Designing Amino Functionalized Titanium-Organic Framework on Separators Toward Sieving and Redistribution of Polysulfides in Lithium-Sulfur Batteries
Corresponding Author: Fen Ran
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 277
Abstract
Shuttle effect of polysulfides overshadows the superiorities of lithium–sulfur batteries. Size–sieving effect could address this thorny trouble rely on size differ in polysulfides and lithium ions. However, clogged polysulfides pose some challenges for cathode and are rarely recycled during charging/discharging. Herein, an amino functionalized titanium-organic framework is designed for modifying lithium–sulfur batteries separator to address the aforementioned challenges. Wherein, the introduction of amino narrows titanium–organic framework pore size, enabling functional separator to selectively modulate lithium ions and polysulfides migration using size-sieving effect, thereby completely suppressing polysulfides shuttle. Furthermore, the blocked polysulfides will be adsorbed on the separator surface by positively charged amino leveraging electrostatic adsorption, ensuring polysulfides to redistribute and reuse, and boosting active materials utilization. Significantly, the migration of lithium ions is not hindered since there are lithium ions transfer channels formed via Lewis acid–base interaction with the help of amino. Combined with these virtues, the lithium–sulfur batteries with amino functionalized titanium-organic framework modified separator enjoy an ultralow attenuation rate of 0.045% per cycle over 1000 cycles at 1.0C. Electrostatic adsorption and Lewis acid–base interaction cover deficiencies existing in the inhibition of polysulfides shuttle by size-sieving effect, providing fresh insight into the advancement of lithium-sulfur batteries.
Highlights:
1 Amino could narrow the sub-nanopore size of Ti–MOF modified layer to around 0.8 nm for perfectly inhibiting polysulfides shuttle.
2 Amino enables redistribution and reutilization of blocked polysulfides via leveraging electrostatic adsorption.
3 Electrostatic adsorption and Lewis acid–base interaction make up for the deficiency of size effect in inhibiting polysulfides shuttle.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhang, X. He, C. He, The “d-p orbital hybridization” -guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium - Sulfur batteries. J. Colloid Interface Sci. 678(Pt A), 540–548 (2025). https://doi.org/10.1016/j.jcis.2024.08.184
- W.X. Zhang, S.L. Kong, W.W. Wang, Y.M. Cheng, Z. Li et al., Enhanced electrocatalytic performance of LCO-NiFe-C3N4 composite material for highly efficient overall water splitting. J. Colloid Interface Sci. 680(Pt B), 787–796 (2025). https://doi.org/10.1016/j.jcis.2024.11.118
- J. Zong, C. He, W. Zhang, Ultrafast carrier recombination in a BC6N/SnXY Z-scheme heterostructure for water splitting: insights from ground- and excited-state carrier dynamics. J. Mater. Chem. A 12(29), 18528–18536 (2024). https://doi.org/10.1039/D4TA02440K
- R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
- W. Yao, K. Liao, T. Lai, H. Sul, A. Manthiram, Rechargeable metal-sulfur batteries: key materials to mechanisms. Chem. Rev. 124(8), 4935–5118 (2024). https://doi.org/10.1021/acs.chemrev.3c00919
- R. Yan, Z. Zhao, R. Zhu, M. Wu, X. Liu et al., Alveoli-inspired carbon cathodes with interconnected porous structure and asymmetric coordinated vanadium sites for superior Li-S batteries. Angew. Chem. Int. Ed. 63(25), e202404019 (2024). https://doi.org/10.1002/anie.202404019
- M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
- R. Zhu, W. Zheng, R. Yan, M. Wu, H. Zhou et al., Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal–sulfur batteries. Adv. Funct. Mater. 32(45), 2207021 (2022). https://doi.org/10.1002/adfm.202207021
- H. Li, R. Meng, C. Ye, A. Tadich, W. Hua, Developing high-power Li, et al., S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19(6), 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
- S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
- L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
- J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro Lett. 16(1), 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
- C. Zhao, H. Jeong, I. Hwang, T. Li, Y. Wang et al., Polysulfide-incompatible additive suppresses spatial reaction heterogeneity of Li-S batteries. Joule 8(12), 3397–3411 (2024). https://doi.org/10.1016/j.joule.2024.09.004
- L. Zhao, F. Ran, Electrolyte-philicity of electrode materials. Chem. Commun. 59(46), 6969–6986 (2023). https://doi.org/10.1039/d3cc00412k
- S. Kim, K. Yang, K. Yang, M. De Volder, Y. Lee, Permselective ionic-shield for high-performance lithium-sulfur batteries. Nano Lett. 23(22), 10391–10397 (2023). https://doi.org/10.1021/acs.nanolett.3c03021
- X. Kang, T. He, S. Niu, J. Zhang, R. Zou et al., Precise design of a 0.8nm pore size in a separator interfacial layer inspired by a sieving effect toward inhibiting polysulfide shuttling and promoting Li+ diffusion. Nano Lett. 24(33), 10007–10015 (2024). https://doi.org/10.1021/acs.nanolett.4c01480
- X. Kang, T. He, R. Zou, S. Niu, Y. Ma et al., Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries. Small 20(8), 2306503 (2024). https://doi.org/10.1002/smll.202306503
- Y. Cheng, S.J. Datta, S. Zhou, J. Jia, O. Shekhah et al., Advances in metal–organic framework-based membranes. Chem. Soc. Rev. 51(19), 8300–8350 (2022). https://doi.org/10.1039/d2cs00031h
- B.E.R. Snyder, A.B. Turkiewicz, H. Furukawa, M.V. Paley, E.O. Velasquez et al., A ligand insertion mechanism for cooperative NH3 capture in metal-organic frameworks. Nature 613(7943), 287–291 (2023). https://doi.org/10.1038/s41586-022-05409-2
- Q. Liu, Y. Miao, L.F. Villalobos, S. Li, H.Y. Chi et al., Unit-cell-thick zeolitic imidazolate framework films for membrane application. Nat. Mater. 22(11), 1387–1393 (2023). https://doi.org/10.1038/s41563-023-01669-z
- R.-J. Mo, S. Chen, L.-Q. Huang, X.-L. Ding, S. Rafique et al., Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 15(1), 2145 (2024). https://doi.org/10.1038/s41467-024-46378-6
- S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16(1), 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
- J. Han, S. Gao, R. Wang, K. Wang, M. Jiang et al., Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J. Mater. Chem. A 8(14), 6661–6669 (2020). https://doi.org/10.1039/D0TA00533A
- Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Meth. 4(7), 2000082 (2020). https://doi.org/10.1002/smtd.202000082
- S. Pang, Y. Liu, Z. Zhang, Y. Li, C. Li et al., Sulfonic acid functionalized Al-based MIL-101-NH2 modified separator for lithium-sulfur batteries. Microporous Mesoporous Mater. 365, 112892 (2024). https://doi.org/10.1016/j.micromeso.2023.112892
- Z. Cheng, Y. Chen, J. Lian, X. Chen, S. Xiang et al., Interface engineering of MOF nanosheets for accelerated redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(11), e202421726 (2024). https://doi.org/10.1002/anie.202421726
- Z. Cheng, J. Lian, Y. Chen, Y. Tang, Y. Huang et al., Robust In-Zr metal–organic framework nanosheets as ultrathin interlayer toward high-rate and long-cycle lithium–sulfur batteries. CCS Chem. 6(4), 988–998 (2024). https://doi.org/10.31635/ccschem.023.202303074
- Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
- Y. Sun, H. Ji, Y. Sun, G. Zhang, H. Zhou et al., Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 63(3), e202316973 (2024). https://doi.org/10.1002/anie.202316973
- Y. Sun, S. Hu, J. Yan, T. Ji, L. Liu et al., Oriented ultrathin π-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. Int. Ed. 62(43), e202311336 (2023). https://doi.org/10.1002/anie.202311336
- H. Lu, Q. Zeng, L. Xu, Y. Xiao, L. Xie et al., Multimodal engineering of catalytic interfaces confers multi-site metal-organic framework for internal preconcentration and accelerating redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(8), e202318859 (2024). https://doi.org/10.1002/anie.202318859
- H. Sepehrmansourie, H. Alamgholiloo, N. Noroozi Pesyan, M. Ali Zolfigol, A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 321, 122082 (2023). https://doi.org/10.1016/j.apcatb.2022.122082
- Y. Fu, M. Tan, Z. Guo, D. Hao, Y. Xu et al., Fabrication of wide-spectra-responsive NA/NH2-MIL-125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects. Chem. Eng. J. 452, 139417 (2023). https://doi.org/10.1016/j.cej.2022.139417
- X. Ren, C.-C. Wang, Y. Li, C.-Y. Wang, P. Wang et al., Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: a 3Rs (reduce, recycle and reuse) approach and practice. Chem. Eng. J. 442, 136306 (2022). https://doi.org/10.1016/j.cej.2022.136306
- R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12(9), 2102805 (2022). https://doi.org/10.1002/aenm.202102805
- S. He, J. Yang, S. Liu, X. Wang, J. Qiu, A universal MOF-confined strategy to synthesize atomically dispersed metal electrocatalysts toward fast redox conversion in lithium-sulfur batteries. Adv. Funct. Mater. 34(17), 2314133 (2024). https://doi.org/10.1002/adfm.202314133
- J. Li, Z. Wang, K. Shi, Y. Wu, W. Huang et al., Nanoreactors encapsulating built-in electric field as a “bridge” for Li–S batteries: directional migration and rapid conversion of polysulfides. Adv. Energy Mater. 14(9), 2303546 (2024). https://doi.org/10.1002/aenm.202303546
- Y. Yu, Q. Xie, X. Li, Z. Yuan, H. Zhang et al., Regulating the electronic modulation configuration of MnxFeCoNiCu high entropy alloy for reliable sulfur redox kinetics. Appl. Catal. B Environ. Energy 363, 124788 (2025). https://doi.org/10.1016/j.apcatb.2024.124788
- Q. Gong, D. Yang, H. Yang, K. Wu, J. Zhang et al., Cobalt ditelluride meets tellurium vacancy: an efficient catalyst as a multifunctional polysulfide mediator toward robust lithium-sulfur batteries. ACS Nano 18(41), 28382–28393 (2024). https://doi.org/10.1021/acsnano.4c11068
- Z. Lian, L. Ma, H. Wu, H. Xiao, Y. Yang et al., Accelerating sulfur redox kinetics by rare earth single-atom electrocatalysts toward efficient lithium–sulfur batteries. Appl. Catal. B Environ. Energy 361, 124661 (2025). https://doi.org/10.1016/j.apcatb.2024.124661
- Z. Fang, L. Tu, Z. Zhang, J. Wei, Y. Xiang et al., Simultaneously suppressing the dendritic lithium growth and polysulfides migration by a polyethyleneimine grafted bacterial cellulose membrane in lithium-sulfur batteries. Appl. Surf. Sci. 597, 153683 (2022). https://doi.org/10.1016/j.apsusc.2022.153683
- S. Jiang, M. Chen, X. Wang, Y. Zhang, C. Huang et al., Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 355, 478–486 (2019). https://doi.org/10.1016/j.cej.2018.08.170
- J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178
References
W. Zhang, X. He, C. He, The “d-p orbital hybridization” -guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium - Sulfur batteries. J. Colloid Interface Sci. 678(Pt A), 540–548 (2025). https://doi.org/10.1016/j.jcis.2024.08.184
W.X. Zhang, S.L. Kong, W.W. Wang, Y.M. Cheng, Z. Li et al., Enhanced electrocatalytic performance of LCO-NiFe-C3N4 composite material for highly efficient overall water splitting. J. Colloid Interface Sci. 680(Pt B), 787–796 (2025). https://doi.org/10.1016/j.jcis.2024.11.118
J. Zong, C. He, W. Zhang, Ultrafast carrier recombination in a BC6N/SnXY Z-scheme heterostructure for water splitting: insights from ground- and excited-state carrier dynamics. J. Mater. Chem. A 12(29), 18528–18536 (2024). https://doi.org/10.1039/D4TA02440K
R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
W. Yao, K. Liao, T. Lai, H. Sul, A. Manthiram, Rechargeable metal-sulfur batteries: key materials to mechanisms. Chem. Rev. 124(8), 4935–5118 (2024). https://doi.org/10.1021/acs.chemrev.3c00919
R. Yan, Z. Zhao, R. Zhu, M. Wu, X. Liu et al., Alveoli-inspired carbon cathodes with interconnected porous structure and asymmetric coordinated vanadium sites for superior Li-S batteries. Angew. Chem. Int. Ed. 63(25), e202404019 (2024). https://doi.org/10.1002/anie.202404019
M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
R. Zhu, W. Zheng, R. Yan, M. Wu, H. Zhou et al., Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal–sulfur batteries. Adv. Funct. Mater. 32(45), 2207021 (2022). https://doi.org/10.1002/adfm.202207021
H. Li, R. Meng, C. Ye, A. Tadich, W. Hua, Developing high-power Li, et al., S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19(6), 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro Lett. 16(1), 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
C. Zhao, H. Jeong, I. Hwang, T. Li, Y. Wang et al., Polysulfide-incompatible additive suppresses spatial reaction heterogeneity of Li-S batteries. Joule 8(12), 3397–3411 (2024). https://doi.org/10.1016/j.joule.2024.09.004
L. Zhao, F. Ran, Electrolyte-philicity of electrode materials. Chem. Commun. 59(46), 6969–6986 (2023). https://doi.org/10.1039/d3cc00412k
S. Kim, K. Yang, K. Yang, M. De Volder, Y. Lee, Permselective ionic-shield for high-performance lithium-sulfur batteries. Nano Lett. 23(22), 10391–10397 (2023). https://doi.org/10.1021/acs.nanolett.3c03021
X. Kang, T. He, S. Niu, J. Zhang, R. Zou et al., Precise design of a 0.8nm pore size in a separator interfacial layer inspired by a sieving effect toward inhibiting polysulfide shuttling and promoting Li+ diffusion. Nano Lett. 24(33), 10007–10015 (2024). https://doi.org/10.1021/acs.nanolett.4c01480
X. Kang, T. He, R. Zou, S. Niu, Y. Ma et al., Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries. Small 20(8), 2306503 (2024). https://doi.org/10.1002/smll.202306503
Y. Cheng, S.J. Datta, S. Zhou, J. Jia, O. Shekhah et al., Advances in metal–organic framework-based membranes. Chem. Soc. Rev. 51(19), 8300–8350 (2022). https://doi.org/10.1039/d2cs00031h
B.E.R. Snyder, A.B. Turkiewicz, H. Furukawa, M.V. Paley, E.O. Velasquez et al., A ligand insertion mechanism for cooperative NH3 capture in metal-organic frameworks. Nature 613(7943), 287–291 (2023). https://doi.org/10.1038/s41586-022-05409-2
Q. Liu, Y. Miao, L.F. Villalobos, S. Li, H.Y. Chi et al., Unit-cell-thick zeolitic imidazolate framework films for membrane application. Nat. Mater. 22(11), 1387–1393 (2023). https://doi.org/10.1038/s41563-023-01669-z
R.-J. Mo, S. Chen, L.-Q. Huang, X.-L. Ding, S. Rafique et al., Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 15(1), 2145 (2024). https://doi.org/10.1038/s41467-024-46378-6
S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16(1), 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
J. Han, S. Gao, R. Wang, K. Wang, M. Jiang et al., Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J. Mater. Chem. A 8(14), 6661–6669 (2020). https://doi.org/10.1039/D0TA00533A
Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Meth. 4(7), 2000082 (2020). https://doi.org/10.1002/smtd.202000082
S. Pang, Y. Liu, Z. Zhang, Y. Li, C. Li et al., Sulfonic acid functionalized Al-based MIL-101-NH2 modified separator for lithium-sulfur batteries. Microporous Mesoporous Mater. 365, 112892 (2024). https://doi.org/10.1016/j.micromeso.2023.112892
Z. Cheng, Y. Chen, J. Lian, X. Chen, S. Xiang et al., Interface engineering of MOF nanosheets for accelerated redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(11), e202421726 (2024). https://doi.org/10.1002/anie.202421726
Z. Cheng, J. Lian, Y. Chen, Y. Tang, Y. Huang et al., Robust In-Zr metal–organic framework nanosheets as ultrathin interlayer toward high-rate and long-cycle lithium–sulfur batteries. CCS Chem. 6(4), 988–998 (2024). https://doi.org/10.31635/ccschem.023.202303074
Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
Y. Sun, H. Ji, Y. Sun, G. Zhang, H. Zhou et al., Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 63(3), e202316973 (2024). https://doi.org/10.1002/anie.202316973
Y. Sun, S. Hu, J. Yan, T. Ji, L. Liu et al., Oriented ultrathin π-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. Int. Ed. 62(43), e202311336 (2023). https://doi.org/10.1002/anie.202311336
H. Lu, Q. Zeng, L. Xu, Y. Xiao, L. Xie et al., Multimodal engineering of catalytic interfaces confers multi-site metal-organic framework for internal preconcentration and accelerating redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(8), e202318859 (2024). https://doi.org/10.1002/anie.202318859
H. Sepehrmansourie, H. Alamgholiloo, N. Noroozi Pesyan, M. Ali Zolfigol, A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 321, 122082 (2023). https://doi.org/10.1016/j.apcatb.2022.122082
Y. Fu, M. Tan, Z. Guo, D. Hao, Y. Xu et al., Fabrication of wide-spectra-responsive NA/NH2-MIL-125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects. Chem. Eng. J. 452, 139417 (2023). https://doi.org/10.1016/j.cej.2022.139417
X. Ren, C.-C. Wang, Y. Li, C.-Y. Wang, P. Wang et al., Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: a 3Rs (reduce, recycle and reuse) approach and practice. Chem. Eng. J. 442, 136306 (2022). https://doi.org/10.1016/j.cej.2022.136306
R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12(9), 2102805 (2022). https://doi.org/10.1002/aenm.202102805
S. He, J. Yang, S. Liu, X. Wang, J. Qiu, A universal MOF-confined strategy to synthesize atomically dispersed metal electrocatalysts toward fast redox conversion in lithium-sulfur batteries. Adv. Funct. Mater. 34(17), 2314133 (2024). https://doi.org/10.1002/adfm.202314133
J. Li, Z. Wang, K. Shi, Y. Wu, W. Huang et al., Nanoreactors encapsulating built-in electric field as a “bridge” for Li–S batteries: directional migration and rapid conversion of polysulfides. Adv. Energy Mater. 14(9), 2303546 (2024). https://doi.org/10.1002/aenm.202303546
Y. Yu, Q. Xie, X. Li, Z. Yuan, H. Zhang et al., Regulating the electronic modulation configuration of MnxFeCoNiCu high entropy alloy for reliable sulfur redox kinetics. Appl. Catal. B Environ. Energy 363, 124788 (2025). https://doi.org/10.1016/j.apcatb.2024.124788
Q. Gong, D. Yang, H. Yang, K. Wu, J. Zhang et al., Cobalt ditelluride meets tellurium vacancy: an efficient catalyst as a multifunctional polysulfide mediator toward robust lithium-sulfur batteries. ACS Nano 18(41), 28382–28393 (2024). https://doi.org/10.1021/acsnano.4c11068
Z. Lian, L. Ma, H. Wu, H. Xiao, Y. Yang et al., Accelerating sulfur redox kinetics by rare earth single-atom electrocatalysts toward efficient lithium–sulfur batteries. Appl. Catal. B Environ. Energy 361, 124661 (2025). https://doi.org/10.1016/j.apcatb.2024.124661
Z. Fang, L. Tu, Z. Zhang, J. Wei, Y. Xiang et al., Simultaneously suppressing the dendritic lithium growth and polysulfides migration by a polyethyleneimine grafted bacterial cellulose membrane in lithium-sulfur batteries. Appl. Surf. Sci. 597, 153683 (2022). https://doi.org/10.1016/j.apsusc.2022.153683
S. Jiang, M. Chen, X. Wang, Y. Zhang, C. Huang et al., Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 355, 478–486 (2019). https://doi.org/10.1016/j.cej.2018.08.170
J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178