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[bookmark: _Hlk211512467]Fig. S1 The multiscale cell wall engineering strategy for CWS fabrication
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[bookmark: _Hlk211414559]Fig. S2 FTIR spectra of WS and CWS
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[bookmark: _Hlk211508379]Fig. S3 Photograph (a), cross section (b), tangential section (c) of CWS and its distribution of interlayer spacing (d)
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[bookmark: _Hlk195627550]Fig. S4 Photograph of CWS after chelating with Fe3+ ion
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Fig. S5 The reaction mechanism for the oxidative polymerization of Pyrrole monomers
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[bookmark: _Hlk199148649]Fig. S6 Photograph of CWS@PPy after being cut in half
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Fig. S7 XPS survey spectra (a) and N 1s spectrum (b) of samples
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Fig. S8 Photographs of CWS@PPy prepared via the dip-coating method (a-b) and SEM image of the sample (c)
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Fig. S9 FTIR spectra of various samples
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[bookmark: _Hlk199148949]Fig. S10 Raman spectra of CWS and CWS@PPy
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[bookmark: _Hlk199149201]Fig. S11 The element compositions of CWS, CWS@Fe3+, and CWS@PPy
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Fig. S12 The X-ray diffraction patterns of various samples
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[bookmark: _Hlk202186562]Fig. S13 TEM image showing the continuous PPy nanocoating on the surface of the microfiber bundle
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[bookmark: _Hlk202186418][bookmark: OLE_LINK1]Fig. S14 The volume resistance and electrical conductivity of CWS@PPy with different PPy loading
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[bookmark: _Hlk211417550]Fig. S15 SEM images of radial section of CWS@PPy with different polymerization durations
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Fig. S16 Electrical conductivity of CWS@PPy (19.61 wt%) with different strain
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[bookmark: _Hlk211514789]Fig. S17 Anisotropic electrical conductivity of CWS@PPy
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[bookmark: _Hlk211515100][bookmark: _Hlk211417672]Fig. S18 Photographs of aqueous solutions containing CWS@PPy subjected to ultrasonication d) SEM image of the sample after ultrasonic treatment for 6h
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Fig. S19 The acid/alkali tolerance of CWS@PPy
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[bookmark: _Hlk202175143]Fig. S20 Schematic diagram of the dynamic impact testing system for the sample
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[bookmark: _Hlk211515489]Fig. S21 Viscoelastic properties (storage modulus, loss modulus, and damping ratio) of CWS as a function of temperature (-70 to 90 °C)
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[bookmark: _Hlk199443708][bookmark: _Hlk204070948]Fig. S22 Comparison of compressive elasticity of CWS@PPy and PU sponge in liquid nitrogen
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Fig. S23 Photographs showing the mechanical stability of the water-saturated CWS@PPy
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[bookmark: _Hlk211514438][bookmark: _Hlk211516821]Fig. S24 Anisotropic EMI shielding effectiveness of CWS@PPy
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[bookmark: _Hlk199444765]Fig. S25 Photograph of customized plastic mold with different sizes
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[bookmark: _Hlk199323257]Fig. S26 Electromagnetic shielding effectiveness of customized plastic mold
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Fig. S27 Electrical conductivity of CWS@PPy (17.51 wt%) at different strain
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Fig. S28 ΔR/R0 of the sensor as a function of strain
[image: ]
Fig. S29 Current response of the CWS@PPy sensor loaded with an ultralight object (~27 Pa)
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Fig. S30 Anisotropic thermal conductivity of CWS@PPy
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Fig. S31 A homemade testing system for surface temperature measurement
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[bookmark: _Hlk199497638]Fig. S32 Density of CWS@PPy with different compressive strains
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[bookmark: _Hlk211412554]Fig. S33 The integrated functions of CWS@PPy for innovative application


[bookmark: _Hlk201670344]Table S1 Comparison of the compressive fatigue resistance of CWS@PPy with those of the reported elastic aerogels and foams
	Types
	
Materials
	Strain
	Cycles
	Plastic deformation
	Stress retention
	Refs.

	Biomass-based
	KGM 
	50%
	1000
	4.3%
	75%
	[S1]

	
	CNF/PMSQ
	60%
	10 000
	5.0%
	80%
	[S2]

	
	CNF/MOF
	60%
	800
	8.0%
	70%
	[S3]

	
	CNF/CNT/MMT
	50%
	10 000
	2.0%
	86.3%
	[S4]

	
	CNF/MOF
	50%
	1000
	3.0%
	80.2%
	[S5]

	Synthetic polymer-based
	PI/RGO
	50%
	2000
	3.0%
	88%
	[S6]

	
	PI/PVP
	50%
	100
	3.2%
	86.14%
	[S7]

	Carbon-based
	RGO/PAA
	50%
	1000
	3.5%
	82.0%
	[S8]

	
	RGO
	70%
	1000
	10%
	80%
	[S9]

	Ceramic-based
	SiO2/
	60%
	1000
	14.5%
	75%
	[S10]

	
	ZrO2/Al2O3
	60%
	1000
	12.5%
	70%
	[S11]

	
	CWS@PPy
	40%
	10 000
	3.5%
	85%
	This work


Note: Konjac glucomannan (KGM); Cellulose nanofibers (CNF); Polymethylsilsesquioxane (PMSQ); Metal-Organic Frameworks (MOF); Carbon nanotube (CNT); montmorillonite (MMT); Polyimide (PI); Polyvinylpyrrolidone (PVP); poly (amic acid) (PAA); Reduced graphene oxide (RGO).
Table S2 Recovery speed of CWS@PPy and other previously reported materials
	
Materials
	Recover speed
	Refs.

	GO-based monolith
	116.6
	[S12]

	CS–GO based aerogel
	580.0
	[S13]

	GO-based hybrid aerogel
	792.0
	[S14]

	CNT-based aerogel
	847.0
	[S15]

	Ceramic-based aerogel
	860.0
	[S16]

	Polymer-based carbon aerogel
	860.0
	[S17]

	GO-based aerogel
	1084.6
	[S18]

	Ceramic-based sponge
	1233.0
	[S19]

	CWS@PPy
	1111.0
	This work


Note: Graphene oxide (GO); Chitosan (CS); Carbon nanotube (CNT)
[bookmark: _Hlk201650388][bookmark: _Hlk201766413]
[bookmark: OLE_LINK13]Table S3 Comparison of SSE value of CWS@PPy with other materials
	Types
	
Materials
	Density
[g·cm-3]
	Frequency
[GHz]
	EMI SE
[dB]
	SSE
[dB· cm3 ·g-1]
	Refs.

	Wood-based 
	Carbonized Wood
	0.072
	8.2-12.4
	77.0
	1069.4
	[S20]

	
	Delignified wood/PPy
	0.11
	8.2-12.4
	22.99
	209.0
	[S21]

	
	Carbonized Wood/CNT
	0.541
	8.2-12.4
	73.7
	136.2
	[S22]

	
	Wood/MXene
	0.108
	8.2-12.4
	72.0
	666.7
	[S23]

	
	Carbonized Wood
	0.13
	8.2-12.4
	60.463
	465.1
	[S24]

	
	Wood/MXene
	0.197
	8.2-12.4
	71.3
	361.9
	[S25]

	
	Carbonized Wood
	0.48
	8.2-12.4
	54.8
	114.2
	[S26]

	Polymer-based 
	Polyurethane/MXene
	0.063
	8.2-12.4
	76.2
	1209.5
	[S27]

	
	polyimide foams
	0.091
	8.2-12.4
	54.0
	593.4
	[S28]

	
	Polyimide/MXene/CNT
	0.152
	8.2-12.4
	68.2
	448.7
	[S29]

	
	Polyimide/MXene
	0.0487
	8.2-12.4
	62.5
	1283.4
	[S30]

	
	Polypropylene/CB
	0.12
	8.2-12.4
	41.0
	341.7
	[S31]

	
	Polyurethane/CNT
	0.020
	8.2-12.4
	23.0
	1148.0
	[S32]

	Cellulose-based 
	Cellulose/CNT
	0.095
	8.2-12.4
	20.8
	219
	[S33]

	
	Cellulose/PANI
	0.1079
	8.2-12.4
	85.4
	791.2
	[S34]

	
	Cellulose/GO
	0.0569
	8.2-12.4
	58.4
	1026.4
	[S35]

	
	Nanocellulose/CNT
	0.075
	8.2-12.4
	39.8
	530.7
	[S36]

	
	Nanocellulose/MXene
	0.1393
	8.2-12.4
	110.0
	789.7
	[S37]

	
	Cellulose/CNT
	0.087
	8.2-12.4
	40.2
	461.95
	[S38]

	
	Sugarcane
	0.112
	8.2-12.2
	51.0
	455.4
	[S39]

	
	CWS@PPy
	0.06
	8.2-12.4
	77.18
	1286.3
	This work


Note: Carbon nanotube (CNT), Graphene oxide (GO); carbon black (CB); Polyaniline (PANI); 




Table S4 Comparison of the maximum sensitivity of CWS@PPy sensor with various reported aerogel and foam-based sensors
	Types
	
Materials
	Sensitivity 
[kPa-1]
	Refs.

	Polymer-based
	PI/MXene
	0.14
	[S40]

	
	PDMS/Ni/EGaIn composite
	0.313
	[S41]

	
	PU/RGO aerogel
	0.26
	[S42]

	
	PU/CB aerogel
	0.068
	[S43]

	
	Melamine/PANI/RGO composite
	0.152
	[S44]

	
	PU/ANF/MXene
	0.46
	[S45]

	Cellulose-based
	Bamboo fiber/RGO sponge
	0.59
	[S46]

	
	CNF/CB aerogel
	0.234
	[S47]

	
	Bamboo cellulose nanofiber
	0.95
	[S48]

	
	Cellulose carbon sponge
	1.04
	[S49]

	Wood-based
	Wood sponge/RGO 
	0.32
	[S50]

	
	Wood aerogel/PEDOT:PSS
	0.57
	[S51]

	
	Wood sponge/CNT/ PEDOT:PSS
	1.05
	[S52]

	
	Wood sponge/Grephene
	0.34
	[S53]

	
	CWS@PPy
	0.72
	This work


[bookmark: _Hlk201780049]Note: Polyimide (PI); Polyurethane (PU); Reduced graphene oxide (RGO); Carbon black (CB); polyaniline (PANI); aramid fiber (ANF); Cellulose nanofiber (CNF); Carbon nanotube (CNT)



[bookmark: OLE_LINK3]Table S5 Comparison of thermal conductivity of CWS@PPy among reported aerogels and foams
	
Types

	
Materials

	Temperature
	Humidity
	Thermal conductivity 
[W m-1 K-1]
	Refs.

	
	PBAT
	RT
	N/A
	0.0378
	[S54]

	Polymer-based
	PU
	RT
	N/A
	0.038
	[S55]

	
	PI
	RT
	N/A
	0.059
	[S56]

	
	CNF/GSA
	RT
	N/A
	0.03018
	[S57]

	
	MFC/CNF/Al3+
	RT
	N/A
	0.0403
	[S58]

	Cellulose-based 
	CNF/PLA
	RT
	N/A
	0.041
	[S59]

	
	CNF/G/Cu2+
	RT
	N/A
	0.05
	[S60]

	
	CNF/MH
	RT
	N/A
	0.056
	[S61]

	
	Cel/BT
	RT
	60%
	0.063
	[S62]

	
	AL/PA
	RT
	30%
	0.034
	[S63]

	
	CNF/LGN
	RT
	N/A
	0.0383
	[S64]

	
	LigSi
	RT
	33%
	0.04
	[S65]

	Biomass-based
	Wastepaper
	RT
	N/A
	0.044
	[S66]

	
	SiO2@CFs/SLS
	RT
	N/A
	0.046
	[S67]

	
	SA/LS/PA
	RT
	N/A
	0.047
	[S68]

	
	Pulp
	RT
	N/A
	0.068
	[S69]

	
	Wood foams
	RT
	N/A
	0.028
	[S70]

	
	Wood aerogel
	RT
	N/A
	0.028
	[S71]

	
	Nanowood
	RT
	20%
	0.03
	[S72]

	Wood-based 
	Wood aerogel
	RT
	50%
	0.037
	[S73]

	
	Insulwood
	RT
	50%
	0.038
	[S74]

	
	Wood aerogel
	RT
	N/A
	0.094
	[S75]

	
	CWS@PPy
	RT
	25%
	0.037
	This work


[bookmark: OLE_LINK4]Note: Poly (butylene adipate-co-terephthalate) (PBAT); Polyurethane (PU); Cellulose nanofiber (CNF); Glycerol succinic anhydride (GSA); Microfibrillated cellulose (MFC); Polylactic acid (PLA); Graphene (G); Magnesium hydroxide (MH); Cellulose (Cel); Bentonite (BT); Ammonium alginate (AL); Phytic acid (PA); Lignin (LGN); silica-mineralized lignin nanocomposite aerogel (LigSi); Sodium lignin sulfonate (SLS); Cellulose fibers (CFs); Sodium alginate (SA); Sodium lignosulfonate (LS); 
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