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S1 Experimental Section
S1.1 Chemicals
4-nitrophthalonitrile (98%) was purchased from Shanghai Maclin Biochemical Technology Co., Ltd. 4-hydroxyphthalonitrile (≥97%), hydroquinone (AR) and 4,4-dihydroxydiphenyl (99%), Cobalt(II) acetate tetrahydrate (≥99.9%) and tris(2,2′-bipyridyl)dichlororuthenium(II) (98%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (99%) and n-pentanol (GC, >99%) were purchased from Shanghai Yien Chemical Technology Co., Ltd. N, N-Dimethylformamide (DMF) (AR), Acetonitrile (MeCN) (AR), Triethanolamine (TEOA) (AR), ethanol (AR) and Sodium sulfate anhydrous (AR) were purchased from Guangdong Guanghua Sci-Tech Co., Ltd. Potassium carbonate anhydrous (AR) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. The above reagents were of analytical grade and used directly without any further purification before the experiment. Nafion solution (5 wt%) was purchased from Sigma-Aldrich LLC. 
S1.2 Characterization
The 1H NMR measurement was performed using Bruker Advance 500MHz Bruke. IR spectra were confirmed through Nicolet™ iS50 FTIR Spectrometer. Powder X-ray diffraction (PXRD) patterns of catalysts were recorded on a Brooke GmbH X-ray diffractometer (Germany). The 2θ angle ranged from 1° to 50° with a scan step of 5°/min. Field emission scanning electron microscopy (FE-SEM, FEI Verious G4) and transmission electron microscopy (TEM, FEI Talos F200X TEM, operating voltage 200 kV) were used to study the morphology and structure of the samples. N2 and CO2 adsorption-desorption was measured with the 3H-2000PS2 type PS2-0790 Surface Area Porosity Analyzer. The element composition of the samples was analyzed by X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD by Kratos Company in the United Kingdom.
S1.3 Photocurrents and Mott-Schottky (MS) curve measurements
5 mg of catalysts were meticulously distributed within a solution comprising Nafion (100 µL) and ethanol (900 µL), followed by ultrasonic treatment. Apply 200 µL of the solution dropwise on the surface of the FTO conductive glass and air dry. The FTO glass, coated with the catalyst, acted as a photoelectrode. A conventional system of a three-electrode cell in a solution of pH = 7 was used.
S1.4 Photocatalytic CO2RR Cyclic experiments
Following 1 hour of illumination, the catalyst is isolated from the reaction solution via filtration. Wash with ethanol and deionized water several times during the filtration process. Subsequently, vacuum drying at 60 °C yields the regenerated solid sample. Upon adding equivalent volumes of fresh acetonitrile, H2O, and [Ru(bpy)3]Cl2·6H2O, CO2 is reintroduced into the photocatalytic system for the next photocatalytic cycle.
S1.5 Determination of quenching rate (kq)
A reported method [S1] was followed to calculate the kq in the steady-state measurements, where the fluorescence intensity of photo-excited Ru-PS in the presence of a quencher was measured and fitted to the Stern-Volmer equation.
                             (S1)
In this equation, I0 and I are the fluorescence intensity values in the absence and presence of the quencher, K is the Stern-Volmer constant for dynamic quenching, kq is the apparent rate of bimolecular quenching, τ0 is the lifetime of the excited state without quencher, and [Q] is the concentration of the quencher.
[bookmark: _Hlk206503565]S1.6 Apparent quantum efficiency
The apparent quantum efficiency (AQE) measurements for CoBOP under monochromatic irradiation. Specifically, AQE was determined at 365, 420, 500, 600, 700, and 800 nm using the following equation:

Where nco is the molar amount of CO, NA is Avogadro’s constant (6.022 × 1023 mol-1), h is Planck’s constant (6.63 × 10-34 m2 kg s-1), c is the speed of light (3 × 108 m·s-1), S is the irradiation area (cm2), P is the irradiation intensity (W cm-2), T is the irradiation time (s), and λ is the wavelength of the incident light.
S1.7 Computation methods
All quantum chemical calculations were performed with the Gaussian 16 program using the level of B3LYP/6-311+G(d,p) [S2].
S2 Supplementary Figures and Tables
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Fig. S1 1H NMR spectra of OP. (500 MHz, DMSO-d6) δ 8.23 (d, J = 8.7 Hz, 2H), 8.05 (d, J = 2.6 Hz, 2H), 7.71 (dd, J = 8.7, 2.5 Hz, 2H)
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Fig. S2 1H NMR spectra of POP. (500 MHz, DMSO-d6) δ 8.14 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 2.6 Hz, 2H), 7.52 (dd, J = 8.8, 2.7 Hz, 2H), 7.34 (s, 4H)
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Fig. S3 HR-MS spectrum of OP
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Fig. S4 HR-MS spectrum of POP
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Fig. S5 FT-IR spectra of 4-Nitrophthalonitrile and OP
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Fig. S6 FT-IR spectra of hydroquinone and POP
[image: ]
Fig. S7 FT-IR spectra of BOP and CoBOP
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Fig. S8 FT-IR spectra of OP and CoOP
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Fig. S9 FT-IR spectra of POP and CoPOP
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Fig. S10 AB Stacking simulated PXRD crystal structure based on theoretical structural simulation using the Materials Studio package of CoOP a, CoPOP b, and CoBOP c
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Fig. S11 XPS spectra of CoBOP

[image: ]
Fig. S12 a C 1s XPS spectra of CoBOP. b O 1s XPS spectra of CoBOP
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Fig. S13 XPS spectra of CoOP
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Fig. S14 a C 1s XPS spectra of CoOP. b N 1s XPS spectra of CoOP. c O 1s XPS spectra of CoOP. d Co 2p XPS spectra of CoOP
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Fig. S15 XPS spectra of CoPOP
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Fig. S16 a C 1s XPS spectra of CoPOP. b N 1s XPS spectra of CoPOP. c O 1s XPS spectra of CoPOP. d Co 2p XPS spectra of CoPOP
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Fig. S17 a SEM images of CoOP with 2 μm. b SEM images of CoOP with 1 μm. c, d SEM images of CoOP with 500 nm
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Fig. S18 a SEM images of CoPOP with 2 μm. b SEM images of CoPOP with 1 μm. c, d SEM images of CoPOP with 500 nm
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Fig. S19 a SEM images of CoBOP with 2 μm. b SEM images of CoBOP with 1 μm. c, d SEM images of CoBOP with 500 nm
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Fig. S20 a TEM images of CoOP. b EDS mapping pictures of CoOP
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Fig. S21 a TEM images of CoPOP. b EDS mapping pictures of CoPOP

[image: ]
[bookmark: _Hlk206685577]Fig. S22 Nitrogen adsorption and desorption isotherms of CoOP a, CoPOP b, CoBOP c. The pore size distribution of CoOP d, CoPOP e, and CoBOP f by BJH (desorption)
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[bookmark: _Hlk182406425]Fig. S23 CO2 sorption isotherms in CoOP
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Fig. S24 CO2 sorption isotherms in CoPOP
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Fig. S25 CO2 sorption isotherms in CoPOP
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Fig. S26 Qst curve of CO2 of CoOP
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Fig. S27 Qst curve of CO2 of CoPOP
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Fig. S28 Qst curve of CO2 of CoBOP
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[bookmark: _Hlk182406445]Fig. S29 TGA spectra of CoOP, CoPOP, and CoBOP
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Fig. S30 XRD spectra of CoOP after immersion in various solutions
[image: ]
Fig. S31 XRD spectra of CoPOP after immersion in various solutions
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Fig. S32 XRD spectra of CoBOP after immersion in various solutions
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[bookmark: _Hlk206575775]Fig. S33 Mott-Schottky curves of CoOP at different frequencies
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Fig. S34 Mott-Schottky curves of CoPOP at different frequencies
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Fig. S35 Mott-Schottky curves of CoBOP at different frequencies
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Fig. S36 a Valence band XPS spectra of the CoOP, CoPOP, and CoBOP. b Band-structure (vs. vacuum) diagram based on UV-vis spectra and XPS-VB for CoOP, CoPOP, and CoBOP
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Fig. S37 LUMO of CoOP、CoPOP and CoBOP
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Fig. S38 1H NMR spectra of the liquid products resulting from the pCO2RR mediated by CoOP, CoPOP, and CoBOP
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Fig. S39 Time-dependent photocatalytic activity of CoBOP
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[bookmark: _Hlk206503830]Fig. S40 AQE of production catalyzed by CoBOP as a function of the related spectra
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Fig. S41 XRD and FT-IR spectra before and after photocatalytic reaction of CoBOP
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Fig. S42. Photocatalytic performance with different CoBOP dosages
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[bookmark: _Hlk206508874]Fig. S43 Transient photocurrent response of CoOP, CoPOP, and CoBOP at 0.2 M Na2SO4 electrolyte
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[bookmark: _Hlk206258609]Fig. S44 EIS plots of the CoOP, CoPOP, and CoBOP at 0.2 M Na2SO4 electrolyte
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Fig. S45 a Steady-state PL spectra of CoOP, CoPOP, and CoBOP. b Time-resolved PL decay spectra of CoOP, CoPOP, and CoBOP
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Fig. S46 a Steady-state PL spectra of a CH3CN solution containing 0.05 mM Ru-PS in the presence of 0~0.10 mM CoBOP, respectively. b Linear fitting of the ratio of PL intensity versus CoBOP
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Fig. S47 a Steady-state PL spectra of a CH3CN solution containing 0.05 mM Ru-PS in the presence of 0~0.10 mM CoPOP, respectively. b Linear fitting of the ratio of PL intensity versus CoPOP
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Fig. S48 a Steady-state PL spectra of a CH3CN solution containing 0.05 mM Ru-PS in the presence of 0~0.10 mM CoOP, respectively. b Linear fitting of the ratio of PL intensity versus CoOP
Table S1 The performance comparison of COF photocatalysts using photosensitizer and sacrificial agent for photocatalytic CO2-to-CO conversion
	Photocatalyst
	Photosensitizers
	Sacrificial
Agent
	solution 
components
	CO Yield
mmol g-1 h-1
	H2 Yield
mmol g-1 h-1
	CO Yield
μmol h-1
	Refs.

	CoBOP
0.2 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
20 mL
	426
	288
	85.2
	This
work

	CoBOP
0.5 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
20 mL
	147.2
	94.4
	73.6
	This
work

	CoBOP
1 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
20 mL
	83.7
	54.7
	83.7
	This
work

	CoPOP
1 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
20 mL
	68.8
	46.2
	68.8
	This
work

	CoOP
1 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
20 mL
	53.6
	32.6
	53.6
	This
work

	TPy-COF-Co
1 mg
	[Ru(bpy)3]Cl2
1.25 mg/mL
	TEOA
	MeCN/H2O
6 mL
	26.9
	14.7
	26.9
	 [S3]

	Co/Cu3-TPA-COF
1 mg
	[Ru(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
5 mL
	25.2
	6.23
	25.2
	 [S4]

	USTB-11(Cu,Ni) 
2 mg
	[Ru(bpy)3]Cl2
6 mg/mL
	TEOA
	MeCN/H2O
5 mL
	22.13
	0.45
	44.26
	 [S5]

	Co-2,3-DHTA-COF
1 mg
	[SRu(bpy)3]Cl2
0.22 mg/mL
	TEOA
	MeCN/H2O
46 mL
	18.00
	0.81
	18
	 [S6]

	EPCo-COF-AT
2 mg
	[SRu(bpy)3]Cl2
0.5 mg/mL
	TEOA
	MeCN/H2O
20 mL
	17.70
	0.40
	35.4
	 [S7]

	JUC-640-Co
3 mg
	[Ru(bpy)3]Cl2
0.25 mg/mL
	BIH
	MeCN/H2O
20 mL
	15.14
	0.90
	45.42
	 [S8]

	TT-Por(Co)-COF
5 mg
	[SRu(bpy)3]Cl2
6 mg/mL
	TEOA
	MeCN/H2O
5 mL
	10.50
	8.94
	52.5
	 [S9]

	CoPor-DPP-COF
2 mg
	[SRu(bpy)3]Cl2
0.625 mg/mL
	TIPA
	MeCN/H2O
16 mL
	10.20
	2.24
	20.4
	 [S10]

	COF-367-Co NSs
5 mg 
	[SRu(bpy)3]Cl2
0.95 mg/mL
	AA
	 0.1 M KHCO3
20 mL
	10.16
	3.00
	50.8
	 [S11]

	Co-PyPor-COF
2 mg
	[SRu(bpy)3]Cl2
1.25 mg/mL
	TEOA
	MeCN/H2O
8 mL
	9.60
	0.33
	19.2
	 [S12]

	CdS/TpBpy-20% 
2 mg
	Co(bpy)32+ 
	TEOA
	MeCN/H2O
15 mL
	8.80
	1.71
	17.6
	 [S13]

	Co-TAPB-COF-1
10 mg
	[SRu(bpy)3]Cl2
0.6 mg/mL
	TEOA
	MeCN/H2O
100 mL
	8.39
	11.31
	83.9
	 [S14]

	Ni-COF
2 mg
	[SRu(bpy)3]Cl2
1.25 mg/mL
	TEOA
	MeCN/H2O
6 mL
	5.31
	0.29
	10.62
	 [S15]

	Ni-TP-CON
5 mg
	[SRu(bpy)3]Cl2
2 mg/mL
	TEOA
	MeCN/H2O
10 mL
	4.98
	0.13
	24.9
	 [S16]

	NiPc-CoPOP
2 mg
	[SRu(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
10 mL
	4.27
	3.64
	8.54
	 [S17]

	Ni@TPHH-COF 
5 mg
	[SRu(bpy)3]Cl2
1.17 mg/mL
	TEOA
	MeCN/H2O
6 mL
	3.28
	0.17
	16.4
	 [S18]

	HOF-25-Re
2 mg
	[SRu(bpy)3]Cl2
	TIPA
	MeCN
	3.03
	0.26
	6.06
	 [S19]

	CoNi-COF-3
1 mg
	[SRu(bpy)3]Cl2
0.86 mg/mL
	TEOA
	MeCN/H2O
5 mL
	2.57
	0.25
	2.57
	 [S20]

	CoP-TPE-COF
15 mg
	[SRu(bpy)3]Cl2
5 mg/mL
	TEOA
	MeCN/H2O
6 mL
	2.41
	1.54
	36.15
	 [S21]

	H-COF-Ni
2 mg
	[SRu(bpy)3]Cl2
5 mg/mL
	TEOA
	MeCN/H2O
6 mL
	2.31
	0.10
	4.62
	 [S22]

	TFBD-COF-Co-SA
10 mg
	[SRu(bpy)3]Cl2
0.6 mg/mL
	TEOA
	MeCN
50 mL
	1.48
	0.16
	14.8
	 [S23]

	Co@COF-TVBT-Bpy
2 mg
	[SRu(bpy)3]Cl2
0.3 mg/mL
	TEOA
	MeCN/H2O
11.6 mL
	1.13
	1.13
	2.26
	 [S24]

	CH3-TPPD
5 mg
	[SRu(bpy)3]Cl2
1.2 mg/mL
	TEOA
	MeCN/H2O
6 mL
	1.03
	0.27
	5.15
	 [S25]

	DQTP COF-Co
20 mg
	[SRu(bpy)3]Cl2
0.45 mg/mL
	TEOA
	MeCN
50 mL
	1.02
	0.11
	20.4
	 [S26]

	CTF-Bpy-Co
10 mg
	[SRu(bpy)3]Cl2
0.325 mg/mL
	TEOA
	MeCN/H2O
20 mL
	1.02
	0.20
	10.2
	 [S27]

	Fe-SAS/TrCOF
5 mg
	[SRu(bpy)3]Cl2
2 mg/mL
	TEOA
	MeCN/H2O
5 mL
	0.98
	0.04
	4.9
	 [S28]

	Ni-TpBpy
10 mg
	[SRu(bpy)3]Cl2
1.3 mg/mL
	TEOA
	MeCN/H2O
5 mL
	0.81
	0.03
	8.1
	 [S29]

	Ni-PCD@TD-COF
5 mg
	[SRu(bpy)3]Cl2
2 mg/mL
	TEOA
	MeCN/H2O
10 mL
	0.48
	0.01
	2.4
	 [S30]

	α-Fe2O3@Por-CTF
20 mg
	[SRu(bpy)3]Cl2
1 mg/mL
	TEOA
	MeCN/H2O
5 mL
	0.4
	0.03
	8
	 [S31]



Table S2 Atomic coordinates for geometrically optimized CoOP using FORCITE calculation
	CoOP
	Space group: P1
a=15.6 Å, b=15.4, Å c=3.5Å
α=94.8°, β=94.0°, γ= 89.3°

	C1
	C
	1.23296
	-1.46239
	-0.60229

	C2
	C
	1.23226
	-1.54885
	-0.54671

	C3
	C
	1.32226
	-1.57577
	-0.51446

	N4
	N
	1.37489
	-1.50705
	-0.53806

	C5
	C
	1.32249
	-1.43747
	-0.59044

	C6
	C
	1.54195
	-1.2431
	-0.37551

	C7
	C
	1.45585
	-1.24216
	-0.47684

	C8
	C
	1.43058
	-1.32818
	-0.51958

	N9
	N
	1.49867
	-1.38201
	-0.45874

	C10
	C
	1.56663
	-1.32859
	-0.37082

	N11
	N
	1.34845
	-1.3543
	-0.58362

	C12
	C
	1.76732
	-1.54896
	-0.47702

	C13
	C
	1.76554
	-1.4623
	-0.36555

	C14
	C
	1.67576
	-1.43767
	-0.3613

	N15
	N
	1.62417
	-1.50733
	-0.45785

	C16
	C
	1.67759
	-1.57626
	-0.52508

	N17
	N
	1.64891
	-1.35458
	-0.32235

	C18
	C
	1.45624
	-1.77239
	-0.54813

	C19
	C
	1.5424
	-1.77242
	-0.59707

	C20
	C
	1.56761
	-1.68711
	-0.5847

	N21
	N
	1.49915
	-1.63324
	-0.53803

	C22
	C
	1.43087
	-1.68621
	-0.51975

	N23
	N
	1.34851
	-1.6592
	-0.5044

	C24
	N
	1.65198
	-1.66149
	-0.58614

	C25
	C
	1.84459
	-1.59355
	-0.53217

	C26
	C
	1.92207
	-1.54637
	-0.46891

	C27
	C
	1.91844
	-1.45672
	-0.3398

	C28
	C
	1.83991
	-1.41345
	-0.29125

	C29
	C
	1.58978
	-1.16755
	-0.30572

	C30
	C
	1.54621
	-1.08879
	-0.34941

	C31
	C
	1.45728
	-1.08574
	-0.46916

	C32
	C
	1.41085
	-1.16448
	-0.52614

	C33
	C
	1.41113
	-1.84951
	-0.52767

	C34
	C
	1.45739
	-1.92888
	-0.55796

	C35
	C
	1.54625
	-1.92702
	-0.6242

	C36
	C
	1.58993
	-1.84883
	-0.63992

	C37
	C
	1.15787
	-1.41395
	-0.64622

	C38
	C
	1.07995
	-1.45723
	-0.62654

	C39
	C
	1.07755
	-1.54648
	-0.55537

	C40
	C
	1.15567
	-1.59339
	-0.52146

	O41
	O
	1.4125
	-1.00702
	-0.52764

	O42
	O
	1.00011
	-1.59164
	-0.52719

	Co43
	Co
	1.49926
	-1.50751
	-0.4982

	H44
	H
	1.70161
	-1.71513
	-0.64155

	H45
	H
	1.84393
	-1.66611
	-0.62579

	H46
	H
	1.98043
	-1.41821
	-0.27297

	H47
	H
	1.83902
	-1.34108
	-0.19443

	H48
	H
	1.66141
	-1.17137
	-0.21697

	H49
	H
	1.58208
	-1.0246
	-0.28843

	H50
	H
	1.33885
	-1.16338
	-0.60976

	H51
	H
	1.33914
	-1.84716
	-0.48764

	H52
	H
	1.58399
	-1.99046
	-0.66635

	H53
	H
	1.66164
	-1.84971
	-0.68631

	H54
	H
	1.16128
	-1.34203
	-0.69595

	H55
	H
	1.01634
	-1.4208
	-0.66805

	H56
	H
	1.15502
	-1.66562
	-0.47482


Table S3 Atomic coordinates for geometrically optimized CoPOP using FORCITE calculation 
	CoPOP
	Space group: P1
a=19.9 Å, b=20.4, Å c=4.3Å
α=66.8°, β=72.0°, γ= 90.0°

	C1
	C
	0.45699
	-0.70028
	-0.5

	C2
	C
	0.52173
	-0.70778
	-0.5

	C3
	C
	0.54101
	-0.6454
	-0.5

	N4
	N
	0.4903
	-0.60115
	-0.5

	C5
	C
	0.4388
	-0.63309
	-0.5

	C6
	C
	0.29872
	-0.4562
	-0.5

	C7
	C
	0.29772
	-0.5197
	-0.5

	C8
	C
	0.36011
	-0.54544
	-0.5

	N9
	N
	0.39996
	-0.50067
	-0.5

	C10
	C
	0.36146
	-0.44605
	-0.5

	N11
	N
	0.37839
	-0.60696
	-0.5

	C12
	C
	0.52549
	-0.32321
	-0.5

	C13
	C
	0.46074
	-0.31572
	-0.5

	C14
	C
	0.44146
	-0.3781
	-0.5

	N15
	N
	0.49218
	-0.42234
	-0.5

	C16
	C
	0.54368
	-0.39039
	-0.5

	N17
	N
	0.38088
	-0.38911
	-0.5

	C18
	C
	0.68374
	-0.5673
	-0.5

	C19
	C
	0.68475
	-0.50379
	-0.5

	C20
	C
	0.62237
	-0.47804
	-0.5

	N21
	N
	0.58252
	-0.52282
	-0.5

	C22
	C
	0.62101
	-0.57745
	-0.5

	N23
	N
	0.60158
	-0.6344
	-0.5

	N24
	N
	0.60409
	-0.41652
	-0.5

	C25
	C
	0.55995
	-0.27354
	-0.5

	C26
	C
	0.52533
	-0.21452
	-0.5

	C27
	C
	0.45826
	-0.20555
	-0.5

	C28
	C
	0.42521
	-0.25778
	-0.5

	C29
	C
	0.24374
	-0.41431
	-0.5

	C30
	C
	0.18598
	-0.44023
	-0.5

	C31
	C
	0.18411
	-0.50722
	-0.5

	C32
	C
	0.24149
	-0.54682
	-0.5

	C33
	C
	0.7387
	-0.60921
	-0.5

	C34
	C
	0.79646
	-0.5833
	-0.5

	C35
	C
	0.79834
	-0.51629
	-0.5

	C36
	C
	0.74098
	-0.47668
	-0.5

	C37
	C
	0.42253
	-0.74995
	-0.5

	C38
	C
	0.45715
	-0.80898
	-0.5

	C39
	C
	0.52421
	-0.81796
	-0.5

	C40
	C
	0.55725
	-0.76573
	-0.5

	O41
	O
	0.42001
	-0.14974
	-0.5

	C42
	C
	0.45795
	-0.08219
	-0.5

	O43
	O
	0.12939
	-0.53301
	-0.5

	O44
	O
	0.85307
	-0.4905
	-0.5

	C45
	C
	0.92125
	-0.50229
	-0.5

	O46
	O
	0.56245
	-0.87376
	-0.5

	Co47
	Co
	0.49123
	-0.51175
	-0.5

	C48
	C
	0.52203
	0.94651
	0.5

	C49
	C
	0.55533
	1.01602
	0.5

	C50
	C
	0.52451
	1.05869
	0.5

	C51
	C
	0.46044
	1.02999
	0.5

	C52
	C
	0.42714
	0.96047
	0.5

	C53
	C
	0.95928
	1.54312
	0.5

	C54
	C
	1.02908
	1.53348
	0.5

	C55
	C
	1.06119
	1.47878
	0.5

	C56
	C
	1.02317
	1.43336
	0.5

	C57
	C
	0.95337
	1.443
	0.5

	H58
	H
	0.6106
	-0.28137
	-0.5

	H59
	H
	0.54945
	-0.17717
	-0.5

	H60
	H
	0.37344
	-0.25285
	-0.5

	H61
	H
	0.24562
	-0.36354
	-0.5

	H62
	H
	0.1436
	-0.40783
	-0.5

	H63
	H
	0.24173
	-0.59669
	-0.5

	H64
	H
	0.73681
	-0.65999
	-0.5

	H65
	H
	0.83883
	-0.6157
	-0.5

	H66
	H
	0.74074
	-0.4268
	-0.5

	H67
	H
	0.37189
	-0.74211
	-0.5

	H68
	H
	0.43304
	-0.84632
	-0.5

	H69
	H
	0.60902
	-0.77066
	-0.5

	H70
	H
	0.5452
	0.91608
	0.5

	H71
	H
	0.60464
	1.03803
	0.5

	H72
	H
	0.43726
	1.06042
	0.5

	H73
	H
	0.37782
	0.93847
	0.5

	H74
	H
	0.93409
	1.58525
	0.5

	H75
	H
	1.05816
	1.56793
	0.5

	H76
	H
	1.04835
	1.39122
	0.5

	H77
	H
	0.92429
	1.40855
	0.5


Table S4 Atomic coordinates for geometrically optimized CoPOP using FORCITE calculation 
	CoBOP
	Space group: P1
a=24.7 Å, b=24.0 Å, c=4.0 Å
α=72.1°, β=95.6°, γ= 93.6°

	C1
	C
	0.33296
	-0.48337
	-0.5

	C2
	C
	0.3297
	-0.53511
	-0.5

	C3
	C
	0.38502
	-0.54695
	-0.5

	N4
	N
	0.42079
	-0.50469
	-0.5

	C5
	C
	0.39024
	-0.46554
	-0.5

	C6
	C
	0.53654
	-0.34702
	-0.5

	C7
	C
	0.48181
	-0.35047
	-0.5

	C8
	C
	0.4628
	-0.40116
	-0.5

	N9
	N
	0.50405
	-0.42989
	-0.5

	C10
	C
	0.54922
	-0.39606
	-0.5

	N11
	N
	0.40987
	-0.41776
	-0.5

	C12
	C
	0.66581
	-0.5208
	-0.5

	C13
	C
	0.66889
	-0.46886
	-0.5

	C14
	C
	0.61342
	-0.4562
	-0.5

	N15
	N
	0.57777
	-0.49899
	-0.5

	C16
	C
	0.60852
	-0.53886
	-0.5

	N17
	N
	0.60002
	-0.40823
	-0.5

	C18
	C
	0.46192
	-0.65497
	-0.5

	C19
	C
	0.51729
	-0.65482
	-0.5

	C20
	C
	0.53619
	-0.60463
	-0.5

	N21
	N
	0.49451
	-0.57386
	-0.5

	C22
	C
	0.44898
	-0.60561
	-0.5

	N23
	N
	0.39811
	-0.59341
	-0.5

	N24
	N
	0.58915
	-0.5882
	-0.5

	C25
	C
	0.7113
	-0.54453
	-0.5

	C26
	C
	0.76155
	-0.51372
	-0.5

	C27
	C
	0.76589
	-0.4613
	-0.5

	C28
	C
	0.71812
	-0.43797
	-0.5

	C29
	C
	0.56888
	-0.29992
	-0.5

	C30
	C
	0.54339
	-0.25538
	-0.5

	C31
	C
	0.48625
	-0.25896
	-0.5

	C32
	C
	0.45519
	-0.30756
	-0.5

	C33
	C
	0.42959
	-0.69905
	-0.5

	C34
	C
	0.45619
	-0.74447
	-0.5

	C35
	C
	0.51395
	-0.74727
	-0.5

	C36
	C
	0.54482
	-0.70026
	-0.5

	C37
	C
	0.28768
	-0.45961
	-0.5

	C38
	C
	0.23771
	-0.49114
	-0.5

	C39
	C
	0.23377
	-0.54568
	-0.5

	C40
	C
	0.28099
	-0.56786
	-0.5

	O41
	O
	0.45958
	-0.2187
	-0.5

	O42
	O
	0.81477
	-0.42799
	-0.5

	O43
	O
	0.54265
	-0.79158
	-0.5

	O44
	O
	0.18618
	-0.58203
	-0.5

	C45
	C
	0.47426
	-0.15915
	-0.5

	C46
	C
	0.86617
	-0.45243
	-0.5

	C47
	C
	0.5295
	-0.85167
	-0.5

	C48
	C
	0.13532
	-0.55795
	-0.5

	C49
	C
	0.52117
	-0.13452
	-0.5

	C50
	C
	0.53343
	-0.07442
	-0.5

	C51
	C
	0.49697
	-0.03753
	-0.5

	C52
	C
	0.44864
	-0.06169
	-0.5

	C53
	C
	0.4376
	-0.12219
	-0.5

	C54
	C
	0.87742
	-0.51112
	-0.5

	C55
	C
	0.92942
	-0.53235
	-0.5

	C56
	C
	0.97281
	-0.49455
	-0.5

	C57
	C
	0.96188
	-0.43467
	-0.5

	C58
	C
	0.90926
	-0.41436
	-0.5

	C59
	C
	0.48524
	-0.87387
	-0.5

	C60
	C
	0.4741
	-0.93436
	-0.5

	C61
	C
	0.50884
	-0.97383
	-0.5

	C62
	C
	0.55502
	-0.95215
	-0.5

	C63
	C
	0.56452
	-0.8917
	-0.5

	C64
	C
	0.11935
	-0.50512
	-0.5

	C65
	C
	0.06694
	-0.48501
	-0.5

	C66
	C
	0.02886
	-0.51692
	-0.5

	C67
	C
	0.04526
	-0.57048
	-0.5

	C68
	C
	0.09739
	-0.59102
	-0.5

	Co69
	Co
	0.49927
	-0.50185
	-0.5

	H70
	H
	0.70783
	-0.58439
	-0.5

	H71
	H
	0.79616
	-0.53024
	-0.5

	H72
	H
	0.71959
	-0.39697
	-0.5

	H73
	H
	0.61231
	-0.29759
	-0.5

	H74
	H
	0.56889
	-0.21957
	-0.5

	H75
	H
	0.41183
	-0.31171
	-0.5

	H76
	H
	0.3856
	-0.69762
	-0.5

	H77
	H
	0.43202
	-0.77708
	-0.5

	H78
	H
	0.58891
	-0.69974
	-0.5

	H79
	H
	0.29115
	-0.41914
	-0.5

	H80
	H
	0.20309
	-0.47379
	-0.5

	H81
	H
	0.27974
	-0.60989
	-0.5

	H82
	H
	0.54801
	-0.16159
	-0.5

	H83
	H
	0.57053
	-0.05648
	-0.5

	H84
	H
	0.4199
	-0.0338
	-0.5

	H85
	H
	0.40028
	-0.14044
	-0.5

	H86
	H
	0.84622
	-0.54105
	-0.5

	H87
	H
	0.93472
	-0.57865
	-0.5

	H88
	H
	0.99369
	-0.40265
	-0.5

	H89
	H
	0.90195
	-0.36833
	-0.5

	H90
	H
	0.45948
	-0.84589
	-0.5

	H91
	H
	0.43927
	-0.95052
	-0.5

	H92
	H
	0.5829
	-0.98191
	-0.5

	H93
	H
	0.59945
	-0.87571
	-0.5

	H94
	H
	0.14691
	-0.48003
	-0.5

	H95
	H
	0.05632
	-0.4453
	-0.5

	H96
	H
	0.01885
	-0.59642
	-0.5

	H97
	H
	0.1088
	-0.63243
	-0.5
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