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Fig. S1 Schematic diagram of the fabrication of Ti3C2Tx MXene. a The main synthesis procedures of delaminated Ti3C2Tx MXene. b The structural change of Ti3AlC2 MAX before and after the acid treatment
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Fig. S2 a XPS survey spectra of Ti3AlC2 MAX and Ti3C2Tx MXene. The high-resolution XPS spectra of b Ti 2p, c C 1s, d O 1s and e F 1s in MXene
As depicted in Fig. S2a, Al element signals faded accompanied by the appearence of F element in the survey spectrum of Ti3C2Tx MXene compared with that of Ti3AlC2 MAX, indicating that the successful removal of Al atoms from Ti3AlC2 MAX and the formation of -F groups. The high resoltion spectra of Ti 2p, C 1s, O 1s and F 1s in MXene were shown in Fig. S2b-e.
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Fig. S3 Raman spertrum of MXene
The peak at 197.7 cm-1 was assigned to the typical out-of-plane (A1g) vibrations of Ti atoms in the outer layer along with carbon and surface groups[1]. Further, the broad peaks in the region of 230~470 cm-1 was designated as in-plane (Eg) modes of surface groups attached to Ti atoms [S1, S2]. The peak region between 530 cm-1 and 765 cm-1 was associated mostly with carbon vibrations (both Eg and A1g) [S1].
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Fig. S4 Atomic structures of deprotonation and reprotonation in aramid fibers
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Fig. S5 a XPS survey spectrum of ANF. The high-resolution XPS spectra of b C 1s, c N 1s and d O 1s in ANF
The survey spetrum manifested that ANF was composed of C, N and O elements. The peaks of C 1s at 287.8 eV, N 1s at 402.0 eV and O 1s at 531.0 eV were assigned to -CO-NH- group.
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Fig. S6 Raman spertrum of ANF
The peak at 1568 cm-1 was associated with the coupled C-N in-plane deformation and C-N stretching modes [S3]. The absorption peak located at 1609 cm-1 was related to the C=C stretching band of the benzene ring of ANF [S4].
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Fig. S7 Zeta potential of a ANF, b MXene and c ANF/Mxene
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Fig. S8 Hydrodynamic size of a ANF, b MXene and c ANF/MXene
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Fig. S9 SEM image of ANF/Mxene
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Fig. S10 SEM images of a A0M0PC, b A0M1.5PC and c A5M0PC
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Fig. S11 FTIR spectra (TR mode) of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
After incorporating ANF and MXene, the peak at 1644 cm-1 shifted to 1632 cm-1, i.e. red shift. It indicated the formation of hydrogen bondings near amide groups.
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Fig. S12 FTIR spectra (ATR mode) of Water, A0M0PC, and Dry-A0M0PC hydrogels
The spectral profile of pure water was analyzed to characterize hydrogen bonding interactions in free water (FW) molecules, establishing reference peaks for subsequent analytical procedures. A broad and intense O-H stretching vibration peak observed at ~3300 cm-1 arose from the formation of an intermolecular hydrogen-bonding network in FW. The A0M0PC hydrogel exhibited a markedly broadened O-H stretching band with a redshift to ~3250 cm-1, superimposed with the N-H vibration (~3300 cm-1) originating from chitosan (CS). Water molecules formed multiple hydrogen bondings with polar functional groups (-OH, -NH2, -SO3H) within the polymer matrix. The underlying interaction mechanisms involved: (i) strong hydrogen bonding between chitosan’s -OH and -NH2 groups with water molecules, inducing spectral broadening and shifting; (ii) reinforced hydrogen-bonding networks through N-H···O interactions between acrylamide’s (AM’s) -CONH2 and water molecules. The freeze-dried hydrogel (Dry-A0M0PC) demonstrated significant attenuation in O-H peak intensity due to the removal of FW, partial or complete elimination of IW, and partial extraction of bound water (BW). While the predominant removal of water molecules led to partial dissociation of the hydrogen-bonding network, inherent vibration peaks of the polymer matrix became discernible in the spectral profile. Overall, water molecules formed multiple hydrogen bondings via the O-H groups with the -OH and -NH2 in CS, the -CONH2 in AM, and the -SO3H in AMPS, collectively establishing a dynamic cross-linked network. However, IW served as a transitional water molecule, exhibiting binding strength with the polymer matrix that was intermediate between that of FW and BW. Therefore, it remains challenging to precisely differentiate IW, FW, and BW based on FTIR test results. Nevertheless, the FTIR analyses still provides a vital characterization tool for investigating interactions between water molecules and the polymer matrix.
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Fig. S13 Rheological properties of A0M0PC and A5M1.5PC hydrogels. a The variations of viscosity with frequency. b The loss tangent at different frequencies
The viscosity of A5M1.5PC hydrogel was always higher than that of A0M0PC hydrogel at all frequencies, indicating that the addition of ANF and MXene could improve the viscosity of the hydrogel matrix. The viscosity of both A0M0PC and A5M1.5PC hydrogel was dramatically descended with the frequency. It could be explained by the fracture of the hydrogel network. The loss tangent (tanδ) of both A0M0PC and A5M1.5PC hydrogel was below 0.2 at all frequencies, suggesting that the elasticity was dominant in the viscoelastic hydrogels with the strong molecular interaction. Moreover, ANF and MXene further enhanced the elasticity.
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Fig. S14 Raman spectra of A5M1.5PC hydrogel in different spots
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Fig. S15 Water content of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
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Fig. S16 Antibacterial activity of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
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Fig. S17 Average tensile stress of a A5M0.5PC, A5M1PC and A5M1.5PC as well as b A0M0PC, A0M1.5PC and A5M0PC hydrogels. Average elongation at break of c A5M0.5PC, A5M1PC and A5M1.5PC as well as d A0M0PC, A0M1.5PC and A5M0PC hydrogels
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Fig. S18 Tensile toughness of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
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Fig. S19 Average compressive stress of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
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Fig. S20 Average adhesion stress of A5M1.5PC hydrogel to different substrates
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Fig. S21 Uniaxial tensile strain-stress curves of A5M1.5PC, HM-A5M1.5PC and HT-A5M1.5PC
Under elevated temperatures, accelerated dehydration in hydrogels led to progressive rigidity through flexibility loss. Partial water depletion enhanced tensile strength but reduced fracture elongation. Strain-stress curves demonstrated non-monotonic progression with oscillatory patterns during stretching, attributed to modulus mismatch between rapidly dehydrated surface layers and hydrated internal regions exposed through mechanical extension.
Under high-humidity conditions, hydrogel specimens absorbed ambient moisture, exhibiting slight volumetric expansion and structural relaxation. This phenomenon led to near-zero stress levels during the initial strain phase of the stress-strain curve.
Therefore, based on the mechanical performance testing under extreme temperature and humidity conditions outlined above, the synthesized hydrogel materials in this study are recommended for application in environments with moderate thermal and hygroscopic parameters.
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Fig. S22 EMI SET curves of a A0M0PC, b A5M0PC, c A0M1.5PC and d A5M1.5PC hydrogels with different thicknesses in the X-band range
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Fig. S23 Average EMI SER, SEA and SET of a A0M0PC, b A5M0PC, c A0M1.5PC and d A5M1.5PC hydrogels with different thicknesses in the X-band range
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Fig. S24 Average EMI SER and SEA as well as the percentage of SEA relative to SET (marked as red numbers) of a A0M0PC, b A5M0PC, c A0M1.5PC and d A5M1.5PC hydrogels with different thicknesses in the X-band range
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Fig. S25 Average EMI SER, SEA and SET of AxMyPC hydrogels with a 2 mm, b 4 mm and c 6 mm in the X-band range
[image: ]
Fig. S26 Average power coefficient of AxMyPC hydrogels in the X-band range
[image: ]
Fig. S27 a ε" of AxMyPC hydrogels and b εc" and εp" of A5M1.5PC hydrogel in the X-band range
The classical Debye theoretical model was employed to calculate polarization loss and conductive loss values, thereby quantifying the impact of electromagnetic wave attenuation mechanisms. Given the non-magnetic nature of the hydrogel materials in this study, the initial analysis focused on filler effects on the imaginary dielectric constant (ε") (Fig. S27a). The polyelectrolyte hydrogels containing solely insulative ANF fillers (A5M0PC) exhibited higher ε" values compared to the filler-free counterparts (A0M0PC), yet remained lower than those incorporating exclusively MXene fillers (A0M1.5PC). Notably, the hydrogels with combined ANF/MXene fillers (A5M1.5PC) demonstrated a more pronounced ε" enhancement than the formulations containing individual filler components. The underlying mechanism stemed from distinct loss pathways: Insulative ANF primarily enhanced polarization loss through interfacial polarization and ionic path modulation, while highly conductive MXene surpassed ANF’s performance via conductive loss coupled with interfacial polarization. The synergistic incorporation of both fillers introduced multi-scale interfacial coupling and facilitated localized optimization of conductive networks, thereby achieving cooperative enhancement in electromagnetic dissipation capabilities.
The subsequent analysis based on the Debye model elucidated the loss mechanisms within the A5M1.5PC hydrogel (Fig. S27b). Polarization loss predominated over conductive loss, attributed to twofold origins. First, ANF acted as insulating spacers impeding direct contact between MXene nanosheets, suppressing conductive percolation network formation—thereby reducing overall conductivity and ultimately diminishing conductive loss. Furthermore, the coexistence of ANF and MXene introduced multi-interfacial zones that amplified heterogeneous interfacial polarization effects. These findings underscore the critical role of interfacial engineering in multiphase composite hydrogels for regulating high-frequency dielectric loss.


Table S1 Comparison of the ratio of EMI SEA to SET between this work and other references
	SER/(dB)
	SEA/(dB)
	SET/(dB)
	SEA/SET
	Sample
	References

	3.3
	62.5
	65.8
	94.98%
	PVA/EGaInSn-8Ni
	[bookmark: OLE_LINK7][bookmark: OLE_LINK8][S5]

	0.23
	24.03
	24.26
	99.05%
	M0.9F3CP-Gly/P
	[S6]

	8.8
	25.0
	33.8
	73.96%
	PGMCCa
	[S7]

	0.8
	62.8
	63.6
	98.74%
	POG
	[S8]

	5.9
	30.8
	36.7
	83.92%
	CG6
	[S9]

	3.2
	38.1
	41.3
	92.25%
	PAM/PVA6/LiCl3
	[S10]

	9
	57
	66
	86.36%
	AgNWs-MS-based hydrogels (∼20 wt % PVA)
	[S11]

	8.2
	21.8
	30
	72.67%
	C/M-10
	[S12]

	4.3
	34.4
	38.7
	88.89%
	PMP3-SSD
	[S13]

	4.9
	25.4
	30.3
	83.83%
	PVA/PAA-PEDOT:PSS-TA
	[S14]

	7.726
	41.774
	49.5
	84.39%
	PAAm-PHEMAA/CMC-Fe3+-MXene
	[S15]

	2.97
	51.17
	54.14
	94.51%
	A5M1.5PC
	This work
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Fig. S28 Average EMI SER, SEA and SET of A5M1.5PC hydrogel with a 2 mm, b 4 mm, c 6 mm and d 8 mm thickness after elongation in the X-band range
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Fig. S29 Average EMI SET of a A0M0PC, b A5M0PC and c A0M1.5PC hydrogels with different thicknesses after elongation in the X-band range
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Fig. S30 Comparison of EMI SET curves of Dry-A5M1.5PC and A5M1.5PC hydrogel with a 2 mm and b 8 mm thickness in the X-band range
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Fig. S31 Comparison of EMI SET curves of Frozen-A5M1.5PC and A5M1.5PC hydrogel with a 2 mm and b 8 mm thickness in the X-band range
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Fig. S32 Comparison of EMI SE between Dry-A5M1.5PC and Frozen-A5M1.5PC in the thickness of 2 mm and 8 mm: a EMI SER, 2 mm, b EMI SEA, 2 mm, c EMI SET, 2 mm, d EMI SER, 8 mm, e EMI SEA, 8 mm, f EMI SET, 8 mm
[image: ]
Fig. S33 Average EMI SE of A5M1.5PC and HM-A5M1.5PC in the X-band range
The hydrogel was placed in a sealed environment with a humidifier for 3 h to test the changes in EMI SE. The hydrogel absorbed moisture, leading to increased EMI SET and SER.
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Fig. S34 Average EMI SE of A5M1.5PC and HT-A5M1.5PC in the X-band range
The hydrogel was treated in an oven at 40 °C for 4 h, resulting in partial moisture loss, and decreased EMI SET and SEA. The increased EMI SER was attributed to the reduced presence of polarizable small water molecules.
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Fig. S35 EMI a SER and b SEA curves of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels in the THz-band range
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Fig. S36 a Transmissivity and b reflectivity of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels in the THz-band range
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Fig. S37 Ionic conductivity of A0M0PC, A5M0PC, A0M1.5PC and A5M1.5PC hydrogels
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Fig. S38 The changes in relative resistance of A5M1.5PC hydrogels in the strain range of a 1%~5% and b 10%~100% as well as c different stretching velocities
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Fig. S39 Body motion monitering of a bending of wrist joint and b pronunciation of ‘flexible’
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