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 Fig. S1 (a) High-resolution scanning electron microscopy (HR-SEM) image of pristine SiNPs, showing uniform nanoparticle morphology and surface texture prior to anode fabrication. (b) XRD analysis of the pristine SiNPs, showing high crystallinity before the lasing process
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 Fig. S2 HR-SEM imaging of the prelithiated SiNP/LIG electrode cross-section, depicting electrode thickness before (a) and after (b) laser irradiation
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 Fig. S3 The equivalent circuit used for fitting the electrical impedance spectroscopy (EIS) data includes several components. The bulk resistance of the cell, referred to as RBulk, corresponds to the high-frequency intercept of the first semicircle in the Nyquist plot. The solid electrolyte interphase (SEI) is modeled with a resistance (RSEI) and a constant phase element (CPESEI). The interface between the electrode and the electrolyte is characterized by the charge transfer resistance (RCT) and the double-layer constant phase element (CPEdl). At low frequencies, impedance caused by diffusion limitations—known as Warburg impedance—appears as a line with an approximately 45-degree slope in the Nyquist plot [S1]
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 Fig. S4 Slopes extracted from the low-frequency region of the EIS Nyquist plots in Fig. 4a of the manuscript, corresponding to the Warburg impedance, were calculated using equation (3) in the Methods section to analyze lithium-ion diffusion characteristics in prelithiated SiNP/LIG anodes with varying Si:LiOH ratios
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 Fig. S5 Voltage profiles from the initial cycles of SiNP/LIG anodes prepared with different Si:LiOH precursor ratios. The Li-free sample (1:0) exhibits an ICE of 83%, whereas all Li-containing samples show markedly higher values—94% (3:1), 97% (1:2), and 97% (1:1)—highlighting the beneficial effect of Li addition on first-cycle efficiency
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 Fig. S6. Voltage profiles at selected cycles for prelithiated SiNP/LIG anodes prepared with different Si:LiOH precursor ratios, showing standard voltage–capacity behavior for Si-based anodes in Li-ion half-cells [S2, S3]
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 Fig. S7 Galvanostatic cycling performance of non-prelithiated (turquoise) and prelithiated (magenta) SiNP/LIG anodes in lithium half-cells at a current density of 5 A/g over 4150 cycles. The prelithiated anode demonstrates exceptional long-term stability, retaining 98% of its capacity after more than 2000 cycles and 83% after 4150 cycles. In contrast, the non-prelithiated anode exhibits significant capacity degradation, retaining only ~40% of its initial capacity after 4150 cycles
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 Fig. S8. Cyclic voltammetry (CV) of (a) non-prelithiated and (b) prelithiated SiNP/LIG anodes versus lithium metal in coin cells, measured between 0 and 1.5 V vs. Li/Li⁺, showing standard lithiation/delithiation peaks for silicon-based anodes in LIB half-cells [S4]
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 Fig. S9  (a) HRSEM imaging of a prelithiated SiNP/LIG anode, showing selected areas (green) analyzed by energy dispersive X-ray spectroscopy (EDS) elemental analysis. (b) EDS spectrums of the selected areas. (c) Galvanostatic cycling of a prelithiated SiNP/LIG anode with a silicon loading of ~1 mg/cm2 for 50 cycles at a 0.5C rate. The anode demonstrates high areal capacity and stable performance at high cycling rates with no observable degradation
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 Fig. S10 (a) Long-term galvanostatic cycling of a full cell comprising a 1 mg/cm-2 LiFePO4 (LFP) cathode and a prelithiated SiNP/LIG anode, cycled at a 1C rate between 2.8 and 3.8 V for over 500 cycles, showing stable capacity retention with no observable degradation. (b) Initial charge–discharge voltage profile typical of LFP-based full cells
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 Fig. S11 HRSEM and EDS elemental mapping of a prelithiated SiNP/LIG anode prepared using lithium perchlorate (LiClO4) as the lithium salt precursor 
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 Fig. S12 XRD (a) and XPS (b-e) analysis of a prelithiated SiNP/LIG anode prepared using lithium perchlorate (LiClO4) as the lithium salt precursor. XRD reference spectra were obtained from the ICSD database and indexed accordingly. XPS peak assignments for C 1s [S5, S6], Si 2p [S7], Li 1s [S6], and Cl 2p [S8] were performed using the NIST XPS database and cited accordingly
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 Fig. S13 HRSEM and EDS imaging and elemental distribution mapping of a prelithiated SiNP/LIG anode prepared using lithium carbonate (Li2CO3) as the lithium salt precursor.
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 Fig. S14 XRD (a) and XPS (b-e) analysis of a prelithiated SiNP/LIG anode prepared using lithium carbonate (Li2CO3) as the lithium salt precursor. XRD reference spectra were obtained from the ICSD database and indexed accordingly. XPS peak assignments for C 1s [S5, S6], Si 2p [S9], and Li 1s [S6, S10] were performed using the NIST XPS database and cited accordingly
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 Fig. S15 HRSEM and EDS imaging and elemental distribution mapping of a prelithiated SiNP/LIG anode prepared using lithium nitrate (LiNO3) as the lithium salt precursor
[image: ]
 Fig. S16 XRD (a) and XPS (b-e) analysis of a prelithiated SiNP/LIG anode prepared using lithium nitrate (LiNO3) as the lithium salt precursor. XRD reference spectra were obtained from the ICSD database and indexed accordingly. XPS peak assignments for C 1s [S5, S6], Si 2p [S9], Li 1s [S6, S10], and N 1s [S11]were performed using the NIST XPS database and cited accordingly
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 Fig. S17 HRSEM and EDS imaging and elemental distribution mapping of a prelithiated SiNP/LIG anode prepared using lithium fluoride (LiF) as the lithium salt precursor
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 Fig. S18 XRD (a) and XPS (b-e) analysis of a prelithiated SiNP/LIG anode prepared using lithium fluoride (LiF) as the lithium salt precursor. XRD reference spectra were obtained from the ICSD database and indexed accordingly. XPS peak assignments for C 1s [S5, S12], Si 2p [S9], Li 1s [S13], and F 1s [S13]were performed using the NIST XPS database and cited accordingly
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 Fig. S19 Slopes extracted from the low-frequency region of the EIS Nyquist plots in Fig. 5a of the manuscript, corresponding to the Warburg impedance, were calculated using equation (3) in the Methods section to analyze lithium-ion diffusion characteristics in prelithiated SiNP/LIG anodes with varying types of Li precursors
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 Fig. S20 Voltage–capacity profiles during the initial cycles of prelithiated SiNP/LIG anodes prepared using different lithium salt precursors, showing ICEs of 92% for the carbonate precursor, 94% for the perchlorate precursor, 92% for the nitrate precursor, and 91% for the fluoride precursor
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Fig. S21 Cross-sectional HRSEM and EDS analysis of PL-SiNP/LIG anodes prepared using a 1:1 Si:LiOH precursor ratio before cycling (a) and after 50 cycles (delithiated) (b), showing excellent mechanical stability with no delamination, minimal volume change (∼50 µm thickness before and after cycling), and limited SEI formation
[image: ]
 Fig. S22 High-resolution X-ray photoelectron spectroscopy (XPS) spectra of the Li 1s region in post-mortem (PM) samples of non-prelithiated and prelithiated (PL) SiNP/LIG anodes after cycling, complementing the XPS data shown in Fig. 6e–g of the manuscript [S9, S13]
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