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Fig. S1 Detailed data for solution S00. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S2 Detailed data for solution S10. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance 
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Fig. S3 Detailed data for solution S20. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S4 Detailed data for solution S30. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance 
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Fig. S5 Detailed data for solution S40. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S6 Detailed data for solution S50. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance 
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Fig. S7 Detailed data for solution S01. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S8 Detailed data for solution S11. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S9 Detailed data for solution S21. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S10 Detailed data for solution S31. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S11 Detailed data for solution S41. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S12 Detailed data for solution S02. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S13 Detailed data for solution S12. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S14 Detailed data for solution S22. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance 
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Fig. S15 Detailed data for solution S32. a) Predicted values, true values, and RCWA value from the neural network at 1500 K; b) Evolution of FOM and elapsed time; c) Infrared spectrum across 300–1500 K; d) TPM layer architecture and spectral performance
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Fig. S16 Runtime of the GA‑RCWA, GA‑NN, and multi‑objective algorithms
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Fig. S17 Schematic of the atmospheric transmission model
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Fig. S18 Atmospheric transmittance and background radiance 
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Fig. S19 Spectral radiance of sample S32 vs. metal oxide substrates under the mid-latitude summer model
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Fig. S20 Spectral radiance of sample S32 vs. metal oxide substrates under the tropical model
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Fig. S21 Spectral radiance of sample S32 vs. metal oxide substrates under the sub-arctic winter model
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[bookmark: _Hlk213406032]Fig. S22 X-ray diffraction patterns of BeO and TiO2 before and after annealing
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[bookmark: _Hlk213623205]Fig. S23 Mechanical properties of 2-μm YSZ. a-c) Nano-indentation testing before annealing; d-f) Nano-scratch testing before annealing; g-i) Nano-indentation after annealing; j-l) Nano-scratch testing after annealing
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Fig. S24 Comparative transmittance spectra of air, blank sapphire, and TPMs on sapphire in a) visible and b) microwave bands 
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[bookmark: _Hlk213453632]Fig. S25 Comparative transmittance spectra of blank sapphire and TPMs on sapphire in microwave bands across 300 to 1000 K 
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Fig. S26 Temperature-time curve of the thermal shock test
[bookmark: _Hlk213424786][image: ] 
[bookmark: _Hlk213450040]Fig. S27 Radiative cooling performance of the TPMs. a) Measured radiative cooling power (Prad) within the 5-8 μm spectral band at 1014 K. b) Theoretical radiative cooling power (BIR, band-integrated radiance) within the 5-8 μm band across the 300-1500 K temperature range

[bookmark: _Hlk213425013][image: ]
Fig. S28 Mechanical properties of TPM on superalloy substrate. a-c) Nano-indentation and d-f) Nano-scratch testing after thermal shock testing
[bookmark: _Hlk215692382][bookmark: _Hlk213619677]Table S1 Material‑property trade‑offs for high‑temperature dielectric layers
	Materials
	n (mid‑IR)
	Melting point
/K
	CTE
/×10-6· K-1
	Stability
	Reflectivity
(8-14 μm, 300 K)

	BeO
	~1.7-1.9
	~2,800
	~9
	Excellent
	~0.7

	TiO2
	~2.4-2.6
	~2,130
	~9
	Excellent
	~0.1

	Al2O3
	~1.7-1.8
	~2,323
	~8
	Excellent
	~0.3

	MgF2
	~1.3-1.4
	~1,536
	~13-15
	Good
	~0

	SrTiO3
	~2.3-2.5
	~2,350
	~10-12
	Good
	~0.2



Table S2 RMSE between the GA-NN and RCWA methods
	Solution
	300 K
	600 K
	900 K
	1200 K
	1500 K

	S00
	0.113
	0.066
	0.083
	0.082
	0.066

	S10
	0.147
	0.178
	0.18
	0.186
	0.153

	S20
	0.115
	0.087
	0.088
	0.092
	0.075

	S30
	0.176
	0.13
	0.135
	0.131
	0.193

	S40
	0.132
	0.095
	0.094
	0.077
	0.189

	S50
	0.061
	0.042
	0.081
	0.078
	0.073

	S01
	0.181
	0.167
	0.177
	0.177
	0.152

	S11
	0.104
	0.079
	0.092
	0.088
	0.085

	S21
	0.164
	0.147
	0.142
	0.147
	0.121

	S31
	0.129
	0.116
	0.11
	0.113
	0.164

	S41
	0.078
	0.032
	0.037
	0.064
	0.059

	S02
	0.089
	0.062
	0.059
	0.052
	0.05

	S12
	0.12
	0.08
	0.082
	0.084
	0.075

	S22
	0.133
	0.041
	0.029
	0.033
	0.023

	S32
	0.036
	0.044
	0.046
	0.041
	0.076





Table S3 RMSE between the temperature-dependent infrared engineering model and the baseline model
	Solution
	300 K
	600 K
	900 K
	1200 K
	1500 K

	S00
	0
	0.088
	0.104
	0.134
	0.217

	S10
	0
	0.093
	0.11
	0.137
	0.201

	S20
	0
	0.081
	0.105
	0.135
	0.212

	S30
	0
	0.06
	0.097
	0.131
	0.204

	S40
	0
	0.064
	0.099
	0.134
	0.21

	S50
	0
	0.066
	0.097
	0.13
	0.187

	S01
	0
	0.093
	0.103
	0.131
	0.231

	S11
	0
	0.083
	0.1
	0.128
	0.219

	S21
	0
	0.087
	0.11
	0.139
	0.214

	S31
	0
	0.073
	0.101
	0.131
	0.206

	S41
	0
	0.065
	0.092
	0.126
	0.185

	S02
	0
	0.098
	0.116
	0.145
	0.239

	S12
	0
	0.083
	0.096
	0.123
	0.215

	S22
	0
	0.077
	0.1
	0.13
	0.211

	S32
	0
	0.074
	0.097
	0.129
	0.187



Table S4 The solution set of calculation results
	Solution
	FOM1
	FOM2
	FOM3
	FOM

	S00
	0.726149
	0.724382
	0.39985
	0.726149

	S10
	0.700473
	0.803136
	0.472367
	0.677662

	S20
	0.728331
	0.792397
	0.472367
	0.677138

	S30
	0.65116
	0.816634
	0.472367
	0.597522

	S40
	0.670991
	0.823468
	0.513417
	0.607961

	S50
	0.693503
	0.881931
	0.659241
	0.676372

	S01
	0.670991
	0.722991
	0.558035
	0.676191

	S11
	0.722527
	0.753752
	0.472367
	0.700634

	S21
	0.66631
	0.792905
	0.558035
	0.657315

	S31
	0.647265
	0.810376
	0.558035
	0.636807

	S41
	0.692117
	0.880237
	0.659241
	0.697779

	S02
	0.736387
	0.722527
	0.606531
	0.733615

	S12
	0.703984
	0.767895
	0.659241
	0.712292

	S22
	0.709638
	0.830359
	0.716531
	0.735161

	S32
	0.713195
	0.875735
	0.659241
	0.729517


Table S5 Band-integrated radiance of S32 and oxide substrates in 3-5 µm
	T /K
BIR
/W·m-2
Cases

	300 K
	600 K
	900 K
	1200 K
	1500 K

	
	TPMs/Subs
	TPMs/Subs
	TPMs/Subs
	TPMs/Subs
	TPMs/Subs

	MS-1km
	0.0037/0.013
	1.35/5.53
	8.92/44.43
	24.81/129.82
	54.43/253.32

	MS-8km
	0.29/0.68
	79.45/259.26
	504.51/2074.53
	1375.58/6083.57
	2923.89/11913.37

	MS-15km
	0.57/1.2
	14.21/41.34
	888.25/3282.59
	2402.24/9624.43
	5034.31/18864.51

	Tp-1km
	0.0023/0.010
	1.02/4.65
	6.98/37.51
	19.42/109.65
	43.31/213.94

	Tp-1km
	0.21/0.57
	63.73/229.40
	411.51/1844.07
	1132.49/5407.40
	2440.97/10582.25

	Tp-1km
	0.45/1.01
	119.66/374.53
	754.74/2980.03
	2050.75/8726.08
	4336.86/17080.21

	SW-1km
	0.034/0.049
	6.71/13.71
	39.84/104.59
	104.43/303.84
	208.78/594.17

	SW-8km
	0.83/1.29
	174.33/411.56
	1078.50/3290.34
	2908.18/9765.39
	5979.95/19322.46

	SW-15km
	1.20/1.87
	253.00/589.33
	1572.07/4721.80
	4254.71/14050.00
	8763.18/27854.49



[bookmark: _Hlk213628276]Table S6 Radiation suppression efficiency and radiation attenuation values of S32 and oxide substrates
	Cases
	300 K
	600 K
	900 K
	1200 K
	1500 K

	
	η /%
	IdB /dB
	η /%
	IdB /dB
	η /%
	IdB /dB
	η /%
	IdB /dB
	η /%
	IdB /dB

	MS-1km
	72%
	-5.5
	76%
	-6.2
	80%
	-7.0
	81%
	-7.2
	79%
	-6.8

	MS-8km
	58%
	-3.8
	69%
	-5.1
	76%
	-6.2
	77%
	-6.4
	75%
	-6.0

	MS-15km
	51%
	-3.1
	64%
	-4.7
	73%
	-5.7
	75%
	-6.0
	73%
	-5.7

	Tp-1km
	78%
	-6.6
	78%
	-6.6
	81%
	-7.2
	82%
	-7.4
	80%
	-7.0

	Tp-8km
	64%
	-4.4
	72%
	-5.5
	78%
	-6.6
	79%
	-6.8
	77%
	-6.4

	Tp-15km
	56%
	-3.6
	68%
	-4.9
	75%
	-6.0
	77%
	-6.4
	77%
	-6.0

	SW-1km
	30%
	-1.5
	51%
	-3.1
	62%
	-4.2
	66%
	-4.7
	65%
	-4.6

	SW-8km
	36%
	-1.9
	58%
	-3.8
	67%
	-4.8
	70%
	-5.2
	69%
	-5.1

	SW-15km
	36%
	-1.9
	57%
	-3.7
	67%
	-4.8
	70%
	-5.2
	69%
	-5.1
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