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[bookmark: OLE_LINK115]Fig. S1 a Transmittance spectra of (0.38 – 2.5 µm) and b Photograph of the optimized BTMU at high solar transmittance (Tsol) state
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[bookmark: OLE_LINK138][bookmark: OLE_LINK139][bookmark: OLE_LINK137][bookmark: OLE_LINK189][bookmark: OLE_LINK140][bookmark: OLE_LINK119]Fig. S2 a Polarized optical microscope images of the small molecule liquid crystal without and under electrical field. The inset shows the cross-point. The scale bar is 40 μm. b Solar transmittance (Tsol) the PDLCs with different contents of the A-HG at transparent (0 V) and opaque states (30 V). c Solar modulating ability (ΔTsol) the PDLCs with different contents of the A-HG
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[bookmark: _Hlk206528075]Fig. S3 Size distribution of small molecule liquid crystal droplets in the PDLCs with different contents of the A-HG
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[bookmark: OLE_LINK187]Fig. S4 a Fourier transform tnfrared spectrometer (FTIR) spectra and b Nuclear magnetic resonance (NMR) spectroscopy of the POSS
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[bookmark: OLE_LINK135][bookmark: OLE_LINK1]Fig. S5 a Saturation voltage (Vsat, driven voltage) of the PDLCs with different contents of the POSS. b Water contact angle of the polymer matrix with (3 wt%) and without non-polar POSS. c Solar modulating ability (ΔTsol), and d Scanning electron microscope (SEM) images of the PDLCs with different contents of the POSS. The scale bar is 10 μm
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Fig. S6 a Intensity of sunlight in a whole day at Beijing. b The output voltage curve of the perovskite solar cell under the irradiation of sunlight. c Photographs of the PDLCs under sunlight irradiation during daytime without applying a voltage
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[bookmark: OLE_LINK145][bookmark: OLE_LINK225][bookmark: OLE_LINK144][bookmark: _Hlk206265934]Fig. S7 a Response time of the PDLCs. b UV-vis transmittance spectra of (0.38-2.5 µm) of the PDLCs (P3) at transparent (0 V) and opaque states (30 V) after 1500 cycles. c Transmittance variation curve of the PDLCs (P3) during 1500 cycles of the switching. d Photographs of the PDLCs (P3) at transparent (0 V) and opaque states (30 V) after 1500 cycles
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[bookmark: OLE_LINK227][bookmark: OLE_LINK224][bookmark: OLE_LINK226]Fig. S8 Environmental stability of the PDLCs (P3). Electro-optical curve of the PDLCs (P3) after a exposure to UV (150 W/m2) for 150 h and b 1000 times of thermal cycling (65/4 °C, 5 min hold at each temperature). UV-vis transmittance spectra of (0.38-2.5 µm) of the PDLCs (P3) at transparent (0 V) and opaque states (30 V) after c exposure to UV (150 W/m2) for 150 h and d 1000 times of thermal cycling (65/4 °C, 5 min hold at each temperature)
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Fig. S9 a Current-voltage (I-V) curves of the perovskite solar cell under PDLC switching stress. b The stability of the perovskite solar cell under PDLC switching stress
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Fig. S10 a SEM images of the lab synthesized Ag nanowires. Inset shows a single Ag nanowire. The scale bar is 2 μm. b Diameter distribution histogram of the Ag nanowires
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Fig. S11 a Emissivity (EMIR) and b solar transmittance (Tsol) the SiO2 PRC layer of different spraying cycle numbers. c SEM images of the surface of the SiO2 PRC layer of different spraying cycle numbers. The scale bar is 2 μm
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[bookmark: OLE_LINK146]Fig. S12 a Emissivity (EMIR) and b solar transmittance (Tsol) the Ag layer of different spraying cycle numbers. c SEM images of the surface of the Ag layer of different spraying cycle numbers. The scale bar is 20 μm
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[bookmark: OLE_LINK254]Fig. S13 MIR emissivity (7.0-20 µm) of the Ag L-EMIR layer (60 spraying cycles) after a put at high temperature 80 oC for 14 days and b 200 abrasion cycles. MIR emissivity (7.0-20 µm) of the SiO2 passive radiation-cooling layer (60 spraying cycles) after c put under the humidity of 70 % (70 oC) for 14 days and d exposure to UV (150 W/m2) for 150 h
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[bookmark: OLE_LINK238]Fig. S14 a Monthly energy consumption of the SPWs and normal glass window in the climate condition of Oslo. b Monthly power generation of the SPWs according the working mode of the SPWs. c Monthly saving carbon dioxide emission estimated based on saving energy consumption and power generation of the SPWs
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Fig. S15 The house model for simulation. The house is 8 m (L) × 8 m (W) × 3 m (H). All four windows measure 4 m (L) × 2 m (W)
Table S1 Detailed photovoltaic parameters of perovskites solar cell
	Pmaxa)/ W
	Iscb)/ A
	Vocc) / V
	FFd) / %
	PCEe) / %

	12.22
	0.40
	44.61
	68.77
	16.29


a)Pmax: maximum power; b)Isc: short-circuit current; c)Voc: open-circuit voltage; d)FF: fill factor; e)PCE: power conversion efficiency.
Table S2 Solar modulation performance comparison among state-of-the-art electrochromic smart window technologies
	References
	Materials
	ΔTsol (400 nm-800 nm) / %

	This work
	PDLCs
	76.6

	[S1]
	WO3
	72.9

	[S2]
	WO3
	31.4

	[S3]
	WO3
	48.4

	[S4]
	WO3-x
	60.3

	[S5]
	WO3
	79.9

	[S6]
	WO3
	11.5

	[S7]
	WO3·H2O
	19.4

	[S8]
	V2O5
	28.1

	[S9]
	PEDOT:PSS +
PANI-PAAMPSA
	46.8

	[S10]
	PEDOT-MeOH
	17.2

	[S11]
	HV(TF-SI)2
	31.6

	[S12]
	DPV
	43.0

	[S13]
	PDLCs
	46.7

	[S14]
	PDLCs
	45.5

	[S15]
	PDLCs
	59.6

	[S16]
	PDLCs
	58.3




Table S3 The composition of PDLCsa)
	Sample
	CHMA / wt%
	HPMA / wt%
	BDDA / wt%
	PEGDA600 / wt%

	H1
	27.25
	0.00
	2.07
	8.18

	H2
	24.90
	3.39
	1.79
	7.51

	H3
	22.46
	6.67
	1.69
	7.76

	H4
	19.97
	10.05
	1.50
	6.01

	H5
	17.26
	13.43
	1.32
	5.26


a)In all samples, the weight ratio of E8, Irgacure 651 and glass microballoon (20 μm) is fixed at 60.00 wt%, 2.00 wt% and 0.50 wt%, respectively.
Table S4 The composition of PDLCs with POSS-SHa)
	Sample
	CHMA /wt%
	HPMA /wt%
	BDDA /wt%
	PEGDA600 /wt%
	POSS-SH
/wt%

	P0
	19.97
	10.05
	1.50
	6.01
	0.00

	P1
	19.44
	9.78
	1.46
	5.85
	1.00

	P2
	18.90
	9.51
	1.42
	5.69
	2.00

	P3
	18.37
	9.25
	1.38
	5.53
	3.00


a)In all samples, the weight ratio of E8, Irgacure 651 and glass microballoon (20 μm) is fixed at 60.00 wt%, 2.00 wt% and 0.50 wt%, respectively.
Supplementary Movies
Movie S1 Electrical-responsive behavior of the PDLCs (H4). The movie is played at 1X speed
[bookmark: OLE_LINK142]Movie S2 Alteration of the alignment of the small molecule liquid crystal (SMLC) under electrical field. The movie is played at 1X speed
[bookmark: OLE_LINK141]Movie S3 Self-powered behavior of the PDLCs (P3). The movie is played at 1X speed
Movie S4 Cycling stability of the PDLCs (P3). The movie is played at 1X speed
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