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Fig. S1 a Schematic illustration of the APCVD process used for the growth of monolayer MoSe2. b Plasma-assisted sulfurization using PECVD to convert the as-grown MoSe2 into Janus MoSSe. c Optical microscopy (OM) image of the synthesized Janus MoSSe flakes. d AFM profile showing a thickness of ~0.8 nm. e Raman spectra of MoSe2 and Janus MoSSe. f Raman mapping of A1g peak in Janus MoSSe. g PL spectra of MoSe2 and Janus MoSSe. h Transfer curve of a Janus MoSSe transistor, measured at a drain voltage of VDS = 5 V.
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Fig. S2 Atomistic models and key structural parameters of a MoS2/h-BN/MoS2 and b MoS2/h-BN/Janus MoSSe heterostructures. Interlayer distances, bond lengths (𝑑Mo−S​), and bond angles (𝜃S−Mo−S, 𝜃Se−Mo−S​) are indicated for each configuration, highlighting the structural modifications induced by the incorporation of the Janus layer. 
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Fig. S3 Inverted MoS2/h-BN/Janus MoSSe. Yellow and blue regions represent the area where electrons are localized and depleted, respectively
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Fig. S4 Schematic illustration of the fabrication process for the Janus MoSSe memory device. The constituent materials, including tunneling h-BN, multilayer graphene (MLG), MoS2, bottom h-BN, and Janus MoSSe, are sequentially picked up and transferred onto a substrate with pre-patterned Au/Ti electrodes
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Fig. S5 a Retention characteristics of the Janus MoSSe floating-gate memory device measured at room temperature, 85 °C, and 100 °C. b Endurance characteristics of the Janus MoSSe floating-gate memory device measured with 500 ns program/erase pulses for over 100 cycles
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Fig. S6 Transfer characteristics (𝐼D–𝑉G​) of memory devices with varying h-BN tunneling layer thicknesses. a–f Janus MoSSe floating-gate devices with h-BN thicknesses of 3, 4, 6, 10, 12, and 16 nm. g–i MoSe₂ floating-gate devices with h-BN thicknesses of 6, 10, and 16 nm
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Fig. S7 Summary of memory window variation as a function of h-BN thickness (2~20 nm) for both a Janus MoSSe and b MoSe2 devices


Table S1 Benchmark table for comparing characteristics such as memory window and endurance based on floating gate, channel, and h-BN thickness
	Floating gate
	Channel
	Tunneling barrier
	h-BN thickness (nm)
	Memory window (%)
	Long-term stability
	Endurance
	References

	Janus MoSSe
	MoS2
	h-BN
	6
	70
	104 s
	10000 cycles
	This work

	MLG
	MoS2
	
	4.6
	13
	-
	-
	[6]

	
	ReS2
	
	6
	63
	104 s
	1000 cycles
	[16]

	
	MoS2
	
	6.1
	28
	-
	-
	[6]

	
	MoS2
	
	7.5
	55
	-
	1000 cycles
	[6]

	
	MoS2
	
	8.4
	36
	1500 s
	1000 cycles
	[10]

	
	MoS2
	
	10
	36
	8000 s
	4200 cycles
	[17]

	
	SnSe2
	
	10
	65
	2000 s
	500 cycles
	[S1]

	
	InSe
	
	10
	65
	16.5 d
	2000 cycles
	[7]

	
	MoS2
	
	10
	60
	1400 s
	110 cycles
	[13]

	
	MoS2
	
	11.7
	84
	3800 s
	1000 cycles
	[6]

	
	MoTe2
	
	13.3
	82
	300 s
	40 cycles
	[S2]

	
	Bi2O2Se
	
	13.7
	79
	1000 s
	500 cycles
	[S3]

	
	MoS2
	
	13.8
	64
	104 s
	-
	[S4]

	
	ReS2
	
	14.8
	80
	1000 s
	1000 cycles
	[S5]

	GaSe
	InSe
	
	~7
	63
	3 d
	-
	[S6]

	MoTe2
	WSe2
	
	10.8
	83
	2000 s
	2000 cycles
	[S7]

	
	MoS2
	
	8.8
	86
	3000 s
	1200 cycles
	[S8]

	Au
	SnS2
	
	23
	66
	> 103
	15000 cycles
	[S9]




[image: 스케치, 그림, 종이접기이(가) 표시된 사진

AI 생성 콘텐츠는 정확하지 않을 수 있습니다.]
Fig. S8 Transfer characteristics of floating-gate memory devices using a monolayer Janus MoSSe and b bilayer Janus MoSSe as the charge-trapping layer
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Fig. S9 AFM height images of a MoS2 channel and b, c h-BN tunneling layers with thicknesses of 6 nm and 10 nm, respectively
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Fig. S10 Pulse-width dependent transfer characteristics of MoSe2 floating-gate memory devices with different h-BN tunneling layer thicknesses: a–c device with 10 nm h-BN and d–f device with 6 nm h-BN. a, d Forward sweep; b, e backward sweep for various pulse widths; c, f extracted threshold voltage and charge trapping rate as a function of pulse width
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Fig. S11 Changes in LTP characteristics as a function of a width and c number of pulses applied to Janus MoSSe devices. Variation of peak EPSC as a function of b pulse width and d number
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Fig. S12 a Curves as a function of NL value used in the fitting of the LTP/D characteristic. b The change in normalized conductance measured in the Janus MoSSe device (symbol) and the curve fitted to the decreasing-increasing trend (line)
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Fig. S13 a LTP/D curve obtained by applying 6400 pulses to a Janus MoSSe device over 100 cycles. b Changes in NLLTP/D, Gmax/Gmin, and NSeff values during 100 cycles of LTP/D measurements. c Variation of the conductance range defined as Gmax − Gmin for 100 cycles of LTP/D
[image: ]
Fig. S14 a LTP/D properties obtained from five different devices. b Variation of the characteristic parameters across devices
[image: ]
Fig. S15 a Schematic of a convolutional neural network with VGG-8 structure for CIFAR-10 data recognition simulation. b Recognition accuracy trend and c highest accuracy for ideal device, Janus MoSSe device and variation considered Janus MoSSe device over 256 epochs of training and inference
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