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Supplementary Figures and Tables
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Fig. S1 a Top-view and b side-view SEM images of CFP
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Fig. S2 a Top-view and b side-view SEM images of Ni2P@GPC/CFP
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Fig. S3 Digital photographs showing the mechanical pressing and release test of the Ni2P@GPC/CFP
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Fig. S4 EDX spectrum of Ni2P@GPC/CFP
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[bookmark: _Hlk154932204]Fig. S5 a SEM and b TEM images of GPC/CFP. c Corresponding EDX elemental mappings of C, P, and O matched with a
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Fig. S6 a SEM and b corresponding EDX elemental mappings of Ni and P for pure Ni2P
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[bookmark: _Hlk215606456]Fig. S7 a XPS survey spectrum and b C 1s spectrum of Ni2P@GPC/CFP. c TGA curve. d N2 adsorption/desorption isotherms. e Pore sized distribution and f Enlarged pore size distribution below 2 nm of Ni2P@GPC/CFP and GPC/CFP
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Nano-Micro Letters
[bookmark: _Hlk216955663]Fig. S8 a, c, e Galvanostatic charge/discharge curves at 100 mA g-1 and b, d, f rate profiles for Ni2P@GPC/CFP, GPC/CFP, and Ni2P, respectively. g Long-term cycling performance and coulombic efficiency of the three electrodes at 1.0 A-1
S2/S14
[bookmark: _Hlk216187177][bookmark: _Hlk216955613]Table S1 Performance comparison of the Ni2P@PC/CFP anode with previously reported transition-metal-phosphide anodes.
	Sample
	Active materials
(mg·cm-2)
	Initial discharge capacities (mAh g-1)
	ICE (%)
	Current density (A g -1)
	Cycle number
	Reversible capacity (mAh g-1)
	Rate capability
	References

	Ni2P@GPC/CFP
	1.2-1.6
	921
	70.8
	0.1
	300
	405
	0.5 A g-1/369 mAh g-1
1.0 A g-1/275 mAh g-1
5.0 A g-1/174 mAh g-1
10.0 A g-1/135 mAh g-1
	This work

	Ni2P@NPS
	1.09
	1570.3
	51.2
	0.1
	100
	457.1
	0.2 A g-1/830 mAh g-1
0.8 A g-1/644 mAh g-1
1.0 A g-1/618 mAh g-1
2.0 A g-1/527 mAh g-1
	[S1]

	Ni2P/Cu3P@NC
	0.8-1.2
	1135
	47.9
	0.2
	200
	526
	0.2 A g-1/568 mAh g-1
0.5 A g-1/467 mAh g-1
1.0 A g-1/393 mAh g-1
2.0 A g-1/334 mAh g-1
	[S2]

	Ni2P/CoP@rGO
	1.0
	770.1
	32.4
	0.2
	100
	270.4
	0.1 A g-1/332 mAh g-1
0.2 A g-1/290 mAh g-1
0.5 A g-1/233 mAh g-1
1.0 A g-1/197 mAh g-1
	[S3]

	NiS/Ni2P@C
	1.5
	1295
	75.8
	0.1
	100
	344
	0.2 A g-1/520 mAh g-1
0.4 A g-1/480 mAh g-1
0.8 A g-1/410 mAh g-1
1.6 A g-1/360 mAh g-1
	[S4]

	Ni2P/CoP2
	0.8-1.2
	876
	59.5
	0.2
	200
	490
	0.2 A g-1/542 mAh g-1
0.5 A g-1/480 mAh g-1
2.0 A g-1/421 mAh g-1
5.0 A g-1/375 mAh g-1
	[S5]

	FexP@NC
	1.1
	673.4
	68.2
	0.1
	100
	468.8
	0.2 A g-1/404 mAh g-1
0.5 A g-1/381 mAh g-1
2.0 A g-1/336 mAh g-1
5.0 A g-1/272 mAh g-1
	[S6]

	NiCoP@C
	1.0
	1738
	63
	0.1
	500
	400
	0.2 A g-1/676 mAh g-1
0.5 A g-1/525 mAh g-1
0.8 A g-1/448 mAh g-1
1.0 A g-1/385 mAh g-1
	[S7]

	FeP@CMS
	1.1-1.3
	1135
	68.5
	0.05
	10
	709
	0.1 A g-1/663 mAh g-1
1.0 A g-1/443 mAh g-1
10.0 A g-1/250 mAh g-1
20.0 A g-1/211 mAh g-1
	[S8]

	FeP@PNC
	1.0
	690.4
	44.2
	0.1
	200
	340
	0.5 A g-1/242 mAh g-1
1.0 A g-1/184 mAh g-1
2.0 A g-1/121 mAh g-1
3.0 A g-1/84 mAh g-1
	[S9]

	[bookmark: OLE_LINK1]CoP@N
	2.0
	283
	60.8
	0.1
	300
	138
	0.1 A g-1/176 mAh g-1
0.5 A g-1/130 mAh g-1
1.0 A g-1/110 mAh g-1
2.0 A g-1/90 mAh g-1
	[S10]
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Fig. S9 Ni2P@GPC/CFP||NVP@C full cell performances: a voltage-capacity profiles at 0.5 C for selected cycles, b rate performance at various C-rates, c long-term cycling performance and coulombic efficiency at 2.0 C, and d corresponding voltage-capacity profiles at 2.0 C
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[bookmark: _Hlk157950738][bookmark: _Hlk157950389]Fig. S10 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP after initial cycle at 100 mA g-1
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Fig. S11 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP after 50 cycles at 100 mA g-1
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Fig. S12 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP after 100 cycles at 100 mA g-1
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[bookmark: _Hlk217064350][bookmark: _Hlk157955483][bookmark: _Hlk216955244]Fig. S13 a, b GITT time-potential distributions of GPC/CFP and Ni2P. c Illustration of ∆Es, ∆Eτ, and iR drop in GITT. d-f Electrochemical impedance spectra (EIS) of Ni2P@GPC/CFP, GPC/CFP and Ni2P, recorded before cycling and after 50 and 100 cycles. g-h Linear fitting of Z′ vs. ω-0.5 for GPC/CFP and Ni2P



Table S2 EIS fitting results and Na+ diffusion coefficients () of Ni2P@GPC/CFP, GPC/CFP and Ni2P in half cells
	Sample
	Ni2P@GPC/CFP||Na
	GPC/CFP||Na
	Ni2P||Na

	
	Re (Ω)
	Rct (Ω)
	
(cm2 s-1)
	Re (Ω)
	Rct (Ω)
	
(cm2 s-1)
	Re (Ω)
	Rct (Ω)
	
(cm2 s-1)

	Fresh
	4.3
	32.9
	4.1×10-10
	4.0
	31.1
	1.6×10-10
	6.2
	105.2
	1.3×10-10

	50th cycles
	2.8
	19.6
	1.3×10-9
	2.4
	16.2
	2.7×10-10
	3.7
	71.2
	1.4×10-10

	100th cycles
	4.1
	56.4
	2.1×10-10
	3.9
	42
	8.3×10-11
	5.2
	189.0
	4.4×10-11
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Fig. S14 a b-values determined from the linear fitting of log(i) and log(v). b Capacitive contribution at different scan rates for Ni2P@GPC/CFP
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Fig. S15 Evolution of the peak intensity ratios of Ni2P (111), (201), (210) relative to BeO (100) during a the first and b the tenth cycle
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Fig. S16 a Ex-situ XRD patterns of the Ni2P@GPC/CFP electrode discharged to 0.01 V after different cycles. b Enlarged view of the Ni2P (111) diffraction peak in the 2θ range of (40°~41.6°)
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Fig. S17 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP electrode discharged to 0.01 V after 10 cycles at 100 mA g-1
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Fig. S18 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP electrode discharged to 1.2 V after 10 cycles at 100 mA g-1
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Fig. S19 a SEM image and b-h corresponding EDX elemental mappings of Ni2P@GPC/CFP electrode charged to 3.0 V after 10 cycles at 100 mA g-1
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