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Fig. S1 Optical images of (a) s-LFP and (b) re-LFP
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Fig. S2 The XRD refinement pattern of the s-LFP black mass
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Fig. S3 The XRD patterns of relithiated LFP sample at different hydrothermal temperature for different time
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Fig. S4 FTIR patterns of re-LFP, LFP-Hydro, LFP-Hydro-TA and s-LFP
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Fig. S5 XRD refinement results of (a) delithiated LFP, and relithiated LFP with hydrothermal reactions for (b) once, (c) twice (d) three times and (e) four times
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Fig. S6 TGA of s-LFP, LFP-hydro, LFP-hydro-TA, and re-LFP
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[bookmark: _Hlk179017828]Fig. S7 XRD of LFP residual heated at 800 ℃
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Fig. S8 Detailed XRD patterns of s-LFP (a) and re-LFP (b) extracted from Fig. 1e, f
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Fig. S9 EDX analyses of (a) s-LFP, (b) re-LFP, and (c) LFP-Hydro-TA. (d) EDX element map of LFP-Hydro-TA
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Fig. S10 TEM image of s-LFP, showing the FePO4 and Fe2O3 phases on the surface
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Fig. S11 TEM image of LFP-Hydro-TA
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Fig. S12 O 1s (a) and P 2p (b) XPS spectra of the different LFP samples
[image: ]
Fig. S13 Full XPS spectra of s-LFP, LFP-Hydro-TA and re-LFP
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Fig. S14 Charge-discharge profiles of re-LFP, LFP-Hydro-HT and LFP-Hydro
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Fig. S15 (a) Cycling performance of LFP-hydro at 2C rate and (b) its charge-discharge profiles at different cycles. (c) GCD profile of LFP-Hydro-HT at 0.1C, 0.5C, 1C and 2C, with discharge capacities of 165, 155, 150, 132 mAh g−1, respectively
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Fig. S16 Cycling performance of LFP-Hydro-HT and LFP-Hydro at 0.5C
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[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK75][bookmark: OLE_LINK76]Fig. S17 Cycling performance of re-LFP at 1C and 2C
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Fig. S18 Cycling performance of s-LFP at 1C
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Fig. S19 Cycling performance of re-LFP at 4C, 6C, 8C and 10C 
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Fig. S20 Cycling performance of s-LFP at 4C
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Fig. S21 Cycling performance of re-LFP at 0.5C rate, −20 ℃
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Fig. S22 Nyquist plots of pristine re-LFP
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Fig. S23 Nyquist plot of the cycled re-LFP at −10 ℃ and its equivalent circuit inserted in the figure
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Fig. S24 XRD refinements of a cycled c-LFP and b cycled re-LFP electrodes
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Fig. S25 Charge-discharge profile of re-LFP in a solid-state electrolyte battery
Table S1 The chemical input and cost for recycling 1 kg s-LFP black mass used in EverBatt modelling 
	
	Input materials
	Usage
(kg)
	Price
($)
	Products
	Price
($)
	Production
(kg)

	Hydrometallurgy
	H2SO4
	1.24
	0.01
	FePO4
Li2CO3
	0.15
10.29
	0.91
0.266

	
	NaOH
	0.01
	0.35
	
	
	

	
	Ammonia
	2.48
	0.27
	
	
	

	
	Na2CO3

	0.32
	0.19
	
	
	

	Conventional direct regeneration 
	LiOH
	0.04
	15.97
	LiFePO4
	5.07
	1

	
	NMP
	0.1
	1.32
	
	
	

	
	NaOH 
	0.01
	0.35
	
	
	

	
	Li2CO3
	0.02
	10.29
	
	
	

	
	Sucrose
	0.1
	1.67
	
	
	

	This method
	NMP
	0.1
	1.32
	LiFePO4
	5.07
	1

	
	NaOH
	0.01
	0.35
	
	
	

	
	Li2C2O4
	0.01
	111
	
	
	

	
	TA
	0.06
	6.08
	
	
	


Table S2 Refinement of the composition of the LFP phase in the s-LFP black mass
	atom
	x
	y
	z
	Frac.
	Uiso.

	Li1
	0
	0
	0
	0.9588
	0.03926

	Li2
	0.282
	0.25
	0.9738
	0.0412
	0.01200

	Fe1
	0.282
	0.25
	0.9738
	0.9588
	0.00080

	Fe2
	0
	0
	0
	0.0412
	0.01100

	P
	0.0946
	0.25
	0.4182
	1
	0.01372

	O1
	0.0973
	0.25
	0.7394
	1
	0.00305

	O2
	0.4548
	0.25
	0.2086
	1
	0.00874

	O3
	0.1643
	0.0481
	0.2843
	1
	0.00358

	a=10.32198 Å,  b=6.00421 Å,  c=4.69154 Å,  space group: Pnma,  99.5 wt.%LFP,   Rwp: 7.184%


Table S3 Elemental analysis of the s-LFP black mass
	LFP sample
	Li 
	Fe  
	P 
	Al

	s-LFP
	0.994
	1
	0.981
	0.0074

	LFP-Hydro-TA-HT
	1.011
	1
	0.974
	0.0066


Table S4 The Rietveld refinement of XRD patterns of relithiated LFP sample at different hydrothermal temperature for different time
	Samples
	Phase composition
	FeLi ratio
	Rwp

	LFP-Hydro-80-10h
	100% LiFePO4
	3.65%
	3.681%

	LFP-Hydro-95-10h
	100% LiFePO4
	1.16%
	3.426%

	LFP-Hydro-95-4h
	100% LiFePO4
	2.97%
	3.696%

	LFP-Hydro-100-4h
	100% LiFePO4
	1.35%
	3.548%

	LFP-Hydro-120-4h
	100% LiFePO4
	1.14%
	3.534%

	LFP-Hydro-150-4h
	100% LiFePO4
	0.96%
	3.682%

	LFP-Hydro-180-4h
	100% LiFePO4
	[bookmark: OLE_LINK3]1.58%
	3.786%





Table S5 Refinement of the composition of the LFP phase in the re-LFP
	atom
	x
	y
	z
	Frac.
	Uiso.

	Li1
	0
	0
	0
	0.9882
	0.03926

	Li2
	0.282
	0.25
	0.9738
	0.0118
	0.01

	Fe1
	0.282
	0.25
	0.9738
	0.9882
	0.00738

	Fe2
	0
	0
	0
	0.0118
	0.01

	P
	0.0946
	0.25
	0.4182
	1
	0.01372

	O1
	0.0973
	0.25
	0.7394
	1
	0.00305

	O2
	0.4548
	0.25
	0.2086
	1
	0.00874

	O3
	0.1643
	0.0481
	0.2843
	1
	0.00358

	a=10.32198 Å, b=6.00421 Å, c=4.69154 Å, space group: Pnma, Rwp:3.83%


Table S6 Comparison of the electrochemical performance of this work with other LFP direct regeneration studies
	Specific capacity mAh g−1
	Rate performance
	Long-term cycling
	Low-temperature performance
	Voltage gap (mV)
	Ref.

	170 (0.1 C);
139.1 (1C)

	100.1 mAh g−1 at 10 C
	76.6% retention
after 1000 cycles at 1C;
≈76.8% capacity retention after 1000 cycles at 10 C
	145.7 mAh g−1 (25 °C),
82.2 mAh g−1 (−20 °C), and 152.8 mAh g−1 (50 °C)
0.3C
	58.9
(1 C)
	[S1]

	146.2 (0.2 C);
141.9 (1 C)
	128.2 mAh g−1 at 5 C.
	98.6% retention after 200
cycles at 1 C.
	\
	>150
(1 C)
	[S2]

	145 (0.5 C)
140 (1C)
	~110 mAh g-1 at 5C
	>95% retention after 100 cycles at 0.5C
	\
	>150
	[S3]

	~170 (0.1C)
162 (0.2C);
144  (2C);
	
102 mAh g-1 at 10C

	94.3% retention after 1000 cycles at 0.5 C;
No capacity loss after 300 cycles at 2 C, 5C,10C
	\
	
	[S4]

	~166 (0.1C);
151.9 (0.5C);
142.07 (1C);
133.11  (2 C)

	114.96 mAh g-1 at 5C
	99.1% retention after 200 cycles at 1C;
96.3% retention after 200 cycles at 2 C; 94.7%retention after 200 cycles at 5 C
	\
	>150
	[S5]

	138.8 (1C);
124.3
(2C)
	107 mAh g−1 at 10C
	98.7% retention after 100 cycles at 1C;
87.9% retention after 500 cycles at 1C
	\
	\
	[S6]

	162.8 (0.2C);
157.4 (0.5C),
147.9 (1C),
	138.4 mAh g−1 at 2C;
121.5 mAh g−1 at 5C
	99.63% retention after 100 cycles at 0.2C;

	\
	\
	[S7]

	147.9 (1C),
136.1 (2C)

	113.6, mAh g−1 at 5C;
87.2 mAh g−1 at 10C
	82% retention after 500 cycles at 1 C rate;
86% after 500 cycles at 5 C.
	\
	83
(0.1 C)
	[S8]

	167.8 (0.2 C);
141.5 (1 C);
131.6 (2 C)
	109.8 mAh g-1 at 109.85C
	92% retention after 300 cycles at 2C
	102.8 mAh g−1 at 1.0 C (−5°C).
	\
	[S9]

	~138 (1C)

	117 mAh g-1 at 5C;
97 mAh g-1 at 10C
	88% retention after 400 cycles at 5C
	~61 mAh g-1 (0.5C, −20°C)
	\
	[S10]

	140 (1C)

	117 mAh g-1 at 5C
	88.5% retention after 400 cycles at 1C
	~61 mAh g-1 (0.5C, −20°C)
	
	[S11]

	135.1 (1C)
	116 mAh g-1 at 5C;
105.5 mAh g-1 at 10C;
	97.5% retention after 300 cycles at 1C
	\
	\
	[S12]

	140.1 (1C)
	112.8 mAh g-1 at 5C;
93.0 mAh g-1 at 10C;
	93.1 % retention after 500 cycles at 5C; 
93.8 % retention after 500 cycles at 10C
	\
	\
	[S13]

	141.3 (1C)
	113.1mAh g-1 at 5C;
92.4 mAh g-1 at 10C;
	85% after 500 cycles and 72% after 1000 cycles at 1 C
	101.5 mAh g-1 (0.5C, 0°C)
	83 mV
	[S14]

	161 (0.1 C);
151 (0.5C);
146 (1C);
138 (2C)

	
~106.5 mAh g-1 at 10C
122 mAh g-1 at 5C
	69.8% retention (72.3 mAh g-1) after 1000 cycles at 10 C ; 67.8% retention （76.37 mAh g-1) after 1000 cycles at 8C; 97.5% retention after 100 cycles (5C)
	~62.5 mAh g-1 (0.5C, −20°C)
	66 mV
(1C)
	This work



Text S1 Calculation of DLi using the PITT technique. 
The PITT calculation is based on equation (S1)
             (S1)
For example, the ln(i)-t curve charged to 3.5V was plotted and the linear fit is shown in Figure 3(c). L equals to the electrode depth mines collector depth, which is about 183 μm. k was fitted to be −7.13529×10−5
DLi = 7.13529×10−5×4×(183×10−4)2∕π2 (cm2/s) =9.684×10−9 (cm2/s)
Based on Equation S1, we calculated the apparent DLi at different voltages during delithiation, as shown in Fig. 3c.
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