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Fig. S1 Single-chain molecular structure of α-PVDF, β-PVDF, and PVDF-hfp
[bookmark: OLE_LINK3][bookmark: _Hlk190622200]In the TGTG' conformation of the α-phase, the dipole moments along the molecular chains partially cancel each other, resulting in relatively low overall polarization, lower dielectric constant and reduced polarization strength. In contrast, the fully trans TTTT conformation of the β-phase allows for effective superposition of dipole moments along the chain direction, leading to higher overall polarization and an increased dielectric constant.
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Fig. S2 XPS spectra of PVDF-hfp, SiO2 and SP: (a) full spectrum, (b) O 1s and Si 2p spectra
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Fig. S3 FT-IR spectra of SiO2, PVDF-hfp, SP, LE and SPE, respectively
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Fig. S4 Raman spectra of SiO2, PVDF-hfp, SP, Zn(CF3SO3)2, LE and SPE, respectively
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Fig. S5 3D snapshots of (a) LE and (b) SPE obtained from MD simulation
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Fig. S6 TG curves of (a) SiO2, PVDF-hfp, SP powder, SP, SPE, respectively, and (b) SPE prepared with different soaking times
TG analysis was conducted under nitrogen at a heating rate of 10°C min−1. SiO2 exhibits excellent thermal stability, while PVDF-hfp begins decomposing at 400°C. The as-prepared SP powder shows an initial mass loss of 32.4% owing to the evaporation of residual NMP, a phenomenon absent in the fully dried SP disc, indicating its effective removal (Fig. S6a). To explore the electrolyte absorption kinetics, a more detailed analysis was performed on SPE discs with different soaking times (Fig. S6b). The weight loss curves before 450°C can be divided into two distinct stages: the loss of loosely bound “physical water” (below ~300°C) and the loss of more tightly bound “structural water” (300~450 °C). As results, the “physical water” content increases steadily, from 17.5% at 1 hour to 22.1% at 2 hours, before plateauing at 23.0% overnight. These are attributed to a fast adsorption within the macroporous volume, followed by a slower internal diffusion-filling process. On the other hand, the “structural water” content was only around 2% after both 1 and 2 hours but increased significantly to 7.2% after soaking overnight. This indicates that its formation rate is considerably slower. Therefore, to establish stable interactions between the LE components and the SP framework and to allow for the complete formation of ion solvation sheaths, a longer soaking time is evidently required.
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Fig. S7 SEM and TEM images of (a) SiO2, (b) PVDF-hfp; (c) SEM and TEM images with EDS elemental mappings of SP surface
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Fig. S8 Cross-sectional SEM images of SP: (a) initial edge, (b) cutting edge
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Fig. S9 Surface and cross-sectional SEM images with EDS elemental mappings of the SPE after heat treatment
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Fig. S10 Nitrogen adsorption-desorption isotherms and corresponding pore size distribution curve of (a) SiO2, (b) PVDF-hfp, (c) SP, and (d) SPE
Fig. S10a, S10b: Type I adsorption-desorption isotherm.
At the lower relative pressures, the amount adsorbed increases rapidly until saturation is reached, indicating clear micropore characteristics.
Fig. S10c, S10d: Type IV adsorption-desorption isotherm.
As relative pressure increases, the amount adsorbed gradually rises, with a hysteresis phenomenon occurring as the relative pressure approaches 1, which is typical of mesoporous materials.
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Fig. S11 Pore size distributions of (a) SP and (b) SPE obtained from mercury intrusion porosimetry
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Fig. S12 Load-displacement curves of SP and SPE obtained from nanoindentation
Based on the above depth-load curves, the hardness (G Pa) of the samples can be calculated by the following formula:

where Pmax is the maximum load (the peak load during the indentation process, μN), and A is the contact area (nm2) between the indenter tip and sample.
The elastic modulus (G Pa) is determined via the Oliver-Pharr method [S1], with the formula:

where νsample and νtip are the Poisson’s ratios of sample and indenter tip, respectively. Etip is the elastic module of the indenter tip and Er is the reduced modulus, which was calculated with the formula:

where S is the unloading stiffness (μN nm−1). The calculation results are summarized in Table S2.

[image: 图形用户界面

AI 生成的内容可能不正确。]
Fig. S13 Thickness measurements of SP and SPE
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Fig. S14 Frequency-dependent dielectric properties of SiO2 and SP
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Fig. S15 EIS plots with stainless steel/stainless steel cells and calculated ionic conductivity of SPE and LE
The ionic conductivity (σ) of electrolytes was evaluated via EIS using stainless steel/stainless steel cells, which was calculated using the formula:

where l is the thickness (cm) of the electrolyte, A is the reaction area (cm2) between electrolyte and electrodes, R is the bulk resistance (Ω) extracted from the high-frequency intercept of the Nyquist plot on the real axis.
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Fig. S16 Chronoamperometry curves with a polarization voltage of 10 mV, corresponding EIS plots before and after the polarization in Zn/Zn cells and calculated Zn2+ transference number (t) of (a) LE and (b) SPE
The Zn2+ transference number () was determined via chronoamperometry (CA) coupled with EIS in Zn/Zn symmetric cells. A polarization voltage () of 10 mV was applied, and corresponding current relaxation (I0→Is) and interfacial resistance evolution (Ri0→Ris) were monitored. The was calculated using the Bruce-Vincent formula [S2]:

The calculation results are summarized in Table S3.
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Fig. S17 In-situ differential electrochemical mass spectrometry (DEMS) on the Zn/Zn symmetric cells at 1 mA cm−2@0.5 mAh cm−2 with (a) SPE and (b) LE
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Fig. S18 CE plots at 0.5 mA cm−2@0.25 mAh cm−2 in additional Zn/Cu cells with SPE, with the bottom panels showing the corresponded avg. CE with calculated standard deviation
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Fig. S19 Voltage curves for Zn/Cu cells with LE and SPE at Zn plating/stripping conditions of (a) 0.5 mA cm−2@0.25 mAh cm−2, and (b) 1 mA cm−2@5 mAh cm−2
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Fig. S20 Voltage curves at 10 mA cm−2@5 mAh cm−2 for Zn/Zn cells with SPE and LE
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Fig. S21 (a) SEM images after plating for different cycles and (b) corresponding EDS mappings in the 100th cycle of Zn electrode in Zn/Zn cells with SPE at 0.5mA cm−2@0.25 mAh cm−2
[image: ]
Fig. S22 (a) SEM images after plating for different cycles and (b) corresponding EDS mappings in the 100th cycle of Zn electrode in Zn/Zn cells with LE at 0.5mA cm−2@0.25 mAh cm−2

[image: ]
Fig. S23 In-situ optical microscope snapshots of Zn plating in (a) LE and (b) SPE
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Fig. S24 XRD patterns of Zn electrode after plating for different cycles in Zn/Zn cells with (a) SPE and (b) LE
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Fig. S25 (a) Cycling performance and (b) corresponding voltage curve of Zn-halogen coin cell in voltage range of 0.8 to 1.8 V with SPE without potassium chloride and potassium iodide addition
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Fig. S26 (a) CV curves at 0.1 to 1.0 mV s−1, (b) corresponding log(current) vs. log (scan rate) plots of redox peaks and (c) calculated capacitive-controlled contributions of Zn-halogen cell in the voltage range of 0.8 to 1.9 V with SPE
According to Dunn’s research [S3, S4], the relationship between current (i) and scan rate (v) in CV curves can be described by the following equations: 
i = avb
log(i) = b × log(v) + log(a)
where a, b are adjustable parameters, Specifically, a b-value of 0.5 indicates a fully diffusion-controlled process, while a b-value of 1 represents an entirely capacitive-controlled process. The b-value can be directly determined from the slope of the log(i) vs. log(v) plots.
Furthermore, the contributions from pseudocapacitive and diffusion-controlled processes can be quantified by the following equations [S5, S6]: 
i = k1v + k2v1/2
i/v1/2 = k1v1/2 + k2
where k1 denotes capacitive contribution, and k2 corresponds to diffusion-controlled contribution. By calculating these parameters (k1 and k2), relative fractions of capacitive and diffusion-limited currents can be clearly distinguished.
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Fig. S27 Voltage curves for Zn-halogen coin cells in the voltage range of 0.6 to 1.8 V with SPE at (a) 3 mA cm−2 and (b) 10 mA cm−2
[bookmark: _Hlk211290132][image: ]
Fig. S28 (a) Cycling performance of Zn-halogen coin cell in the voltage range of 0.6 to 1.8 V with SPE at 20 mA cm−2; (b) Cycling performances of additional coin cells, with the bottom panels showing the corresponded avg. CE with calculated standard deviation
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Fig. S29 Voltage curves for Zn-halogen pouch cells (3×3 cm2) in the voltage range of 0.8 to 1.8 V: (a) SPE and (b) LE with carbon fiber cloth current collector at 4 mA cm−2; (c) SPE with carbon felt current collector at 2 mA cm−2
[bookmark: _Hlk211289133]
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Fig. S30 In-situ DEMS on the Zn-halogen coin cell in the voltage range of 0.8 to 2.1 V at 3 mA cm−2 with (a) SPE and (b) LE
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Fig. S31 Voltage curves and optical images of the battery components after cycling of Zn-halogen coin cells in the voltage range of 0.8 to 2.1 V with (a) LE and (b) SPE at 1 mA cm−2
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Fig. S32 Cycling performances of additional Zn-halogen coin cells in the voltage range of 0.8 to 2.1 V with SPE at 10 mA cm−2, with the bottom panels showing the corresponded avg. CE with calculated standard deviation
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Fig. S33 Voltage curves of Zn-halogen coin cells in the voltage range of 0.8 to 2.1 V with SPE at (a) 3 mA cm−2 and (b) 10 mA cm−2
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Fig. S34 Comparisons of areal capacity, coulombic efficiency and lifespan in other metal-halogen coin cells
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Fig. S35 Galvanostatic intermittent titration technique (GITT) voltage curves of Zn-halogen coin cells in the voltage range of 0.8 to 1.8 V with SPE and LE at 3 mA cm−2
The GITT was performed in coin cells with a current pulse duration of 300 s and a relaxation time of 600 s. The diffusion coefficient (D) can be calculated according to the following equation [S7]:

where t and 𝜏 represent the durations of current pulse (s) and relaxation period (s), respectively; L is the diffusion length of charge carrier, equal to the electrode thickness; ∆Es is the steady-state voltage change (V) induced by current pulse, and ∆Et is the voltage variation (V) during the constant current pulse after subtracting the voltage change following relaxation.
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Fig. S36 Ex-situ EIS spectra of double-electron transfer Zn-halogen coin cells with SPE and LE
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Fig. S37 Ex-situ XPS spectra of cathodes in the different cycling states in double-electron transfer Zn-halogen cells with SPE: (a) Full spectra; (b) C 1s region
[image: ]
Fig. S38 SEM images for different cycles and corresponding EDS mappings in the 100th cycle of Zn anode in double-electron transfer Zn-halogen coin cells with (a) LE and (b) SPE, respectively
Table S1 Hydrogen bond statistics derived from the solvation boxes of SP and SPE
	Sample
	Types of H-bonds
	Lengths (Å)
	Numbers

	
	
	Min.
	Max.
	Md.
	Avg.
	

	LE
	H2O−CF3SO3−
	1.37505
	2.49994
	2.13763
	2.09969
	5509 (54%)

	
	[bookmark: _Hlk190799754]H2O−H2O
	1.35916
	2.49983
	1.98025
	1.99027
	4747 (46%)

	SPE
	H2O−CF3SO3−
	1.34828
	2.49916
	1.80388
	1.87974
	3291 (36%)

	
	[bookmark: _Hlk190799973]H2O−H2O
	1.43786
	2.49916
	1.85446
	1.90428
	1651 (18%)

	
	H2O−SiO2
	1.43786
	2.49916
	2.01224
	2.02149
	2548 (27%)

	
	H2O−PVDF-hfp
	1.43786
	2.49916
	1.87967
	1.92704
	1764 (19%)


Table S2 Hardness and elastic modulus of SP and SPE derived from nanoindentation
	Sample
	No.
	Pmax (μN)
	A (nm2)
	S (μN mm−1)
	E (GPa)
	H (GPa)

	SP
	1
	1996.75
	8576600.71
	10.70
	3.238109
	0.232814

	
	2
	1996.87
	6814426.37
	9.77
	3.315582
	0.293036

	
	3
	1996.89
	8120832.23
	11.20
	3.481248
	0.245898

	
	4
	1996.71
	8995816.70
	10.32
	3.047446
	0.221960

	
	5
	1996.99
	7832634.02
	11.04
	3.495007
	0.254957

	SPE
	1
	1996.76
	7905203.69
	9.84
	3.101648
	0.252588

	
	2
	1996.87
	6934619.92
	8.57
	2.881734
	0.287957

	
	3
	1996.83
	9188505.38
	9.45
	2.762539
	0.217318

	
	4
	1996.89
	9225901.08
	9.44
	2.753576
	0.216444

	
	5
	1996.94
	9821988.13
	10.29
	2.910396
	0.203313


Table S3. Calculations of Zn2+ transference numbers (t) for LE and SPE
	Sample
	I0 (mA)
	Is (mA)
	Ri0 (Ω)
	Ris (Ω)
	t(Zn2+)

	LE
	0.432
	0.068
	88.65
	126.50
	0.70142

	SPE
	0.440
	0.099
	73.86
	127.60
	0.57912





Table S4 Comparisons of areal capacity, discharge mid-voltage and capacity in other metal-halogen pouch cells
	Label
	Type
	Electrochemical performance
	Refs.

	
	
	Capacity (mAh)
	Areal capacity (mAh cm−2)
	Current density (mA cm−2)
	Mid-voltage (V)
	

	AC//3 M Zn(CF3SO3)2 + 2 M KCl+0.5 M KI in SPE
	I−/I0/I+
	107
	11.9
	2
	1.3
	This work

	I2@EI-ZrP//HCP
	I−/I0
	10
	1.11
	
	1.2
	[S8]

	PC@Fe2N-I2//2 M ZnSO4
	I−/I0
	14.2
	0.75
	1.85
	1.07
	[S9]

	I2@CNT//PAH-PCH/CP
	I−/I0
	20
	2.22
	
	1.15
	[S10]

	I2@Fe SAC-MNC//2 M ZnSO4 + 0.04 M I3−
	I−/I0
	36.88
	
	
	1.21
	[S11]

	CNT@MPC12-I−//1 M ZnSO4
	I−/I0
	51.3
	1.71
	5
	1.18
	[S12]

	I2@Ti-C//2 M ZnSO4 + 
5 mM TDFND
	I−/I0
	68
	2.6
	4
	1.08
	[S13]

	I2@PC//2 M ZnSO4 + PG
	I−/I0
	78.5
	
	
	1.15
	[S14]

	I2@AC//2 M ZnSO4//Zn-CCS
	I−/I0
	140
	4.39
	4
	0.98
	[S15]

	NH4V4O10+PAC//3 M Zn(CF3SO3)2 + 0.5 M KI in EG/H2O
	I−/I0
	2.17
	0.241
	1.5
	1.08
	[S16]

	I2@AC//0.5 M ZnSO4 + 0.5 M Li2SO4
	I−/I0
	12.9
	0.516
	0.806
	1.15
	[S17]

	CC-I2//3 m ZnSO4 + 3.5 m LiBr + 0.1 m LiNO3
	I−/I0/I+
	0.799
	2.22
	1.5
	1.4
	[S18]

	I2@C//ZTEs
	I−/I0/I+
	10
	0.25
	
	1.3
	[S19]

	PTCDI//I2 + saturated KCl
	I−/I0/I+
	2.72
	0.057
	80
	1.25
	[S20]

	I2@PAC//19 m ZnCl2 +
19 m LiCl + 8 m ACN
	I−/I0/I+
	2.436
	3.1
	0.8
	1.4
	[S21]

	I2@PAC//2 M ZnCl2 + PEG
	I−/I0/I+
	67.2
	4.2
	4
	1.3
	[S22]

	I2@AC//BAVBr
	I−/I0/I+
	19.8
	1.65
	3
	1.25
	[S23]

	IBr@CF//2 M ZnSO4
	I−/I0/I+, Br−/Br0
	110
	3.67
	8.33
	1.5
	[S24]

	I2@AC//30 m ZnCl2
	I−/I0/I+, Cl−/Cl0
	124.7
	1.56
	2.5
	1.48
	[S25]




Table S5 Comparisons in mass transfer capacities and interfacial reaction stability with PVDF-hfp gels, Janus separators, quasi-solid electrolytes used interphase-engineering approaches for Zn-based batteries
i) PVDF-hfp gels
	Material
	σ (mS cm−1)
	t (Zn2+)
	ESW (V)

	Zn(TFSI)2+0.1EC+ 0.9PEGDME+PVDF-hfp
	0.47
	−
	>3

	Zn(Tf)2+ PVDF-hfp solid polymer
	0.0244
	0.983
	3.45


continuation of the previous table
	CE (%)
in half-cell
	Lifespan (h)
in half-cell
	Lifespan (h)
in Zn-Zn cell
	Full cell
	Lifespan
	Refs.

	−
	−
	−
	−
	−
	[S26]

	−
	−
	100 (0.05@0.05)
	−
	−
	[S27]


ii) Janus separators
	Material
	σ (mS cm−1)
	t (Zn2+)
	ESW (V)

	3D VG on glass fiber separator
	−
	−
	−

	Graphene and sulfonic cellulose on glass fiber
	2.45×10−5
	0.826
	−

	Bacterial cellulose (BC)//AgNWs-BC
	3.83
	−
	−

	Dowex//Fe-SCNT-GF
	14.6
	0.629
	−

	PAZPM hydrogel
	17.0
	−
	−


continuation of the previous table
	CE (%)
in half-cell
	Lifespan (h)
in half-cell
	Lifespan (h)
in Zn-Zn cell
	Full cell
	Lifespan
	Ref.

	−
	−
	600 (10@1)
	Zn−V2O5
	5000 (5 A g−1)
	[S28]

	99.6
	1780 (1@1)
	1400 (10@10)
	Zn−CNT-MnO2
	1900 (1)
	[S29]

	98.1
	>800 (1@1)
	600 (10@1)
	Zn−K0.27Mn2·0.54H2O
	700 (3)
	[S30]

	99.5
	1000 (2@1)
	2500 (1@1)
	Zn−I2-AC
	30000 (5)
	[S31]

	−
	−
	3600 (0.5@0.25)
	Zn−(NH4)2V10O25·8H2O
	1000 (5)
	[S32]


iii) Quasi-solid electrolytes used interphase-engineering approaches
	Material
	σ (mS cm−1)
	t (Zn2+)
	ESW (V)

	ZnSO4-PEG400 hydrogel
	−
	−
	−

	ZnAc2-PVA416 hydrogel
	49.8
	0.517
	−

	ZnAc2-PVA hydrogel
	16.5
	−
	−

	Zn(OTf)2 in cellulose gel
	38.6
	0.73
	−

	ZnSO4 in CS- and PASP-gels
	5.51
	−
	−

	CarraChi gel
	5.3
	0.52
	−

	CD-PEO/PAM hydrogel
	22.4
	0.923
	−

	PAM-Hbimcp-Zn hydrogel
	38.2
	−
	−

	PAAm/DMSO/Zn(Otf)2 hydrogel
	−
	−
	−


continuation of the previous table
	CE (%)
in half-cell
	Lifespan (h)
in half-cell
	Lifespan (h)
in Zn-Zn cell
	Full cell
	Lifespan
	Refs.

	99.96
	200 (12@1)
	>1500 (18@18)
	Zn−MnO2
	200 (0.07 A g−1)
	[S33]

	−
	−
	>4 (0.5@0.1)
	Zn−PANI
	5000 (2)
	[S34]

	−
	−
	1450 (0.5@0.5)
	Zn−ZnHCF
	700 (0.2 A cm−2)
	[S35]

	99.4
	400 (5@1)
	2000 (0.5@0.5)
	Zn−PANC/CC
	2000 (2)
	[S36]

	99.6
	>800 (10@5)
	2200 (10@10)
	Zn−MnO2
	5000 (5)
	[S37]

	99.5
	120 (5@1)
	4000 (10@35)
	Zn−ZnxV2O5 (0.9 Ah)
	200 (0.2)
	[S38]

	−
	−
	180 (1@1)
	Zn−La-V2O5
	3500 (5)
	[S39]

	−
	−
	500 (1@1)
	Zn−V2O5
	1000 (2)
	[S40]

	99.5
	1300 (2@4)
	1350 (2@4)
	Zn−Zn3V2O8
	3000 (1)
	[S41]
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