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S1.1 Mechanical Performance Test
Mechanical properties of samples were conducted at room temperature using universal tensiletesting machine (U-CAN UT-2080). The dumbbell-shaped specimens (75 mm × 4 mm × 0.5 mm, ISO 37-2005) were uniaxially stretched to rupture at a strain rate of 500 mm min-1 and each sample was teste at three times.
S1.2 Swelling Ratio and Crosslinking Density of ECLE Test
The determination of the swelling ratio and crosslinking density of samples was carried out via swelling experiments. The weighed samples (m0) were soaked in toluene at room temperature for four days. After that, the samples were carefully extracted from the toluene solution and weighed instantly (m1) after removing the toluene from the sample surface. Lastly, the samples were dried at 40°C until they had a constant weight (m2). The crosslink density (Ve) can be calculated by equation (S1) [S1]:
                                               (S1)
Among them, V1 represents the molar volume of toluene solvent (106.2 cm3 mol-1) and χ represents the toluene enr interaction parameter (0.34). The volume fraction Vr of rubber in gel is obtained from the following formula (S2):
                                               (S2)
where ρr and ρs represents the density of ENR (0.96 g cm-3) and the density of toluene (0.865 g cm-3), respectively.
The swelling ratio (W) can be obtained by the following equation (S3):
                                                (S3)
S1.3 Self-healing Performance Test
For self-healing experiment, the dumbbellshaped sample (4 mm × 75 mm × 1 mm) was cut into two segements from its middle section by a clean knife, and then the incisions were immediately contacted together and healed at specific power of near-infrared (NIR) laser. The cutting gap of samples was observed on a polarizingmicroscope (Leica, Germany) during healing process. The tensile properties of healed samples were tested, and three specimens were measured for each sample. The healing efficiency (η) was calculated according to the formula (S4):
                                                  (S4)
Among them, the εhealed and εoriginal represent the tensile strength of the original and healed samples, respectively.
S1.4 Photothermal Performance Test
For photothermal experiment, the thermal imaging camera (H16, HIKMICRO, China) was used to record the temperature of the sample surface at different NIR laser power settings. The efficiency of photothermal conversion was evaluated by the (average temperature)-time curve of the cuvette. The samples were placed in cuvette, irradiating with an NIR laser (808 nm, Lasever Inc., China) and recording the (average temperature)-time curve of the cuvette by thermal imaging camera. The process of the calculation are as follows (S5) [S2]:
                    (S5)
Mass and heat capacity of various components in the photothermal test system [cuvette: 4.88 g for m1 and 0.879 J g-1 K-1 for Cp1; deionized water: ~2.52 g for m2 and 4.18 J g-1 K-1 for Cp2; ECLM film: ~0.31g for m3 and 1.71J g-1 K-1 for Cp3]. Qs, Q0 and Qloss represents the photothermal heat energy input by irradiating NIR laser to samples, the photothermal heat energy (≈ 0) input by irradiating NIR laser to the cuvette and the deionized water, and thermal energy lost to the surroundings, respectively. When the system temperature reaches maximum (Tmax), the system is regarded as being in balance (S6):
                                  (S6)
Where h, Tsurr and S represents heat transfer coefficient, the temperature of the surroundings and the surface area of the container, respectively. The photothermal efficiency (ηpt) can be calculated according to the following equation (S7):
                                                  (S7)
Where I, A808 and δ is incident laser power, the absorbance of the ECLE films at the wavelength of 808 nm, and the light transmittance (90%) of cuvette at the wavelength of 808 nm, respectively. To obtain the hS, a dimensionless driving force temperature, θ is introduced as the following (S8):
                                                     (S8)
Where T is the system temperature. The sample system time constant (S9):
                                                      (S9)
Therefore (S10):
                                                (S10)
When the laser is turbed off, Qs = 0, thus (S11-S12):
                                                       (S11)
                                                      (S12)
The τs could be calculated from the slope of cooling time (t)-ln curve. The total photothermal efficiency (η*), defined as the ratio of the heat produced by photothermal materials to the energy input of the laser, and its calculation formula is as follows (S13):
                                               (S13)
S1.5 Photo-thermoelectric Performance Test
Photo-thermoelectric test: A photo-thermoelectric generator (PTEG) system, consisting of a commercial Seeback thermoelectric generator (SP1848-27145), a heat sink, and ECLE-1, was utilized to demonstrate photo-thermoelectric application. PTEG system generated electricity at different NIR laser power settings. The temperature and output voltage of the PTEG system was recorded by the thermal imaging camera (H16, HIKMICRO, China) and the digital multimeter (Keithley DMM 7510, USA), respectively.
S1.6 Conductivity Performance Test
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]The conductivity testing was performed using an electrochemical workstation (DH7000C, DONGHUA, China). A bias voltage of 10 mV was applied, and the frequency range was set from 10-1 Hz to 105 Hz. The samples (1×1 cm) were sandwiched between two stainless steel electrodes for the test. The calculation formula of conductivity (σ) is as follows (S14) [S3]:
                                                      (S14)
where R, L, and S are the resistance, length, and cross-sectional area of the sample, respectively.
S1.7 Ion Transference Number Test
[bookmark: OLE_LINK18]The ion transference number (TLi+) of the ECLE was measured using the AC impedance spectroscopy and the DC polarization. The polarization experiments was tested by electrochemical workstation with polarization voltage of 10 mV. The calculation formula of TLi+ is as follows (S15) [S4]
                                                 (S15)
Where I0 and R0 represent the initial currents and interfacial resistances, Is and Rs represent steady currents and interfacial resistances. ΔV is the applied polarization voltage.
The activation energy (Ea) for ion transfer of ECLM-1 was calculated by Vogel-Tammann-Fulcher (VTF) equation (S16) [S5]. 
                                            (S16)
Here, A and R were the pre-exponential factors. T0 was the reference temperature, which normally falls 30 K below the glass transition temperature (Tg).
S1.8 Water Evaporation Rate Test
[bookmark: OLE_LINK11][bookmark: OLE_LINK13]Water evaporation rate test: A container was filled with 100 mL 0.1 mol L-1 NaCl solution. The prepared ECLE (3×3 cm) was placed in a container surface to test the evaporation effect. An infrared lamp, as the light source, was placed above the ECLE. The weight and temperature change were recored by a balance and an infrared thermal camera in the evaporation process, respectively. the water evaporation rate () was calculated using the following equations (S17):
                                                      (S17)
Where, m1 and m0 is the original weight of the solution and the weight of the solution after evaporation, respectively. S and t is the heated area of the evaporator and the treated time of the evaporator, respectively.
S1.9 Simulated Seawater Power Generation Test
Simulated seawater power generation test: The ECLE was first cut into a rectangle shape (1×5 cm), and then the film was bent to a U-shape and bound on the polystyrene foam. The entire device was floated on 0.1 mol L-1 NaCl solution, with half of the film submerged in the solution. The real-time open-circuit voltage was recorded by the digital multimeter (Keithley DMM 7510).
S1.10 Binding Energy Computational
Binding energy computational methods: The structural optimizations were carried out using the DMol3 module on the Materials Studio software. The DFT Semi-core Pseudopots (DSPP) was employed to treat the core electrons, and the exchange-correlation effects were treated using the functional of Perdew-Burke-Ernzerhof (PBE) under the generalized gradient approximation (GGA) [S6, S7].
S2 Supplementary Figures
[bookmark: _GoBack][image: ]
Fig. S1 Comparison chart of before and after in equilibrium swelling experiment
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Fig. S2 EDS of ECLE-1
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Fig. S3 Binding energy of ENR-E and CNFs-E in ECLE systems, respectively
As depicts in Fig. S4a, when the strain exceeded 600%, the crystal diffraction peaks began to appear in the XRD curve, which showed the crystal diffraction peaks at 2θ = 13.9°, 17.4° and 20.2°, corresponding to the (200), (201) and (120) lattice planes of ENR crystallites, respectively [S8]. The crystallinity (Xc) of ECLE-1 was also calculated by equation (S18) [S9]:
                            (S18)
where Ac and Aa are the areas of crystalline and amorphous regions, respectively. The calculated result is shown in Fig S4b-h. The crystallinity of ECLE-1 increased from 2.98 of 600% to 23.61 of 1000%. The above results demonstrate that ECLE exhibits excellent SIC behavior. This may be due to the introduction of eumelanin, which increases the physical cross-linking points of the structural network and strengthens the interaction between ENR molecular chains, making it easier for the molecular chains to orient along the stretching direction and form crystalline domains during the stretching process.
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Fig. S4 a XRD curves of ECLE-1 at different strain. b-g Gaussian fitting data of XRD curve at different strains of ECLE-1. h Crystallinity of ECLE-1
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Fig. S5 The stress, strain, toughness and Young’s modulus of ECLE
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Fig. S6 UV–Vis–NIR light transmission spectra of ECLE
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[bookmark: _Hlk205647055]Fig. S7 a Schematic measurement setup of photothermal conversion performance for ECLE. b Cyclic photothermal conversion performance of ECLE-1 under 0.62 W cm-2
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[bookmark: _Hlk205134462]Fig. S8 a The (average temperature)-time curve of the photothermal conversion efficiency of test cuvette containing ECLE under near-infrared laser irradiation and natural cooling conditions. b The photothermal conversion efficiency of ECLE were compared with other photothermal materials [S10-S18]
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[bookmark: OLE_LINK12]Fig. S9 a Photographs of self-healing behaviors of ECLE-1 Optical microscope images of cut lines healed at 0.26 W/cm2 for 2 h. b surface. c internal
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Fig. S10 Current evolution under a polarization voltage of 10 mV. The inset shows the impedance spectra of the samples with before and after polarization: a ECLE-0; b ECLE-0.5; c ECLE-1; d ECLE-1.5; e ECLS-1
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Fig. S11 Arrhenius plot of the ionic conductivity of ECLE-1
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[bookmark: _Hlk205564173][bookmark: OLE_LINK19]Fig. S12 a The infrared image shows the temperature distribution on the film surface after illumination for 100 min. b Photograph of the ECLE-1 under 0.15 W/cm2 laser irradiation. c The output voltage of the ECLE-1 at different laser power. d The output voltage of the ECLE-1 at different cation. e The output voltage of the ECLE-1 at different width. f The output voltage of ECLE-1 versus width. g Comparison of infrared testing of ECLE-1 before and after 7 days of continuous output voltage testing. h The output voltage cyclic response of ECLE-1 to on-off of light
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[bookmark: _Hlk205583374]Fig. S13 The output voltage of ECLE-1 reach 0.36V at river water under 0.15 W cm-2 NIR laser irradiation
The ECLE-1 was cut into two pieces, and then the two separate parts were made to fit together and immersed in 0.1 wt% NaCl solution (Fig. S13). After self-healing under an irradiation power of 0.26 W cm-2 for 2 h, the sample could be stretched to 700 % without fracturing.
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[bookmark: OLE_LINK20]Fig. S14 The self-healing process of ECLE-1 in a 0.1 wt% NaCl solution under an irradiation power of 0.26 W/cm² for 2 h
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Fig. S15 Photograph of the output voltage and self-healing process of healed ECLE-1 under an irradiation power of 0.26 W/cm² for 2 h
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Fig. S16 The output voltage of healed ECLE-1 under PH=8 conditions
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Fig. S17 a Infrared images of the two ECLE-1 devices under an irradiation power of 0.15 W/cm². b Output current and voltage when the external resistance changes. c The calculation of power output under different resistance loads
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Fig. S18 The distribution total spectrum diagram of EDS in different parts of ECLE-1: a 1; b 2; c 3; d 4
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Fig. S19 Photographs showing the output voltage of ECLE-1 without sun
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Fig. S20 Repeated charging and discharging of two ECLE-1 devices under sunlight
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