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S1 Supplementary Methods
S1.1 In-situ XRD Diffraction 
The crystal structure evolution of sulfur species was investigated using in situ XRD diffraction (Rigaku Smart Lab) under operando electrochemical conditions. Assemble the in-situ electrochemical cell in the order of sulfur cathode/electrolyte/separator/lithium foil anode. During galvanostatic cycling at 0.2 C, XRD patterns were collected in real time through a beryllium window using Cu K radiation (λ = 1.5406 Å), with a scan range of 20°-40° (2θ) and a step size of 10°. Phase transitions of sulfur species, including elemental sulfur (S8), lithium polysulfides (Li2Sx), and lithium sulfide (Li2S), were analyzed based on characteristic diffraction peaks and their dynamic evolution.
S1.2 In-situ Raman Spectroscopy
The chemical evolution of LiPSs was monitored using a Lab RAM Odyssey Raman spectrometer (HORIBA FRANCE SAS). An in situ Raman cell, equipped with a quartz glass window for laser transmission and signal collection, was assembled as follows: cathode shell, lithium foil with an aperture (to enable optical access), separator, anode, and anode shell. During galvanostatic discharge at a 0.2 C rate, Raman spectra were collected through the quartz window using 532 nm laser excitation, with a spectral range of 100-600 cm−1 to capture key vibrational modes of sulfur species. The aperture in the lithium foil facilitated unobstructed laser penetration for real-time detection of LiPSs characteristic bands.
S1.3 XAS Measurements
Transmission XAS measurements were performed on a laboratory device of easyXAFS300+ (easyXAFS LLC). XANES and EXAFS of catalyst Co K-edge and W L3-edge were collected under the same conditions, and calibrated using metal Co foil and W foil. Data analysis was performed using the Athena software in order to normalize the spectrum.
S1.4 Kelvin Probe Force Microscopy Measurements
The measurements were performed using a Bruker Dimension Icon atomic force microscope (AFM) from Germany. First, the dispersed sample was drop-cast onto a conductive substrate and allowed to dry naturally. A SCM-PIT-V2 probe was then selected to conduct characterization in Kelvin probe force microscopy (KPFM) mode. After testing, the work function of the catalyst was calculated and calibrated using a gold (Au) reference standard.
S2 Supplementary Figures and Tables
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Fig. S1 SEM images of Co4W6O21(OH)2·4H2O
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Fig. S2 Particle size distribution of CoWO4/WO2
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Fig. S3 The N2 adsorption/desorption isotherms of a CoWO4/WO2, b CoWO4 and c WO2. The BET surface areas are calculated to be 28.67 m−2 g−1 for CoWO4/WO2, 26.06 m−2 g−1 for CoWO4, and 24.71 m−2 g−1 for WO2, respectively

[image: ]
Fig. S4 Simulated radial distribution function of W-W paths in WO2
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Fig. S5 Simulated radial distribution function of M-M (M=W, Co) paths in CoWO4
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Fig. S6 a XANES spectrum and b corresponding FT of k²-weighted χ(k) function for Co Foil, Co3O4, CoWO4, and CoWO4/WO2
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Fig. S7 Electronic band structure and pDOS plots of a CoWO4 and b WO2
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Fig. S8 UV-vis spectrum for determining the optical bandgap of CoWO4
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Fig. S9 The work function (Φ) calculation for a CoWO4 and b WO2

[image: ]
Fig S10 KPFM images of a CoWO4 and b WO2. The work function was calculated from CPD values, calibrated against an Au reference (5.1 eV). The results show that the work function of CoWO4 is 5.01 eV, while the work function of WO2 is 4.72 eV
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Fig S11 Bader charge calculation for a CoWO4, b CoWO4/WO2, and c WO2. The labels on each cation is the difference in Bader charge relative to W0 or Co0. The results indicate that both Co and W in the CoWO4 side of the heterojunction exhibit reduced oxidation states compared to bulk CoWO4, while W atoms in the WO2 side show an increase in oxidation state due to electron loss. These findings confirm that charge transfer occurs from WO2 to CoWO4 at the interface
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Fig. S12 Equivalent circuit diagram for EIS curve fitting. Rs represents the serial resistance of contact and electrolyte. Rct is the charge transfer resistance. Wo is the Warburg impedance which reflects the diffusion impedance in electrochemical reactions
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Fig. S13 XPS spectra of Co 2p before and after the CoWO4/WO2 heterojunctions adsorb Li2S4
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Fig. S14 Changes in the length of S−S bonds for CoWO4/WO2-Li2S4
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Fig. S15 Geometric models of polysulfide molecules adsorbed on surface of CoWO4/WO2, CoWO4 and WO2
[image: ]
Fig. S16 Tafel analyses of a peak R1 in the CV curves and b peak O1 in the CV curves
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Fig. S17 Constant current charge-discharge curves of a CoWO4 and b WO2 at different rates
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Fig. S18 CV curves of a CoWO4/WO2, b CoWO4, and c WO2 were measured at 0.1, 0.2, 0.3, 0.4 and 0.5 mV S−1 scan rates to calculate the intrinsic kinetic rate constant ()
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Fig. S19 Measured QH and QL in the charge-discharge curves of Li-S batteries using CoWO4/WO2, CoWO4, and WO2 as the catalysts, respectively
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Fig. S20 Schematic diagram of the in-situ Raman setup for Li-S batteries
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Fig. S21 Charging and discharge curve diagrams of CoWO4/WO2 at the 100th and 500th circles in the long cycle
Table S1 Elemental composition of catalysts
	Sample
	Co (mol %)
	W (mol %)

	CoWO4/WO2
	38.6%
	61.4%






Table S2 Fitted parameters of EIS data obtained from the different catalyst-loaded cells according the equivalent circuit in Fig. S10
	Samples
	Rs(Ω)
	Rct(Ω)

	CoWO4/WO2
	1.076
	11.85

	CoWO4
	1.744
	16.07

	WO2
	2.273
	23.42


Table S3 Beweick, M. Fleischman, and H.R. Thirsk (BFT) model and Scharifker-Hills (SH) Model: (1) two-dimensional instantaneous nucleation (2DI); (2) two-dimensional progressive nucleation (2DP); (3) three-dimensional instantaneous nucleation (3DI); (4) three-dimensional progressive nucleation (3DP)
	2DI
	


	2DP
	


	3DI
	


	3DP
	



Table S4 Fitting parameters of Nyquist plots of Li-S full cells using the different catalysts
	[bookmark: _Hlk197628784]Samples
	Rs(Ω)
	Rct(Ω)

	CoWO4/WO2
	2.702
	31.11

	CoWO4
	2.698
	45.15

	WO2
	2.912
	65.54





Table S5 Performance comparison between CoWO4/WO2 and other materials
	Catalysts
	Capacity at low rates
(mAh g−1)
	Long-term cycling
(Cycles, Decay per cycle/Capacity Retention, Rate)
	Refs.

	CoWO4/WO2
	1262 (0.1C)
	1000, 0.038%, 1C
	This work

	LaNi0.6Co0.4O3 
	1140.4 (0.1C)
	700, 0.08%, 1C
	[S1]

	Co-Nx
	1150 (0.2C)
	1000, 0.016%, 0.5C
	[S2]

	Co/Co0.85Se@NC
	1466 (0.2C)
	1000, 0.042%, 2C
	[S3]

	Co5.47N@NC
	1245 (0.1C)
	200, 85%, 1C
	[S4]

	CoTe2/Co-O-NC
	1040 (0.2C)
	500, 0.046%,0.5C
	[S5]

	Co-HTP/CG
	1137 (0.1C)
	500, 0.052%, 1C
	[S6]

	Co7Fe3/Co
	1124.9 (0.1C)
	1000, 0.046%, 1C
	[S7]

	La-deficient LaCoO3
	1302 (0.1C)
	500, 0.055%, 1C
	[S8]

	Co3O4/TiO2-HPs
	1169 (0.2C)
	500, 0.07%, 1C
	[S9]

	CoSe2/Co3O4@NC-CNT
	1457 (0.1C)
	500, 0.045%, 1C
	[S10]

	S/Co-NC/WNO
	1028.5 (0.2C)
	500, 0.04%, 1C
	[S11]

	WC-WO3/C
	1239.6 (0.2C)
	800, 0.0058%, 2C
	[S12]

	W2N/Mo2N@MOF-C
	1631.4 (0.1C)
	980, 0.034%, 1C
	[S13]

	rGO@WO3
	1410 (0.1C)
	500, 0.086%, 3C
	[S14]

	W0.02-Co3O4
	1217 (0.2C)
	500, 74%, 1C
	[S15]
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S1 Supplementary Methods 

S1.1 In-situ XRD Diffraction  

The crystal structure evolution of sulfur species was investigated using in situ XRD diffraction 

(Rigaku Smart Lab) under operando electrochemical conditions. Assemble the in-situ electrochemical 

cell in the order of sulfur cathode/electrolyte/separator/lithium foil anode. During galvanostatic 

cycling at 0.2 C, XRD patterns were collected in real time through a beryllium window using Cu K𝛼 

radiation (λ = 1.5406 Å), with a scan range of 20°-40° (2θ) and a step size of 10°. Phase transitions 

of sulfur species, including elemental sulfur (S

8

), lithium polysulfides (Li

2

S

x

), and lithium sulfide 

(Li

2

S), were analyzed based on characteristic diffraction peaks and their dynamic evolution. 

S1.2 In-situ Raman Spectroscopy 

The chemical evolution of LiPSs was monitored using a Lab RAM Odyssey Raman spectrometer 

(HORIBA FRANCE SAS). An in situ Raman cell, equipped with a quartz glass window for laser 

transmission and signal collection, was assembled as follows: cathode shell, lithium foil with an 

aperture (to enable optical access), separator, anode, and anode shell. During galvanostatic discharge 

at a 0.2 C rate, Raman spectra were collected through the quartz window using 532 nm laser excitation, 

with a spectral range of 100-600 cm

−1

 to capture key vibrational modes of sulfur species. The aperture 

in the lithium foil facilitated unobstructed laser penetration for real-time detection of LiPSs 

characteristic bands. 

S1.3 XAS Measurements 

