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Supplementary Figures and Tables
[image: ]
Fig. S1 a, b SEM images of the Na₃Zr₂Si₂PO₁₂ framework acquired at a 45° viewing angle to reveal its 3D morphology (the described "45° tilt" was a deliberate adjustment of the SEM sample stage, not a measurement of the material's intrinsic angle)
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Fig. S2 a FTIR spectra and a magnified area of b
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[bookmark: OLE_LINK350]Fig. S3 The polymerization of the TPGDA monomers initiated by AIBN
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[bookmark: _Hlk213508757]Fig. S4 EDS mapping of the FGE


[image: ]
Fig. S5 EDS mapping of the CGE
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[bookmark: OLE_LINK4][bookmark: OLE_LINK127]Fig. S6 EIS of FGE at different temperatures with a thickness of 0.1 mm and a diameter of 16 mm
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[bookmark: OLE_LINK206][bookmark: OLE_LINK218]Fig. S7 EIS of the 3D-Na₃Zr₂Si₂PO₁₂ framework at the RT
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[bookmark: OLE_LINK24]Fig. S8 Rate performance of Na/CGE/NVP-K0.05 at 60 ℃
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[bookmark: OLE_LINK207]Fig. S9 Interfacial stability of the symmetric Na/Na cell with CGE. a Na/Na symmetric battery tested at 0.1 mA cm–2. b Corresponding EIS spectra measured at different cycle numbers at RT[image: ]
Fig. S10 a Cycling performance of Na/FGE/NVP-K0.05 and Na/CGE/NVP-K0.05 full battery at 0.2C under 25 ℃ and charge/discharge profiles b, c
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[bookmark: OLE_LINK23][bookmark: OLE_LINK22]Fig. S11 Long-term cycling of Na/FGE/NVP-K0.05 and Na/CGE/NVP-K0.05 full battery at 25 ℃
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[bookmark: OLE_LINK25]Fig. S12 The charge/discharge voltage profiles at different cycles of the Na/FGE/NVP-K0.05 full battery
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[bookmark: OLE_LINK274][bookmark: OLE_LINK358]Fig. S13 Rate performance of Na/CGE/NVP-K0.05 full battery at 25 ℃
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[bookmark: OLE_LINK364][bookmark: OLE_LINK360][bookmark: _Hlk213522430][bookmark: OLE_LINK20]Fig. S14 Electrochemical performance of the Na/CGE/NVP-K₀.₀₅ full cell at 25 °C. a Cycling performance and b rate capability of a cell using a high-mass-loading cathode material. c Cycling performance and d rate capability of a cell assembled with a thin CGE electrolyte pellet (~600 μm)
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[bookmark: OLE_LINK318]Fig. S15 Rate performance of the CGE at -20 °C
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[bookmark: OLE_LINK316][bookmark: OLE_LINK21][bookmark: OLE_LINK19][bookmark: OLE_LINK317]Fig. S16 EDS mapping of the CGE cross-section of the Na/CGE/NVP-K0.05 full battery after cycles at 60 °C
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[bookmark: OLE_LINK121]Fig. S17 SEM images and EDS mapping of the FGE cross-section of the Na/FGE/NVP-K0.05 battery cell after cycles at 60 °C. a,b SEM images and c,d EDS elemental analysis
[image: ]
Fig. S18 Morphological and elemental analysis after cycling in a symmetric Na/CGE/Na cell. a Top-view SEM image. b Corresponding EDS elemental mapping
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[bookmark: OLE_LINK297]Fig. S19 XPS of pristine Na and cycled Na electrode in Na/CGE/Na cell. a Na 1s. b O 1s. c C1s
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[bookmark: OLE_LINK29]Fig. S20 Mass comparison of the 3D-Na₃Zr₂Si₂PO₁₂ framework, 3D-Na₃Zr₂Si₂PO₁₂/gel and dense Na₃Zr₂Si₂PO₁₂ ceramic under the same thickness and diameter

[bookmark: OLE_LINK2][bookmark: OLE_LINK11]Table S1 Ionic conductivity and corresponding parameters of the 3D-Na₃Zr₂Si₂PO₁₂ framework
	Sample
	L/mm
	R/mm
	R/
	σ/(S cm-1)

	3D-Na₃Zr₂Si₂PO₁₂ framework
	1.25
	1.51
	211
	3.31 x 10-4



Table S2 Mechanical properties and ionic conductivity of reported composite gel electrolytes
	Materials
	Mechanical strength
	Ionic conductivity
(S cm⁻¹)
	Refs.

	PPC37 (GPEs)
	2.43 MPa (Fracture strength)
	[bookmark: OLE_LINK145]1.06 x 10⁻3 (25 ℃)
	[S1]

	PGT32-5%
	0.55 MPa (tensile strength)
	9.1 x 10⁻4 (27 ℃)
	[S2]

	IL-PVdF-HFP
	0.45 MPa (tensile strength)
	4.0 x 10⁻4 (25 ℃)
	[S3]

	U-HCGPE
	9.9 MPa (tensile strength)
	7.89 x 10⁻4 (RT)
	[S4]

	PVA-PAA-LiCl-KOH
	1.34 MPa (tensile strength)
	[bookmark: OLE_LINK146]3.18 x 10⁻3 (RT)
	[S5]

	SCGPE
	20.5 MPa (Fracture strength)
	1.73 x 10⁻3 (30 ℃)
	[S6]

	Glass fiber (GF)
	2 MPa
	2.6 x 10⁻3 (25 ℃)
	[S7]

	Plasticized crosslinked PEO membranes (PEOm)
	~1 MPa (tensile strength)
	2.0 x 10⁻4 (20 ℃)
	[S8]

	NW/P(VDF-HFP)
	29 MPa (Fracture strength)
	8.2 x 10⁻4 (RT)
	[S9]

	PEO/NBR
	0.69 MPa (tensile strength)
	2.4 x 10⁻3 (RT)
	

	NBR
	0.87 MPa (tensile strength)
	[bookmark: OLE_LINK148]4.0 x 10⁻4 (RT)
	[S10]

	PEO
	0.24 MPa (tensile strength)
	[bookmark: OLE_LINK147]3.1 x 10⁻3 (RT)
	

	CGE
	20.11 MPa
(Compressive strength)
	3.37 x 10⁻3 (RT)
	This work

	3D/Na₃Zr₂Si₂PO₁₂ framework
	19.18 MPa
(Compressive strength)
	
	This work


Table S3 Comparison of the electrochemical performance of the NVP-K0.05/CGE/Na sodium metal battery and reported solid-state (or quasi-solid) batteries with high-mass-loading cathodes
	Cell
	Electrolyte
	Performance
	Mass-loading
	Temp.
	Refs.

	[bookmark: _Hlk213600570]NMT/Na
	GPE
	~83 mAh g-1 (1 C)
	9.07 mg cm-2
	RT
	[S11]

	[bookmark: _Hlk213601360]NVP/Na
	QSE-T
	~85 mAh g-1 (0.2 C)
	8.2 mg cm-2
	RT
	[S12]

	NVP/Na
	PVDF GPE
	75.8 mAh g-1 (0.5 C)
	3.01 mg cm–2
	23 °C
	[S13]

	NVP/Na
	CPE
	~95 mAh g-1 (3 C)
	10.0 mg cm-2
	25 °C
	[S14]

	NNM/Na
	PEO-NZSP
	43.2 mAh g-1 (3 C)
	3-4 mg cm-2
	55 °C
	[S15]

	NVP/Na
	PDA@PU-GPE
	86.46 mAh g-1 (1 C)
	∼8.1 mg cm-2
	RT
	[S16]

	NVP/Na
	QSE
	103 mAh g-1 (0.2 C)
	10.9 mg cm-2
	RT
	[S17]

	NVP/Na
	PLA-NaF GPE
	107.3 mAh g-1 (0.5 C)
	3.3 mg cm-2
	25 °C
	[S18]

	NVP@C/Na
	HSE
	98 mAh g-1 (0.2 C)
	~3.0 mg cm–2
	RT
	[S19]

	NVP/Na
	PSSIA-NZSP
	94.6 mAh g-1 (0.5 C)
	5.6 mg cm-2
	25 °C
	[S20]

	NVPK-0.05/Na
	CGE
	104.5 mAh g⁻¹ (0.5 C)
	7.7 mg cm⁻²
	25 °C
	This work

	
	
	76.6 mAh g⁻¹ (5 C)
	6.7 mg cm⁻²
	
	



[bookmark: OLE_LINK13]Table S4 Comparison of weight reduction between the 3D-Na₃Zr₂Si₂PO₁₂ framework and dense Na₃Zr₂Si₂PO₁₂ ceramic
	Samples
	[bookmark: OLE_LINK1]3D-Na3Zr2Si2PO12 framework
	3D-Na3Zr2Si2PO12/gel
	[bookmark: OLE_LINK10]Dense Na₃Zr₂Si₂PO₁₂

	R/mm
	14
	14
	14

	H/mm
	1.28
	1.28
	1.28

	m/g
	0.354
	0.465
	0.574

	Porosity/%
	~47%
	/
	~7%



All pellets were fabricated with identical geometry (diameter 14 mm, thickness 1.28 mm). The sample volume was calculated according to the following equation (S1):
[bookmark: OLE_LINK3]
Where 𝐷 is the pellet diameter (cm) and 𝐻 is the thickness (cm).
The bulk density of each sample was determined by the following equation (2):

Where 𝑚 is the measured mass (g), and V is the volume of the sample (cm³).
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]The porosity (𝜙) of the 3D-Na₃Zr₂Si₂PO₁₂/gel was determined using the bulk density and the theoretical density of Na₃Zr₂Si₂PO₁₂, according to Equation (3):
[bookmark: _Hlk207374857]
[bookmark: OLE_LINK8][bookmark: OLE_LINK7]where ϕ is the porosity (%),   is the bulk density (g·cm⁻³) determined from the sample mass and geometric volume, and  ​ is the theoretical density (g·cm⁻³), which was obtained from crystallographic data or estimated based on the density of dense ceramics.
The mass-reduction percentage of the composite gel electrolyte (CGE) relative to the dense ceramic was calculated using Equation (4):

where  is the mass of dense Na₃Zr₂Si₂PO₁₂ ceramic (g),  is the mass of 3D-Na₃Zr₂Si₂PO₁₂/gel composite gel electrolyte. 
[bookmark: OLE_LINK12][bookmark: OLE_LINK176]The 3D-Na₃Zr₂Si₂PO₁₂ framework was prepared by a freeze-drying method, while the dense ceramic was synthesized via the solid-state reaction method. To ensure identical pellet dimensions for comparison, both the porous framework and the dense ceramic were processed using a wire-cutting technique. The weight analysis for both the 3D-Na₃Zr₂Si₂PO₁₂ framework and the 3D-Na₃Zr₂Si₂PO₁₂/gel composite electrolyte was carried out on the identical physical sample to guarantee accuracy. Specifically, the mass was measured for the bare framework first. Subsequently, the same framework was infiltrated with the gel precursor and cured in-situ to form the final composite electrolyte, after which its mass was measured again. Calculations revealed that approximately 44% of the pores in the porous Na₃Zr₂Si₂PO₁₂ framework were filled with gel, further confirming that the gel electrolyte nearly fully infiltrated the 3D-Na₃Zr₂Si₂PO₁₂ framework. By comparing the mass of the dense ceramic with that of the 3D-Na₃Zr₂Si₂PO₁₂ framework embedded in the gel matrix, the composite gel electrolyte exhibited and ~20% reduction in mass relative to the dense ceramic prepared in this work.
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