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Fig. S1  Schematic diagrams illustrating the expected effects and current challenges in nanomaterials film transfer. Challenges include improve transfer efficiency, thickness uniformity and accurately pattern transfer
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Fig. S2   Operation process of the self-assembly equipment. a Container is adjusted horizontally by the bottom leveling device. b Target wafer is placed in the container. c DI water is added to submerge the entire wafer, with the liquid level 1 cm above the wafer surface. d Automatic syringe is assembled. e Automatic syringe is activated to inject suspension, and the films gradually form on the water surface as shown in Fig. 2c. f Liquid level controlling device is turned on to decrease the liquid level. g Self-assembly monolayer films are transferred onto the wafer surface as the liquid level decreases
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Fig. S3  Schematic diagrams of the “film first, cantilever later” wafer-level process flow. Following the IDE deposition step as shown in Fig. 1, the subsequent steps are: (V) The film pattern are defined by lithography. (VI) Self-assembly is performed to form the sensing film. (VII) Unwanted film areas are removed by a lift-off process. (VIII) Cantilever stucture is released via TMAH wet etching
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Fig. S4  Self-assembly films prepared on photoresist layers of varying thickness. a SEM images showing the film seperation status. b Thicknesses of photoresist under different spin rates
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Fig. S5  [bookmark: _Hlk206835593]Photograph of the self-assembly monolayer SnO2 films before wet etching, deposited on a SiO2 substrate 
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Fig. S6 a-b Photographs and optical microscope images of SnO2 films on Si3N4 substrates before etching and after different etching durations. c-e Enlarged optical images highlighting surface changes corresponding to each etching time

[bookmark: _Hlk206835604][image: ]
Fig. S7 Raman spectra of the etched SnO2 films on Si3N4 substrates. For the 300-min sample, three spectra represent measurements at distinct positions marked by white dots in Fig. S9e. The spectra of P3 shows the absence of the classic SnO2 peak
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[bookmark: _Hlk175482763]Fig. S8 Adsorption energy (ΔEads) calculation results for amorphous SiO2/Si and crystalline HfO2/SiO2/Si structure model. a From left to right is the model of amorphous SiO2/Si structure with single-side interface H passivation, ΔEads of Si site toward OH species, ΔEads of Si site toward H2O molecule, and ΔEads of O site toward H2O molecule. b From left to right is the model of crystalline HfO2/SiO2/Si structure with single-side interface H passivation, ΔEads of Hf site toward OH species, ΔEads of Hf site toward H2O molecule, and ΔEads of O site toward H2O molecule
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Fig. S9 Photograph of the self-assembly monolayer SnO2 films before wet etching, deposited on a HfO2 substrate 
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[bookmark: _Hlk203985868]Fig. S10 Optical microscope images of SnO2 film on Ti/Pt electrodes underwent 800 °C annealing. a Both SnO2 and metal films are intact before annealing. b Curvature and detachment occurred in the metal film, leading to the breakage of the SnO2 film
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Fig. S11 SEM images of various SnO2 film patterns. a The regular shapes are suitable for individual MEMS gas sensors. b The irregular shapes can be utilized for MEMS gas sensor arrays structure or more complex sensors structure 
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[bookmark: _Hlk216176001]Fig. S12 Simulation models and results of MEMS hotplates. a 3D geometry of MEMS hotplate. b Electric field distribution of the heater. c-d Thermal distribution and isotherm explanation of MEMS hotplate. e-f 3D geometry and electric field distribution of array-type MEMS hotplates
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Fig. S13 a-b Infrared images of the fabricated MEMS micro hotplate. c Thermal distribution of conventional rectangular range of interest. d Thermal distribution of isothermal-defined range of interest 
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Fig. S14 a Comparison of photographs and optical microscope images of In2O3 films on HfO2 substrates before and after etching. b Comparison of XRD patterns, both showing the characteristic peaks of In2O3
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[bookmark: _Hlk204163769]Fig. S15 Comparison of SEM-EDS images of In2O3 nanosphere films on HfO2 substrates. a Before TMAH etching. b After TMAH etching. The In2O3 nanospheres film retains intact 
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Fig. S16 a Comparison of photographs and optical microscope images of ZnO films on HfO2 substrates before and after etching. b Comparison of XRD patterns, indicating the characteristic peaks of ZnO are absent in the after-etching sample. c Comparison of SEM images, highlighting the detachment caused by the etching effect


[image: ]
Fig. S17 Schematic of the complete wafer-level manufacturing process flow for MEMS gas sensing chips. (i) A SiO2/Si3N4/SiO2 supporting film is prepared on the Si wafer. (ii) Ti/Pt electrodes are deposited to form the microheaters. (iii) A SiO2 insulating layer is deposited. (iv) A HfO2 passivation layer is deposited on the central sensing area of the insulating layer. (v) Bonding pads and etching windows are exposed. (vi) Ti/Pt testing electrodes are prepared. (vii) The self-assembly gas sensing film is transferred aligned with HfO2. (viii) The suspended cantilever is released by TMAH wet etching, resulting in the final MEMS gas sensing chips
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Fig. S18 Response comparison of Pd/SnO2 sensing chips operating at different temperatures
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Fig. S19 Linear fitting curves of the responses of a monolayer Pd/SnO2 sensor responses to H2 concentrations ranging from 1 to 500 ppm at 300 °C
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Fig. S20 Response time of a monolayer Pd/SnO2 sensor towards 20 ppm H2 at 300 °C
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Fig. S21 Response variation of 25 monolayer Pd/SnO2 sensors randomly selected from five different regions of the wafer, with statistical distribution illustrated by box plots
[image: ]
Fig. S22 a Response of monolayer SnO2 sensors towards 20 ppm H2. b Response of trilayer Pd/SnO2 sensors towards 20 ppm H2
[bookmark: _Hlk215326839][bookmark: _Hlk206835882]
Table S1 Comparison of fabrication capabilities and H2 sensing performance of MEMS micro hotplate sensors with different film-deposition methods
	[bookmark: _Hlk215336354]Sensing materials
	Film-deposition methods
	Fabrication scale
	Film pattern morphology
	Concentration Range (ppm)
	Response
	Response time (s)
	Temperature (°C)
	Refs.

	Au-Pd dual-metal modified In2O3
	Dropped by pipette
	Single device
	Naturally formed
	0.05 ~
100
	8.35
(10 ppm)
	5.0
(10 ppm)
	245.2
	[S1]

	(FeCoNi)100−xOx
	Dropped by needle
	Single device
	Naturally formed
	200 ~
1000
	8.60
(200 ppm)
	\
	150.0
	[S2]

	SnO2
	Dropped by pipette
	Single device
	Naturally formed
	0.1 ~ 20
	2.21
(6 ppm)
	7.0
(6 ppm)
	250.0
	[S3]

	Pd NPs/SnO2 film
	Mask-assistant sputtering and ALD
	Wafer level (Silicon)
	Rectangle
	0.5 ~
500
	1.52
(20 ppm)
	115.4
(20 ppm)
	150.0
	[S4]

	Pd/SnO2 nanospheres
	Lithography-based self-assembly
	Wafer level (Silicon)
	Customizable
	1 ~ 
500
	1.92*
(20 ppm)
	19.7
(20 ppm)
	300.0
	This work


* Sensitivity to different H2 concentrations at 300 °C: 1.32 (5 ppm), 1.50 (10 ppm), 1.92 (20 ppm), and 4.92 (200 ppm). Sensitivity to 20 ppm H2 at different temperatures: 1.00 (100 °C), 1.10 (150 °C), 1.34 (200 °C), 1.53 (250 °C), 1.92 (300 °C), 1.46 (350 °C)
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