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S1 Experimental Section
Theoretical calculation: The electronic properties and optimize geometries of all the investigated structures in this work were calculated based on density functional theory (DFT). The cambridge sequential total energy package (CASTEP) was employed with a general gradient approximation and Perdew-Burke-Ernzerh of exchange correlation functional [S1, S2]. A plane-wave cutoff energy of 500 eV was employed for the standard norm-conserving pseudopotentials [S3]. The Brillouin zone was sampled with Monkhorst-Pack mesh k-points of 3×3×1 grid. A vacuum slab thickness of 15 Å was set between slabs along the Z-axis. The binding energy (E) between the material and polysulfides was calculated as follows: E = (Emat + Eps) – Emat+ps, where Emat, Eps, and Esub+ps, denoted the energy of the materials, polysulfides and total binding system, respectively [S4]. 
S2 Supplementary Figures and Tables
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Fig. S1 XRD of WAlB precursor
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Fig. S2 XRD results of WB@WC samples under different carbonization temperatures: a 100 °C; b 180 °C
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[bookmark: _Hlk215397015]Fig. S3 SEM of WAlB precursor with blocky structure
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Fig. S4 EDS of WB@WC heterostructures
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[bookmark: OLE_LINK43][bookmark: OLE_LINK44]Fig. S5 HAADF-STEM base elemental mapping with further magnification
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Fig. S6 Ultraviolet photoelectron spectroscopy: a WB, and b WC

WB:        Work function (Φ) = 21.2 – 18.2 = 3.0 eV           VB/HOMO = 3.2 eV
WC:        Work function (Φ) = 21.2 – 17.15 = 4.05 eV       VB/HOMO = 3.1 eV
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Fig. S7 Fitting results of the XAFS spectra of different samples at k-space and R space: a W foil; b WB; c WC; d WB@WC; e WB@WC-LiPS; f WS2
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[bookmark: OLE_LINK4]Fig. S8 WT-XAFS of W L-edge for different samples

[image: ]
Fig. S9 Calculation of electronic local function of WB, WC and WB@WC


[bookmark: OLE_LINK30][image: ]
Fig. S10 Density of states of WB and WB@WC
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Fig. S11 Associated color change of Li2S6 solution before and after adding different materials
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Fig. S12 SEM of WC sample
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Fig. S13 Bader charge analysis of WB@WC adsorbing LiPS at different angles
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Fig. S14 XPS of W4f before and after LiPSs adsorption
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Fig. S15 a XPS comparison of W element in WB@WC before and after adsorption of Li2S6. b XPS of S element in WB@WC after adsorption
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[bookmark: OLE_LINK45]Fig. S16 PDOS of for W-d orbital and S-p orbital the Li2S6 adsorbed on different materials: a WB@WC; b WB. Detailed information for the Li2S6 adsorbed on WB@WC: c W-d orbital and S-px orbital; d W-d orbital and S-py orbital; e W-d orbital and S-pz orbital
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Fig. S17 Cross-sectional SEM image of WB@WC coating layer on PP separator
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Fig. S18 Visualized soluble Li2S4 penetration with H-type electrolytic cell
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[bookmark: OLE_LINK28]Fig. S19 Optical images of contact angle measurements of Li–S electrolyte on different separators [image: ]

Fig. S20 a–c CV of different separators at various scan rates. d Linear fitting comparison of peak currents in WB based CV curves
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Fig. S21 EIS of different cells
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Fig. S22 GITT voltage profiles of PP based cell at 0.1 C
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Fig. S23 Internal resistances relative to the normalized discharge-charge time[image: ]
Fig. S24 a CV curve and b–d corresponding Tafel fitted slopes of the WB based cathode at 0.1 mV s−1
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[bookmark: OLE_LINK3][bookmark: OLE_LINK1]Fig. S25 Symmetrical cell tests at 50 mV s−1

[bookmark: _Hlk217068894][image: ]
Fig. S26 a–c Voltage profiles of the Li–S cells with different separators at various scan rates. d Rate of WB-based cathode. e, f Partial galvanostatic discharge and charge curves
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Fig. S27 Galvanostatic charge-discharge profiles based on WB separator at 0.2 C
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Fig. S28 The ratio of Q2 to Q1
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Fig. S29 Cycling performance of cathode with WB-based separator
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Fig. S30 Post-mortem SEM analysis of cycled Li anodes: a WB@WC modified cell, b ordinary cell with pure PP separator
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Fig. S31 Charge-discharge curves under different high loads: a 7.92 mg cm−2; b 3.45 mg cm−2
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Fig. S32 Schematic diagram of in-situ Raman
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Fig. S33 3D in-situ time-resolved Raman spectra: a WB@WC based cell and b PP based cell
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[bookmark: _Hlk215397010]Fig. S34 In-situ WT-XAFS of W L-edge for WB@WC sample

Table S1 XAFS fitting details
	Sample
	Path
	C.N
	R(Å)
	σ2*10-3(Å2)
	ΔE(eV)
	R factor%

	W foil
	W-W1
W-W2
	8*
6*
	2.74
3.16
	3.0
3.0
	6.7
	1.4%

	WB
	W-B
	8.9
	2.24
	3.0
	9
	4.6%

	WB@WC
	W-B1
W-C
W-B2
	1.1
4.7
5.0
	3.12
2.85
2.22
	3.0
3.0
3.0
	4.4
	2.0%

	WB@WC-LiPS
	W-S
W-C
W-B
	0.8
9.6
8.1
	2.29
2.71
3.00
	3.0
3.0
3.0
	-6.7
	1.8%

	WC
	W-C
	9.1
	2.06
	3.0
	-1.8
	3.8%

	WS2
	W-S
	5.3
	2.34
	3.0
	2.4
	1.1%


[bookmark: OLE_LINK6]CN: coordination number; R: distance between absorber and backscatter atoms; σ2: Debye-Waller factors; ΔE0: inner potential correction. R-factor: indicative of fitting goodness. The fixed values (*) in the fitting process.

Table S2 Comparison of the improvement of electrochemical performance by W-based materials in Li−S batteries
	W-based nanomaterials
	Long cycle capacity 
	High loading (mg cm−2)
	Refs.

	rGO@WO3
	57% (500th)
	5.0
	[S5]

	Ni-WS2@rGO
	47.8% (500th)
	4.5
	[S6]

	WS2-rGO-CNT
	90.7% (100th)
	7.68
	[S7]

	e-WS2
	64.3% (180th)
	/
	[S8]

	WS2/MoS2
	65.5% (300th)
	3.0
	[S9]

	WN-160
	70.2% (500th)
	/
	[S10]

	WN-CNS
	80% (500th)
	3.0
	[S11]

	WCNP@HCPC
	80.5% (500th)
	5.9
	[S12]

	3D WB
	60% (200th)
	8.0
	[S13]

	meso-WC/rGO
	83% (300th)
	3.0
	[S14]

	HC-S + WB2/PSS-Li
	75% (500th)
	3.8
	[S15]

	WOx/W2C
	73.3% (280th)
	4.0
	[S16]

	WS2/WO3
	70% (500th)
	5.0
	[S17]

	WO3-x-W3N4
	54.8% (400th)
	11.7
	[S18]

	WN
	52.4% (500th)
	1.4
	[S19]

	WB@WC
	88% (500th)
	7.92
	This work
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