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Supplementary Figures and Tables
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Fig. S1 (a) XRD patterns of Ti3AlC2 MAX powders and Ti3C2Tx MXene film (b) TEM image of Ti3C2Tx MXene flakes (c) AFM image and (d) height profiles of the Ti3C2Tx MXene flakes
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[bookmark: _Hlk144385695][bookmark: _Hlk170722630]Fig. S2 The synthesis process of poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAS)
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Fig. S3 Schematic diagram of self-made freeze-drying mold
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Fig. S4 Schematic diagram of the process for preparing three-layer heterolayered structures by stepwise freezing
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[bookmark: OLE_LINK6]Fig. S5 The MXene/PI aerogel was prepared by stepwise freezing. The first layer of ice crystals grew from bottom to top in liquid nitrogen. The second layer of ice crystals grew randomly in the refrigerator. The third layer of ice crystals grew horizontally along the left copper plate
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Fig. S6 (a) Front view and (b) top view photos of the C-MXene/PI aerogel supporting a 500 g weight
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Fig. S7 The cross-sectional SEM images of the radial sections of the three layers
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Fig. S8 Photos of the mechanical torsion test for the C-MXene/PI aerogel
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Fig. S9 The lattice fringes of the TiC (111) plane
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Fig. S10 (a) XPS survey spectra and (b) High-resolution XPS spectra of Ti 2p for MXene, MP and CMP
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Fig. S11 (a) The cross-section SEM images of heterolayered CMP aerogel. (b) Photo of the heterolayered CMP aerogel measured with a ruler
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[bookmark: OLE_LINK13]Fig. S12 EMI SET, SER, and SEA of the (a) vertical structure MXene/PI aerogel, (b) disordered structure MXene/PI aerogel and (c) horizontal structure MXene/PI aerogel. (d) Coefficients of vertical, disordered and horizontal structure MXene/PI aerogel
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Fig. S13 EMI SET, SER, and SEA of the (a) vertical structure C-MXene/PI aerogel, (b) disordered structure C-MXene/PI aerogel and (c) horizontal structure C-MXene/PI aerogel. (d) Coefficients of vertical, disordered and horizontal structure C-MXene/PI aerogel
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Fig. S14 EMI SE of MP with different structures
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Fig. S15 The electrical conductivities of the vertical, disordered and horizontal structural layers of MP and CMP
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[bookmark: _Hlk213013231]Fig. S16 (a) EMI SE of CMP after exposure at 40-50% humidity and different temperatures for varying durations. (b) EMI SE of CMP after exposure at 80-90% humidity and different temperatures for varying durations. (c) XRD patterns of the pristine CMP sample and after 10 days of exposure in a damp-heat environment
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Fig. S17 EMI SET, SER, and SEA of the (a) MP-T, (b) MP-B and (c) MP-BG. (d) Coefficients of MP-T, MP-B and MP-BG
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Fig. S18 The electric field (EF) distribution maps of (a) CMP-T, (b) CMP-B and (c) CMP-BG
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Fig. S19 The electrical energy density (EED) distribution maps of (a) CMP-T, (b) CMP-B and (c) CMP-BG 
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Fig. S20 The enlarged error bar illustration in Fig. 2j
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Fig. S21 Comparison of SSE and density with those of previously reported EMI shielding materials
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Fig. S22 The schematic diagram of (a) transmission mode and (b) reflection mode for THz time-domain spectral test
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Fig. S23 The THz time-domain spectroscopy of CMP for transmission mode
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Fig. S24 SET of CMP with different structures in a frequency range of 0.2-1.6 THz
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Fig. S25 SER of different structural CMP aerogels in a frequency range of 0.2-1.6 THz
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Fig. S26 Schematic diagram of heating the sample on the heating platform
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Fig. S27 The infrared emissivity of different structured CMP in the 2-16 μm
Table S1 The thickness of CMP aerogels with different structures
	[bookmark: _Hlk211435200][bookmark: _Hlk211375909]Sample
	Aggregate thickness
(cm)
	Vertical 
layer thickness (cm)
	Disordered layer thickness (cm)
	Horizontal layer thickness (cm)

	Vertical CMP aerogel
	1.00
	1.00
	0
	0

	Disordered CMP aerogel
	1.00
	0
	1.00
	0

	Horizontal CMP aerogel
	1.00
	0
	0
	1.00

	Heterolayered CMP aerogel
	1.00
	0.33
	0.33
	0.33


Table S2 SET, SEA and SER average value of CMP-T, CMP-B and CMP-BG
	Material type
	[bookmark: OLE_LINK58]EMI SET
	[bookmark: OLE_LINK59]EMI SEA
	EMI SER

	CMP-T
	91.4
	85.4
	6.0

	CMP-B
	91.3
	88.9
	2.4

	CMP-BG
	91.0
	88.8
	2.2





Table S3 Comparison of EMI SE and R Coefficient with those of previously reported EMI shielding materials
	[bookmark: _Hlk199606511]Material type
	EMI SE (dB)
	R
	Refs.

	CoNi/MXene/nanocellulose
	35.1
	0.72
	[S1]

	
	21.2
	0.75
	

	[bookmark: OLE_LINK67]CNF/MXene/FeCo
	58.0
	0.51
	[S2]

	Fe3O4/CNT/PU&MXene
	60.0
	0.38
	[S3]

	TCTCF
	85.0
	0.42
	[S4]

	AgNWs/Fe3O4@NC
	50.0
	0.45
	[S5]

	CNT@MXene
	23.4
	0.37
	[S6]

	Cellulose/biochar
	72.4
	0.58
	[S7]

	Carbon black/graphene/nickel polyimide
	44.0
	0.29
	[S8]

	HWLS/PAN/ZIF-67
	25.2
	0.43
	[S9]

	[bookmark: _Hlk199606531]C-MXene/PI
	91.0
	0.40
	This work


Table S4 Comparison of SSE and density with those of previously reported EMI shielding materials
	Material type
	Density (mg/cm3)
	EMI SE
(dB)
	SSE
(dB•cm2/g)
	Refs.

	Graphene/PDMS
	60.0
	20.0
	333.3
	[S10]

	Ti3C2Tx/RGO
	30.0
	56.4
	1880.0
	[S11]

	Graphene foam
	60.0
	25.2
	420.0
	[S12]

	PI/ rGO
	76.0
	28.8
	378.9
	[S13]

	IGA
	18.0
	83.0
	4611.1
	[S14]

	Reduced
graphene aerogel
	5.5
	30.5
	6777.8
	[S15]

	CNF/rGO
	5.8
	33.0
	5689.7
	[S16]

	MXene (Ti3C2Tx)/ANFs
	82.0
	56.8
	692.7
	[S17]

	MXene/CMC
	35.0
	52.2
	1490.0
	[S18]

	rGO/MXene
	29.0
	83.3
	2872.4
	[S9]

	PLLA-MWCNT
	30.0
	23.0
	766.7
	[S20]

	O-PI/CNT
	28.5
	46.5
	1631.6
	[S21]

	ANF/GN
	40.0
	31.6
	788.8
	[S22]

	OSG/BNNR
	45.8
	70.9
	1548.0
	[S23]

	PU@PDA@Ag
	32.0
	84.0
	2625.0
	[S24]

	Polyurethane/Silver Nanowire
	45.0
	48.6
	1080.0
	[S25]

	Cu Nanowire
@Graphene
	7.5
	25.4
	3386.7
	[S26]

	Polyimide/graphene aerogels
	25.0
	48.3
	1931.0
	[S27]

	AgNW/MXene
	16.6
	52.5
	3162.7
	[S28]

	PSA/AgNWs
	12.3
	44.0
	3580.5
	[S29]

	CMP-T
	12.0
	91.4
	7616.7
	This work

	CMP-B
	12.0
	91.3
	7680.3
	This work

	CMP-BG
	12.0
	91.0
	7583.3
	This work



[bookmark: _Hlk213087159][bookmark: _Hlk213087112]Table S5 The EMI SE, R and thermal conductivity of five batches of independent experiments for heterolayered CMP aerogels
	Sample
	EMI SE in X band (dB)
	R in X band
	EMI SE in THz band (dB)
	R in THz band
	Thermal conductivity (W/(m•K))

	1
	91.0
	0.40
	66.2
	0.33
	0.383

	2
	91.3
	0.40
	68.0
	0.35
	0.386

	3
	90.5
	0.39
	63.7
	0.32
	0.377

	4
	90.7
	0.40
	64.4
	0.34
	0.380

	5
	91.5
	0.41
	68.7
	0.31
	0.389





Table S6 The R, t and  of CMP-T, CMP-B and CMP-BG aerogels.
	Sample
	Vertical layer
	Disordered layer
	Horizontal layer

	
	R
	t
	
	R
	t
	
	R
	t
	

	CMP-T
	8.9
	0.33
	0.34
	8.9
	0.33
	0.34
	8.9
	 0.33
	0.34

	CMP-B
	8.9
	0.33
	0.34
	8.9
	0.33
	0.34
	8.9
	0.33
	0.34

	CMP-BG
	30.3
	0.33
	0.10
	8.9
	0.33
	0.34
	5.3
	 0.33
	0.57



Table S7 The electromagnetic wave incidence direction and electrical conductivity of CMP-T, CMP-B and CMP-BG aerogels.
	Sample
	The incident direction of EW
	Vertical 
layer conductivity (S/cm)
	Disordered layer conductivity (S/cm)
	Horizontal layer conductivity (S/cm)

	CMP-T
	From the horizontal layer
	0.34
	0.34
	0.34

	CMP-B
	From the vertical  layer
	0.34
	0.34
	0.34

	CMP-BG
	From the vertical  layer
	0.10
	0.34
	0.57
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