the static permittivity,  is the relative dielectric constant, τ is the relaxation time, respectively. To extract the τ of each polarization behavior, equation (3) and (4) can be further reduced to equation (6):
                                            (6)
According to equation (6), each straight line in the plots of  versus  represents a kind of polarization behavior with different relaxation times [S5]. Fig. S12 shows the '-" and - curves of RGO, Fe/RGO-1, Fe/RGO-2, Fe/RGO-3 and Fe/RGO-4, it can be seen that the number of semicircles increases with the increase of Fe, indicating an enhanced relaxation process compared with GO. Fe/RGO-2 and Fe/RGO-3 have more polarization relaxation processes. The relaxation times are listed in Table S1.
[image: ]Fig. S13. The tanδε a, α b, and Z c of RGO, Fe/RGO-1, Fe/RGO-2, Fe/RGO-3 and Fe/RGO-4. 





[image: ]Fig. S14. The electromagnetic parameters a-d and RL values e-h of Fe/RGO-1', Fe/RGO-2', Fe/RGO-3' and Fe/RGO-4'. 
[bookmark: _Hlk121873695][image: ][image: ]Fig. S15. The electrical conductivity of RGO, Fe/RGO-1, Fe/RGO-2, Fe/RGO-3 and Fe/RGO-4 powders.
Fig. S16. XRD patterns of Co, Ni, Co/RGO, Ni/RGO a. Eelectromagnetic parameters (ε', ε", μ' and μ") of Co/RGO and Ni/RGO composites with 2 wt% loading b, c. Charge density difference plots of Co (002)/graphene (001) and Ni (111)/graphene (001). The positive and negative charges are shown in blue and red (isovalue: 0.1) d. The σ e, Z and α f of Co/RGO and Ni/RGO. RL values with different thickness of Co/RGO g and Ni/RGO with 2 wt% loading h.
[image: ]Fig. S17. Comparison of some typical RGO-based composites reported in the recent literature.


































Table S1 Parameters of the local dielectric detection
	Parameters
	value

	Quality factor (Q)
	181

	Elastic coefficient (k)
	3 N/m

	AC voltage (VAC)
	10 V

	Lift height (z)
	15 nm






Table S2 Relaxation times of the RGO, Fe/RGO-1, Fe/RGO-2, Fe/RGO-3 and Fe/RGO-4
	Samples
	Frequency (GHz)
	τ (s)

	RGO
	2 - 4.32
	6.21×10-11

	
	4.32 - 9.76
	1.59×10-11

	
	9.76 - 18
	2.45×10-12

	Fe/RGO-1
	2 - 4.79
	8.22×10-11

	
	4.79 - 11.27
	2.142×10-11

	
	11.27 - 14.52
	4.17×10-12

	
	14.52 - 18
	3.54×10-12

	Fe/RGO-2
	2 - 3.56
	9.43×10-11

	
	3.56 - 4.78
	7.24×10-11

	
	4.78 - 7.67
	2.89×10-11

	
	7.67 - 9.78
	1.73×10-11

	
	9.78 - 14.94
	8.85×10-12

	
	14.94 - 18
	8.18×10-12

	Fe/RGO-3
	2 - 2.52
	9.36×10-11

	
	2.52 - 3.74
	6.41×10-11

	
	3.74 - 5.67
	5.37×10-11

	
	5.67 - 8.73
	1.77×10-11

	
	8.73 - 14.85
	7.15×10-12

	
	14.85 - 18
	3.72×10-12

	Fe/RGO-4
	2 - 4.12
	2.68×10-11

	
	4.12 - 5.79
	1.41×10-11

	
	5.79 - 10.54
	7.58×10-12

	
	10.54 - 18
	4.14×10-12








Table S3 The EMA performance in 2-18 GHz of typical absorbers
	Filler
	Mass Ratio (wt%)
	Thickness (mm)
	RLmin (dB)
	EAB
(GHz)
	Refs.

	[bookmark: _Hlk117433791]RGO/Cu
	8
	5
	-50.4
	4.1
	[S6]

	FeCo/GNS
	50
	2.5
	-40.2
	4.3
	[S7]

	NiFe2O4/rGO
	70
	5
	-42
	5.6
	[S8]

	CoFe2O4/rGO
	50
	2.8
	-57.7
	5.8
	[S9]

	Ti3C2Tx/rGO
	5
	2.2
	-53.49
	4.4
	[S10]

	MnFe2O4/RGO
	10
	3.0
	-29.0
	4.88
	[S11]

	rGO/CuS/PPy
	10
	4
	-49.11
	4.88
	[S12]

	PVDF/RGO
	3
	4
	-25.6
	4.32
	[S13]

	CoO-Co@RGO
	10
	2.1
	-34.22
	6.24
	[S14]

	Graphene/Fe3O4/C
	25
	1.8
	-30.1
	5.4
	[S15]

	SiC/FexOy/graphite
	66.67
	5.5
	-41.8
	4.64
	[S16]

	ZnFe2O4@RGO@CuS
	20
	2.2
	-55.4
	7.5
	[S17]

	Fe/RGO-2
	2
	2.45
	-53.38
	6.56
	This work

	
	2
	2.62
	-29.33
	7.52
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