Multifunctional Dipoles Enabling Enhanced Ionic and Electronic Transport for High-Energy Batteries
Corresponding Author: Jong‑Min Lee
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 99
Abstract
Achieving high-energy density remains a key objective for advanced energy storage systems. However, challenges, such as poor cathode conductivity, anode dendrite formation, polysulfide shuttling, and electrolyte degradation, continue to limit performance and stability. Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport, modulating solvation structures, optimizing interfacial chemistry, and enhancing charge transfer kinetics. These interactions also stabilize electrode interfaces, suppress side reactions, and mitigate anode corrosion, collectively improving the durability of high-energy batteries. A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials. Herein, this review summarizes the development, classification, and advantages of dipole interactions in high-energy batteries. The roles of dipoles, including facilitating ion transport, controlling solvation dynamics, stabilizing the electric double layer, optimizing solid electrolyte interphase and cathode–electrolyte interface layers, and inhibiting parasitic reactions—are comprehensively discussed. Finally, perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage. This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.
Highlights:
1 Offers a thorough review on the mechanism of molecular and ion dipoles in high-energy batteries, covering development, classification, and multifaceted roles in battery systems.
2 Elucidates how molecular and ion dipoles regulate ionic transport, optimize solvation structures, strengthen the electric double layer, and construct stable solid electrolyte interphase/cathode–electrolyte interface layers, all of which boost battery performance.
3 Demonstrates the wide-ranging applications of dipole interactions in various battery systems, such as suppressing dendrites in lithium–metal batteries and improving the cycling stability of lithium–sulfur batteries.
4 Proposes future research directions including AI-assisted materials design, in-depth mechanism exploration, multidisciplinary integration, database establishment, and promoting practical applications, aiming to drive the development of high-energy batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sustain. Energy Rev. 69, 771–789 (2017). https://doi.org/10.1016/j.rser.2016.11.171
- H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems: characteristics and comparisons. Renew. Sustain. Energy Rev. 12(5), 1221–1250 (2008). https://doi.org/10.1016/j.rser.2007.01.023
- M. Faisal, M.A. Hannan, P.J. Ker, A. Hussain, M.B. Mansor et al., Review of energy storage system technologies in microgrid applications: issues and challenges. IEEE Access 6, 35143–35164 (2018). https://doi.org/10.1109/ACCESS.2018.2841407
- C.-X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4(8), 2614–2624 (2011). https://doi.org/10.1039/C0EE00777C
- J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu et al., High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6(5), e12450 (2023). https://doi.org/10.1002/eem2.12450
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- C. Wang, C. Yang, Z. Zheng, Toward practical high-energy and high-power lithium battery anodes: present and future. Adv. Sci. 9(9), 2105213 (2022). https://doi.org/10.1002/advs.202105213
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21(7), 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7
- Z. Hao, L. Yan, W. Li, Y. Zeng, Y. Dai et al., Interfacial regulation engineering in anode-free rechargeable batteries. Carbon Neutralization 3(4), 629–646 (2024). https://doi.org/10.1002/cnl2.144
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- P. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
- W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196(1), 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22(3), 691–714 (2010). https://doi.org/10.1021/cm902696j
- W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46(10), 3006–3059 (2017). https://doi.org/10.1039/c6cs00875e
- V.S.K. Sungjemmenla, C.B. Soni, V. Kumar, Z.W. Seh, Understanding the cathode–electrolyte interphase in lithium-ion batteries. Energy Technol. 10(9), 2200421 (2022). https://doi.org/10.1002/ente.202200421
- Y. Dong, J. Li, Oxide cathodes: functions, instabilities, self healing, and degradation mitigations. Chem. Rev. 123(2), 811–833 (2023). https://doi.org/10.1021/acs.chemrev.2c00251
- J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
- W. Li, Z. Hao, S. Cao, S. Chen, X. Wang et al., Unraveling the mechanism of covalent organic frameworks-based functional separators in high-energy batteries. Small 20(46), 2405396 (2024). https://doi.org/10.1002/smll.202405396
- W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
- S. Li, W. Zhang, J. Zheng, M. Lv, H. Song et al., Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11(2), 2000779 (2021). https://doi.org/10.1002/aenm.202000779
- R. Kumar, A. Tokranov, B.W. Sheldon, X. Xiao, Z. Huang et al., In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett. 1(4), 689–697 (2016). https://doi.org/10.1021/acsenergylett.6b00284
- Z. Hao, Q. Zhao, J. Tang, Q. Zhang, J. Liu et al., Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater. Horiz. 8(1), 12–32 (2021). https://doi.org/10.1039/D0MH01167C
- X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
- K.H. Sippel, F.A. Quiocho, Ion–dipole interactions and their functions in proteins. Protein Sci. 24(7), 1040–1046 (2015). https://doi.org/10.1002/pro.2685
- Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34(52), 2200662 (2022). https://doi.org/10.1002/adma.202200662
- X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
- W. Zhang, S. Wang, C. Wu, G. Wang, Quantum battery based on dipole-dipole interaction and external driving field. Phys. Rev. E 107(5–1), 054125 (2023). https://doi.org/10.1103/PhysRevE.107.054125
- C. Fang, Y. Zhang, Y. Li, P. Sun, L. Cui et al., Ion-dipole interactions assist small molecular additives to regulate Li+ coordination of poly(ethylene oxide-based polymer electrolyte. Electrochim. Acta 481, 143949 (2024). https://doi.org/10.1016/j.electacta.2024.143949
- S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion-dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
- K. Wen, C. Xin, S. Guan, X. Wu, S. He et al., Ion–dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv. Mater. 34(32), 2202143 (2022). https://doi.org/10.1002/adma.202202143
- Y. Geun, A. Geon-Hyoung, Fabrication of predominant β-phase poly(vinylidene fluoride protective film for zinc anodes via ion–dipole interaction for high-stability aqueous zinc-ion batteries. ACS Sustainable Chem. Eng. 12(14), 5608–5619 (2024). https://doi.org/10.1021/acssuschemeng.4c00146
- X. Jiang, F. Liu, M. Bai, L. Chen, M. Wang et al., Breaking solvation dominance of phosphate via dipole–dipole chemistry in gel polymer electrolyte. ACS Energy Lett. 9(7), 3369–3379 (2024). https://doi.org/10.1021/acsenergylett.4c00843
- X. Yun, Y. Chen, H. Gao, D. Lu, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Energy Mater. 14(25), 2304341 (2024). https://doi.org/10.1002/aenm.202304341
- B. Bagchi, B. Jana, Solvation dynamics in dipolar liquids. Chem. Soc. Rev. 39(6), 1936 (2010). https://doi.org/10.1039/b902048a
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
- R. Freund, A. Schulz, P. Lunkenheimer, M. Kraft, T. Bergler et al., Exploring dipolar dynamics and ionic transport in metal-organic frameworks: experimental and theoretical insights. Adv. Funct. Mater. 2415376 (2024). https://doi.org/10.1002/adfm.202415376
- Z. Wang, Y. Wang, P. Zhai, P. Poldorn, S. Jungsuttiwong et al., A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries. J. Energy Chem. 75, 340–348 (2022). https://doi.org/10.1016/j.jechem.2022.08.042
- T. Chen, Y. Liu, Z. Jin, L. Sun, Z. Liu et al., Solid polymer electrolytes regulated by ion-dipole interactions for high voltage lithium batteries. Giant 19, 100310 (2024). https://doi.org/10.1016/j.giant.2024.100310
- P. Liang, J. Li, Y. Dong, Z. Wang, G. Ding et al., Modulating interfacial solvation via ion dipole interactions for low-temperature and high-voltage lithium batteries. Angew. Chem. Int. Ed. 64(4), e202415853 (2025). https://doi.org/10.1002/anie.202415853
- S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/D4EE02867H
- S. Zhang, Y. Yang, Y. Sun, N. Liu, F. Sun et al., Artificial skin based on visuo-tactile sensing for 3D shape reconstruction: material, method, and evaluation. Adv. Funct. Mater. 35(1), 2411686 (2025). https://doi.org/10.1002/adfm.202411686
- J. Zhu, Z. Cui, S.-A. He, H. Wang, M. Gao et al., Inorganic-rich and flexible solid-electrolyte interphase formed over dipole-dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 32(44), 2205304 (2022). https://doi.org/10.1002/adfm.202205304
- S.-Y. Jun, K. Shin, Y. Lim, S. Kim, H. Kim et al., Polarizability engineering of surface flattening molecular dipoles for fast and long lithium metal battery operation. Small Struct. 5(7), 2300578 (2024). https://doi.org/10.1002/sstr.202300578
- H. Huang, Q. Du, Z. Chen, H. Deng, C. Yan et al., Strong ion-dipole interactions for stable zinc-ion batteries with wide temperature range. Adv. Funct. Mater. 35(7), 2415451 (2025). https://doi.org/10.1002/adfm.202415451
- M. Wu, Y. Sun, Z. Yang, S. Deng, H. Tong et al., Harnessing ion-dipole interactions for water-lean solvation chemistry: achieving high-stability Zn anodes in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(43), e202407439 (2024). https://doi.org/10.1002/anie.202407439
- S. Gusarov, B.S. Pujari, A. Kovalenko, Efficient treatment of solvation shells in 3D molecular theory of solvation. J. Comput. Chem. 33(17), 1478–1494 (2012). https://doi.org/10.1002/jcc.22974
- A. Sauza-de la Vega, T. Rocha-Rinza, J.M. Guevara-Vela, Cooperativity and anticooperativity in ion-water interactions: implications for the aqueous solvation of ions. ChemPhysChem 22(12), 1269–1285 (2021). https://doi.org/10.1002/cphc.202000981
- M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion–dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145(47), 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
- H.K. Kashyap, R. Biswas, Solvation dynamics of dipolar probes in dipolar room temperature ionic liquids: separation of Ion−Dipole and Dipole−Dipole interaction contributions. J. Phys. Chem. B 114(1), 254–268 (2010). https://doi.org/10.1021/jp906023p
- C.-W. Tseng, C. Wen, D.-C. Huang, C.-H. Lai, S. Chen et al., Synergy of ionic and dipolar effects by molecular design for pH sensing beyond the nernstian limit. Adv. Sci. 7(2), 1901001 (2020). https://doi.org/10.1002/advs.201901001
- C. Liu, Z. Li, L. Jiang, H. Zhu, F. Wang et al., Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries. J. Energy Chem. 104, 678–686 (2025). https://doi.org/10.1016/j.jechem.2025.01.017
- S. Cai, J. Hu, R. Wu, Y. Luo, Y. Xin et al., Electro-ionic-field regulation through dipole molecule layer toward dendrite-free zinc anode. Adv. Funct. Mater. 34(51), 2410158 (2024). https://doi.org/10.1002/adfm.202410158
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
- L. Gao, W. Jiang, X. Zhang, Y. Sun, K. Chen et al., A self-healing poly(ionic liquid block copolymer electrolyte enabled by synergetic dual ion-dipole interactions. Chem. Eng. J. 479, 147822 (2024). https://doi.org/10.1016/j.cej.2023.147822
- Z. Fan, J. Zhang, L. Wu, H. Yu, J. Li et al., Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries. Chem. Sci. 15(41), 17161–17172 (2024). https://doi.org/10.1039/d4sc05464d
- S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63(52), e202412434 (2024). https://doi.org/10.1002/anie.202412434
- H. Fang, Y. Huang, W. Hu, Z. Song, X. Wei et al., Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries. Angew. Chem. Int. Ed. 63(15), e202400539 (2024). https://doi.org/10.1002/anie.202400539
- Y.-X. Yao, J. Wan, N.-Y. Liang, C. Yan, R. Wen et al., Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries. J. Am. Chem. Soc. 145(14), 8001–8006 (2023). https://doi.org/10.1021/jacs.2c13878
- S.-Y. Jun, K. Shin, J.-S. Lee, S. Kim, J. Chun et al., Molecular dipoles as a surface flattening and interface stabilizing agent for lithium-metal batteries. Adv. Sci. 10(23), 2301426 (2023). https://doi.org/10.1002/advs.202301426
- O.N. Starovoytov, Development of a polarizable force field for molecular dynamics simulations of lithium-ion battery electrolytes: sulfone-based solvents and lithium salts. J. Phys. Chem. B 125(40), 11242–11255 (2021). https://doi.org/10.1021/acs.jpcb.1c05744
- D. Bedrov, J.-P. Piquemal, O. Borodin, A.D. MacKerell Jr., B. Roux et al., Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119(13), 7940–7995 (2019). https://doi.org/10.1021/acs.chemrev.8b00763
- K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries (adv. funct. mater. 5/2022). Adv. Funct. Mater. 32(5), 2270031 (2022). https://doi.org/10.1002/adfm.202270031
- B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride and PbZrxTi1–xO3 interface. ACS Nano 17(14), 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
- Y. Zhao, M. Gao, Y. Qin, X. Da, X. Deng et al., Electric field induced molecular orientation to construct the composite polymer electrolytes with vertically aligned ion diffusion pathways for stable solid-state lithium metal batteries. Chem. Eng. J. 495, 153645 (2024). https://doi.org/10.1016/j.cej.2024.153645
- W. Chen, Y. Chen, H. Li, S. Zhang, D. Li et al., Multiple enhancement effects of dipoles within polyimide cathode promoting highly efficient energy storage of lithium-ion batteries. Energy Storage Mater. 73, 103779 (2024). https://doi.org/10.1016/j.ensm.2024.103779
- P.-C. Li, Z.-Q. Zhang, Z.-W. Zhao, J.-Q. Li, Z.-X. Xu et al., Dipole moment influences the reversibility and corrosion of lithium metal anodes. Adv. Mater. 36(31), 2406359 (2024). https://doi.org/10.1002/adma.202406359
- S. Zhang, H. Ao, J. Dong, D. Wang, C. Wang et al., Dipole moment dictates the preferential immobilization in gel electrolytes for AH-level aqueous zinc-metal batteries. Angew. Chem. Int. Ed. 64(2), e202414702 (2025). https://doi.org/10.1002/anie.202414702
- S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
- D. Zhang, Z. Luo, H. Xu, Y. Guo, H. Chen et al., Liberating lithium ions from polymer matrix via harnessing ion-dipole interaction toward stable solid-state lithium metal batteries. Adv. Funct. Mater. 34(49), 2409134 (2024). https://doi.org/10.1002/adfm.202409134
- Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
- Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2204007 (2023). https://doi.org/10.1002/aenm.202204007
- S.-H. Huh, S.H. Kim, J.-S. Bae, S.-H. Yu, Understanding the impact of stripping behavior on subsequent lithium metal growth for achieving homogeneity. ENERGY ENVIRONMENTAL Mater 8(4), e70003 (2025). https://doi.org/10.1002/eem2.70003
- B.-K. Cho, S.-H. Huh, S.H. Kim, S. Yu, J.-S. Bae et al., Long cycle-life aqueous Zn battery enabled by facile carbon nanotube coating on Cu current collector. Carbon Energy 6(6), e441 (2024). https://doi.org/10.1002/cey2.441
- Z. Zha, D. Li, T. Sun, Q. Sun, J. Hou et al., Electrolyte design via cation–anion association regulation for high-rate and dendrite-free zinc metal batteries at low temperature. J. Am. Chem. Soc. 146(46), 31612–31623 (2024). https://doi.org/10.1021/jacs.4c09524
- M. Fu, H. Yu, S. Huang, Q. Li, B. Qu et al., Building sustainable saturated fatty acid-zinc interfacial layer toward ultra-stable zinc metal anodes. Nano Lett. 23(8), 3573–3581 (2023). https://doi.org/10.1021/acs.nanolett.3c00741
- R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang et al., Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 31(2), 2001867 (2021). https://doi.org/10.1002/adfm.202001867
- J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei et al., Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small 18(21), 2200006 (2022). https://doi.org/10.1002/smll.202200006
- S. Huang, R. Tang, X. Liu, Y. Zhang, Y. Tang et al., Ion–dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes. Energy Environ. Sci. 17(2), 591–601 (2024). https://doi.org/10.1039/D3EE02945J
- W. Deng, N. Zhang, X. Wang, Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem. Eng. J. 432, 134378 (2022). https://doi.org/10.1016/j.cej.2021.134378
- X. Meng, X. Cui, M. Rager, S. Zhang, Z. Wang et al., Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance. Nano Energy 52, 123–133 (2018). https://doi.org/10.1016/j.nanoen.2018.07.028
- Q. Zhang, Y. Li, E.T. Poh, Z. Xing, M. Zhang et al., Rational design of benzo-crown ether electrolyte additives for high-performance Li-O2 batteries. Adv. Energy Mater. 13(37), 2301748 (2023). https://doi.org/10.1002/aenm.202301748
- J. Wang, Q. Gao, H. He, X. Li, Z. Ren et al., Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning. J. Alloys Compd. 579, 617–621 (2013). https://doi.org/10.1016/j.jallcom.2013.07.099
- X. Liu, E.F. McCandlish, L.E. McCandlish, K. Mikulka-Bolen, R. Ramesh et al., Single-crystal-like materials by the self-assembly of cube-shaped lead zirconate titanate (PZT) microcrystals. Langmuir 21(8), 3207–3212 (2005). https://doi.org/10.1021/la047655o
- C.M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy et al., Single-crystal Pb(ZrxTi1–x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81(5), 2349–2357 (1997). https://doi.org/10.1063/1.364239
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
- Q. Wang, L. Jiang, Y. Yu, J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55, 93–114 (2019). https://doi.org/10.1016/j.nanoen.2018.10.035
- M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
- L. Zhao, J. Fei, W. Wei, Q. Zheng, Y. Pang et al., Tetramethylguanidine-modified graphene oxide as a gel polymer electrolyte additive for improving the performance of flexible zinc-air batteries. Small 21(7), 2410207 (2025). https://doi.org/10.1002/smll.202410207
- H. Luo, Q. Gou, Y. Zheng, K. Wang, R. Yuan et al., Machine learning-assisted high-donor-number electrolyte additive screening toward construction of dendrite-free aqueous zinc-ion batteries. ACS Nano 19(2), 2427–2443 (2025). https://doi.org/10.1021/acsnano.4c13312
- S. Zhang, D. Guan, Z. Xue, C. Shen, Y. Shen et al., Enhanced elevated-temperature performance of LiMn2O4 cathodes in lithium-ion batteries via a multifunctional electrolyte additive. Chem. Eng. J. 503, 158219 (2025). https://doi.org/10.1016/j.cej.2024.158219
- Z. Xu, L. Sun, Y. Yang, X. Li, Y. Liu et al., Ion-dipole regulation based on bidentate solvent for stabilizing high-voltage lithium metal batteries. J. Energy Chem. 98, 432–440 (2024). https://doi.org/10.1016/j.jechem.2024.06.053
- Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
- Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie et al., An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
- X. Qi, F. Yang, P. Sang, Z. Zhu, X. Jin et al., Electrochemical reactivation of dead Li2S for Li−S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62(9), e202218803 (2023). https://doi.org/10.1002/anie.202218803
- H. Noh, J. Song, J.-K. Park, H.-T. Kim, A new insight on capacity fading of lithium–sulfur batteries: the effect of Li2S phase structure. J. Power. Sources 293, 329–335 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.072
- H.-J. Peng, J.-Q. Huang, X.-Y. Liu, X.-B. Cheng, W.-T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139(25), 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
- R. Jiang, X. Qi, J. Ji, F. Yang, C. Feng et al., Accelerated Li2S conversion in sparingly-solvating electrolytes enabled with dipole-dipole interaction for wide-temperature Li-S batteries. Energy Storage Mater. 66, 103215 (2024). https://doi.org/10.1016/j.ensm.2024.103215
- P. Li, L. Ma, T. Wu, H. Ye, J. Zhou et al., Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li-S and Na-S batteries. Adv. Energy Mater. 8(22), 1800624 (2018). https://doi.org/10.1002/aenm.201800624
- J. Jiang, J. Ontaneda, S. Pal, Z. Guo, C. Forrester et al., Enhanced polysulfide trapping in Li–S batteries by dipole alignment in ferroelectric BaTiO3. Energy Environ. Sci. 17(17), 6291–6301 (2024). https://doi.org/10.1039/D4EE01936A
- X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
- H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
- X. Chen, X. Zhang, H. Li, Q. Zhang, Cation−Solvent, Cation−Anion, and Solvent−Solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps. 2(2), 128–131 (2019). https://doi.org/10.1002/batt.201800118
- C. Wang, S. Liu, H. Xu, X. Wang, G. Tian et al., Adjusting Li+ solvation structures via dipole–dipole interaction to construct inorganic-rich interphase for high-performance Li metal batteries. Small 20(24), 2308995 (2024). https://doi.org/10.1002/smll.202308995
- Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013). https://doi.org/10.1039/c3cc46665e
- P.K. Muhuri, B. Das, D.K. Hazra, Ionic association of some lithium salts in 1, 2-dimethoxyethane. A raman spectroscopic and conductivity study. J. Phys. Chem. B 101(17), 3329–3332 (1997). https://doi.org/10.1021/jp963747d
- H. Wu, Y. Xu, X. Ren, B. Liu, M.H. Engelhard et al., Polymer-in-“quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9(41), 1902108 (2019). https://doi.org/10.1002/aenm.201902108
- P. Zhang, H. Jin, T. Wang, M. Wang, Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1, 2-dimethoxyethane electrolytes. Electrochim. Acta 277, 116–126 (2018). https://doi.org/10.1016/j.electacta.2018.05.002
- C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium–metal anodes. Angew. Chem. Int. Ed. 60(19), 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
- S. Liu, X. Yu, Y. Yan, T. Zeng, X. Wang et al., Dendrite-free lithium deposition enabled by interfacial regulation via dipole-dipole interaction in anode-free lithium metal batteries. Energy Storage Mater. 62, 102959 (2023). https://doi.org/10.1016/j.ensm.2023.102959
- B. Xu, L. Ma, W. Wang, H. Zhu, Y. Zhang et al., Orderly arranged dipoles regulate anion-derived solid–electrolyte interphase for stable lithium metal chemistry. Adv. Mater. 36(18), 2311938 (2024). https://doi.org/10.1002/adma.202311938
- D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), 2101051 (2021). https://doi.org/10.1002/advs.202101051
- J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
- Y. Xiao, R. Xu, L. Xu, J.-F. Ding, J.-Q. Huang, Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater. 1(2), 100013 (2022). https://doi.org/10.20517/energymater.2021.17
- R. Jiang, L. Hong, Y. Liu, Y. Wang, S. Patel et al., An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 42, 370–379 (2021). https://doi.org/10.1016/j.ensm.2021.07.047
- M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
- X. Zhao, X. Liang, Y. Li, Q. Chen, M. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
- J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59(9), 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
- X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
- H. Yang, L. Yin, H. Shi, K. He, H.-M. Cheng et al., Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 55(88), 13211–13214 (2019). https://doi.org/10.1039/c9cc07092c
- A. Miyagawa, V. Ayerdurai, S. Nobukawa, M. Yamaguchi, Viscoelastic properties of poly(methyl methacrylate with high glass transition temperature by lithium salt addition. J. Polym. Sci. Part B Polym. Phys. 54(22), 2388–2394 (2016). https://doi.org/10.1002/polb.24227
- Y. Sato, A. Ito, S. Maeda, M. Yamaguchi, Structure and optical properties of transparent polyamide 6 containing lithium bromide. J. Polym. Sci. Part B Polym. Phys. 56(22), 1513–1520 (2018). https://doi.org/10.1002/polb.24739
- S. Tomie, N. Tsugawa, M. Yamaguchi, Modifying the thermal and mechanical properties of poly(lactic acid by adding lithium trifluoromethanesulfonate. J. Polym. Res. 25(9), 206 (2018). https://doi.org/10.1007/s10965-018-1605-4
- G. Yan, K. Reeves, D. Foix, Z. Li, C. Cometto et al., A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv. Energy Mater. 9(41), 1901431 (2019). https://doi.org/10.1002/aenm.201901431
- Q.-K. Zhang, X.-Q. Zhang, H. Yuan, J.-Q. Huang, Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Sci. 1(10), 2100058 (2021). https://doi.org/10.1002/smsc.202100058
- T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu et al., Stable high-temperature lithium-metal batteries enabled by strong multiple ion–dipole interactions. Angew. Chem. Int. Ed. 61(35), e202207645 (2022). https://doi.org/10.1002/anie.202207645
- X.-Q. Zhang, Q. Jin, Y.-L. Nan, L.-P. Hou, B.-Q. Li et al., Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15503–15509 (2021). https://doi.org/10.1002/anie.202103470
- Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
- K. Chen, X. Shen, L. Luo, H. Chen, R. Cao et al., Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries. Angew. Chem. Int. Ed. 62(47), e202312373 (2023). https://doi.org/10.1002/anie.202312373
- N. Hu, W. Lv, W. Chen, H. Tang, X. Zhang et al., A double-charged organic molecule additive to customize electric double layer for super-stable and deep-rechargeable Zn metal pouch batteries. Adv. Funct. Mater. 34(8), 2311773 (2024). https://doi.org/10.1002/adfm.202311773
- Z. Fan, W. Zhao, S. Shi, M. Zhou, J. Li et al., Regulating electric double layer via self-assembled monolayer for stable solid/electrolyte interphase on Mg metal anode. Angew. Chem. Int. Ed. 64(4), e202416582 (2025). https://doi.org/10.1002/anie.202416582
- Q. Sun, Z. Cao, Z. Ma, J. Zhang, H. Cheng et al., Dipole–dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett. 7(10), 3545–3556 (2022). https://doi.org/10.1021/acsenergylett.2c01408
- H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI: progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
- E. Peled, S. Menkin, SEI: past, present and future. J. Electrochem. Soc. 164(7), A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes
- W. Liu, P. Liu, D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
- L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
- O. Borodin, D. Bedrov, Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte. J. Phys. Chem. C 118(32), 18362–18371 (2014). https://doi.org/10.1021/jp504598n
- G. Fang, Y. Liu, Y. Feng, Y. Pan, H. Yang et al., Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chin. Chem. Lett. 36(1), 110385 (2025). https://doi.org/10.1016/j.cclet.2024.110385
- X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
- R. Zhang, X. Shen, X.-B. Cheng, Q. Zhang, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029
- X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59(20), 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
- Q. Wang, F. Liu, Z. Qi, G. Qin, L. Wang et al., UV-triggered in situ formation of a robust SEI on black phosphorus for advanced energy storage: boosting efficiency and safety via rapid charge integration plasticity. Adv. Energy Mater. 15(9), 2403188 (2025). https://doi.org/10.1002/aenm.202403188
- C. Zhu, D. Wu, C. Wang, J. Ma, Flame-retardant, self-purging, high-voltage electrolyte for safe and long-cycling sodium metal batteries. Adv. Funct. Mater. 34(45), 2406764 (2024). https://doi.org/10.1002/adfm.202406764
- X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
- Z. Zhu, Y. Li, J. Ji, X. Qi, J. Pan et al., Taming the ion-dipole interaction via rational diluent selection for low-temperature Li-metal batteries. Angew. Chem. Int. Ed. 137(15), e202423940 (2025). https://doi.org/10.1002/ange.202423940
- J. Sun, Y. Yao, X. Cui, J. Luo, J. Zhang et al., Improving low-temperature tolerance of a lithium-ion battery by a localized high-concentration electrolyte based on the weak solvation effect. Battery Energy (2025). https://doi.org/10.1002/bte2.20240106
- H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci. Eng. 10(5), 1643–1671 (2022). https://doi.org/10.1002/ese3.1163
- J.-H. Shin, W.A. Henderson, S. Passerini, Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5(12), 1016–1020 (2003). https://doi.org/10.1016/j.elecom.2003.09.017
- Y. Ye, X. Zhu, N. Meng, F. Lian, Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 33(45), 2307045 (2023). https://doi.org/10.1002/adfm.202307045
- Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
- F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116(9), 5216–5300 (2016). https://doi.org/10.1021/acs.chemrev.5b00583
- L. Ni, H. Chen, S. Guo, A. Dai, J. Gao et al., Enabling structure/interface regulation for high performance Ni-rich cathodes. Adv. Funct. Mater. 33(51), 2307126 (2023). https://doi.org/10.1002/adfm.202307126
- G. Wang, H. Fu, J. Lu, S. Huang, C. Pei et al., Gradient-structured and robust solid electrolyte interphase in situ formed by hydrated eutectic electrolytes for high-performance zinc metal batteries. Adv. Energy Mater. 14(8), 2303549 (2024). https://doi.org/10.1002/aenm.202303549
- K. Yang, H. Fu, Y. Duan, Z. Ma, D. Wang et al., Poloxamer pre-solvation sheath ion encapsulation strategy for zinc anode–electrolyte interfaces. ACS Energy Lett. 9(1), 209–217 (2024). https://doi.org/10.1021/acsenergylett.3c02337
- M. Wang, Z. Peng, W. Luo, Q. Zhang, Z. Li et al., Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv. Sci. 7(13), 2000237 (2020). https://doi.org/10.1002/advs.202000237
References
M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sustain. Energy Rev. 69, 771–789 (2017). https://doi.org/10.1016/j.rser.2016.11.171
H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems: characteristics and comparisons. Renew. Sustain. Energy Rev. 12(5), 1221–1250 (2008). https://doi.org/10.1016/j.rser.2007.01.023
M. Faisal, M.A. Hannan, P.J. Ker, A. Hussain, M.B. Mansor et al., Review of energy storage system technologies in microgrid applications: issues and challenges. IEEE Access 6, 35143–35164 (2018). https://doi.org/10.1109/ACCESS.2018.2841407
C.-X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4(8), 2614–2624 (2011). https://doi.org/10.1039/C0EE00777C
J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu et al., High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6(5), e12450 (2023). https://doi.org/10.1002/eem2.12450
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
C. Wang, C. Yang, Z. Zheng, Toward practical high-energy and high-power lithium battery anodes: present and future. Adv. Sci. 9(9), 2105213 (2022). https://doi.org/10.1002/advs.202105213
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21(7), 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7
Z. Hao, L. Yan, W. Li, Y. Zeng, Y. Dai et al., Interfacial regulation engineering in anode-free rechargeable batteries. Carbon Neutralization 3(4), 629–646 (2024). https://doi.org/10.1002/cnl2.144
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
P. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196(1), 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22(3), 691–714 (2010). https://doi.org/10.1021/cm902696j
W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46(10), 3006–3059 (2017). https://doi.org/10.1039/c6cs00875e
V.S.K. Sungjemmenla, C.B. Soni, V. Kumar, Z.W. Seh, Understanding the cathode–electrolyte interphase in lithium-ion batteries. Energy Technol. 10(9), 2200421 (2022). https://doi.org/10.1002/ente.202200421
Y. Dong, J. Li, Oxide cathodes: functions, instabilities, self healing, and degradation mitigations. Chem. Rev. 123(2), 811–833 (2023). https://doi.org/10.1021/acs.chemrev.2c00251
J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
W. Li, Z. Hao, S. Cao, S. Chen, X. Wang et al., Unraveling the mechanism of covalent organic frameworks-based functional separators in high-energy batteries. Small 20(46), 2405396 (2024). https://doi.org/10.1002/smll.202405396
W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
S. Li, W. Zhang, J. Zheng, M. Lv, H. Song et al., Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11(2), 2000779 (2021). https://doi.org/10.1002/aenm.202000779
R. Kumar, A. Tokranov, B.W. Sheldon, X. Xiao, Z. Huang et al., In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett. 1(4), 689–697 (2016). https://doi.org/10.1021/acsenergylett.6b00284
Z. Hao, Q. Zhao, J. Tang, Q. Zhang, J. Liu et al., Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater. Horiz. 8(1), 12–32 (2021). https://doi.org/10.1039/D0MH01167C
X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
K.H. Sippel, F.A. Quiocho, Ion–dipole interactions and their functions in proteins. Protein Sci. 24(7), 1040–1046 (2015). https://doi.org/10.1002/pro.2685
Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34(52), 2200662 (2022). https://doi.org/10.1002/adma.202200662
X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
W. Zhang, S. Wang, C. Wu, G. Wang, Quantum battery based on dipole-dipole interaction and external driving field. Phys. Rev. E 107(5–1), 054125 (2023). https://doi.org/10.1103/PhysRevE.107.054125
C. Fang, Y. Zhang, Y. Li, P. Sun, L. Cui et al., Ion-dipole interactions assist small molecular additives to regulate Li+ coordination of poly(ethylene oxide-based polymer electrolyte. Electrochim. Acta 481, 143949 (2024). https://doi.org/10.1016/j.electacta.2024.143949
S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion-dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
K. Wen, C. Xin, S. Guan, X. Wu, S. He et al., Ion–dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv. Mater. 34(32), 2202143 (2022). https://doi.org/10.1002/adma.202202143
Y. Geun, A. Geon-Hyoung, Fabrication of predominant β-phase poly(vinylidene fluoride protective film for zinc anodes via ion–dipole interaction for high-stability aqueous zinc-ion batteries. ACS Sustainable Chem. Eng. 12(14), 5608–5619 (2024). https://doi.org/10.1021/acssuschemeng.4c00146
X. Jiang, F. Liu, M. Bai, L. Chen, M. Wang et al., Breaking solvation dominance of phosphate via dipole–dipole chemistry in gel polymer electrolyte. ACS Energy Lett. 9(7), 3369–3379 (2024). https://doi.org/10.1021/acsenergylett.4c00843
X. Yun, Y. Chen, H. Gao, D. Lu, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Energy Mater. 14(25), 2304341 (2024). https://doi.org/10.1002/aenm.202304341
B. Bagchi, B. Jana, Solvation dynamics in dipolar liquids. Chem. Soc. Rev. 39(6), 1936 (2010). https://doi.org/10.1039/b902048a
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
R. Freund, A. Schulz, P. Lunkenheimer, M. Kraft, T. Bergler et al., Exploring dipolar dynamics and ionic transport in metal-organic frameworks: experimental and theoretical insights. Adv. Funct. Mater. 2415376 (2024). https://doi.org/10.1002/adfm.202415376
Z. Wang, Y. Wang, P. Zhai, P. Poldorn, S. Jungsuttiwong et al., A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries. J. Energy Chem. 75, 340–348 (2022). https://doi.org/10.1016/j.jechem.2022.08.042
T. Chen, Y. Liu, Z. Jin, L. Sun, Z. Liu et al., Solid polymer electrolytes regulated by ion-dipole interactions for high voltage lithium batteries. Giant 19, 100310 (2024). https://doi.org/10.1016/j.giant.2024.100310
P. Liang, J. Li, Y. Dong, Z. Wang, G. Ding et al., Modulating interfacial solvation via ion dipole interactions for low-temperature and high-voltage lithium batteries. Angew. Chem. Int. Ed. 64(4), e202415853 (2025). https://doi.org/10.1002/anie.202415853
S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/D4EE02867H
S. Zhang, Y. Yang, Y. Sun, N. Liu, F. Sun et al., Artificial skin based on visuo-tactile sensing for 3D shape reconstruction: material, method, and evaluation. Adv. Funct. Mater. 35(1), 2411686 (2025). https://doi.org/10.1002/adfm.202411686
J. Zhu, Z. Cui, S.-A. He, H. Wang, M. Gao et al., Inorganic-rich and flexible solid-electrolyte interphase formed over dipole-dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 32(44), 2205304 (2022). https://doi.org/10.1002/adfm.202205304
S.-Y. Jun, K. Shin, Y. Lim, S. Kim, H. Kim et al., Polarizability engineering of surface flattening molecular dipoles for fast and long lithium metal battery operation. Small Struct. 5(7), 2300578 (2024). https://doi.org/10.1002/sstr.202300578
H. Huang, Q. Du, Z. Chen, H. Deng, C. Yan et al., Strong ion-dipole interactions for stable zinc-ion batteries with wide temperature range. Adv. Funct. Mater. 35(7), 2415451 (2025). https://doi.org/10.1002/adfm.202415451
M. Wu, Y. Sun, Z. Yang, S. Deng, H. Tong et al., Harnessing ion-dipole interactions for water-lean solvation chemistry: achieving high-stability Zn anodes in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(43), e202407439 (2024). https://doi.org/10.1002/anie.202407439
S. Gusarov, B.S. Pujari, A. Kovalenko, Efficient treatment of solvation shells in 3D molecular theory of solvation. J. Comput. Chem. 33(17), 1478–1494 (2012). https://doi.org/10.1002/jcc.22974
A. Sauza-de la Vega, T. Rocha-Rinza, J.M. Guevara-Vela, Cooperativity and anticooperativity in ion-water interactions: implications for the aqueous solvation of ions. ChemPhysChem 22(12), 1269–1285 (2021). https://doi.org/10.1002/cphc.202000981
M. Li, H. An, Y. Song, Q. Liu, J. Wang et al., Ion–dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145(47), 25632–25642 (2023). https://doi.org/10.1021/jacs.3c07482
H.K. Kashyap, R. Biswas, Solvation dynamics of dipolar probes in dipolar room temperature ionic liquids: separation of Ion−Dipole and Dipole−Dipole interaction contributions. J. Phys. Chem. B 114(1), 254–268 (2010). https://doi.org/10.1021/jp906023p
C.-W. Tseng, C. Wen, D.-C. Huang, C.-H. Lai, S. Chen et al., Synergy of ionic and dipolar effects by molecular design for pH sensing beyond the nernstian limit. Adv. Sci. 7(2), 1901001 (2020). https://doi.org/10.1002/advs.201901001
C. Liu, Z. Li, L. Jiang, H. Zhu, F. Wang et al., Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries. J. Energy Chem. 104, 678–686 (2025). https://doi.org/10.1016/j.jechem.2025.01.017
S. Cai, J. Hu, R. Wu, Y. Luo, Y. Xin et al., Electro-ionic-field regulation through dipole molecule layer toward dendrite-free zinc anode. Adv. Funct. Mater. 34(51), 2410158 (2024). https://doi.org/10.1002/adfm.202410158
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
L. Gao, W. Jiang, X. Zhang, Y. Sun, K. Chen et al., A self-healing poly(ionic liquid block copolymer electrolyte enabled by synergetic dual ion-dipole interactions. Chem. Eng. J. 479, 147822 (2024). https://doi.org/10.1016/j.cej.2023.147822
Z. Fan, J. Zhang, L. Wu, H. Yu, J. Li et al., Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries. Chem. Sci. 15(41), 17161–17172 (2024). https://doi.org/10.1039/d4sc05464d
S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63(52), e202412434 (2024). https://doi.org/10.1002/anie.202412434
H. Fang, Y. Huang, W. Hu, Z. Song, X. Wei et al., Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries. Angew. Chem. Int. Ed. 63(15), e202400539 (2024). https://doi.org/10.1002/anie.202400539
Y.-X. Yao, J. Wan, N.-Y. Liang, C. Yan, R. Wen et al., Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries. J. Am. Chem. Soc. 145(14), 8001–8006 (2023). https://doi.org/10.1021/jacs.2c13878
S.-Y. Jun, K. Shin, J.-S. Lee, S. Kim, J. Chun et al., Molecular dipoles as a surface flattening and interface stabilizing agent for lithium-metal batteries. Adv. Sci. 10(23), 2301426 (2023). https://doi.org/10.1002/advs.202301426
O.N. Starovoytov, Development of a polarizable force field for molecular dynamics simulations of lithium-ion battery electrolytes: sulfone-based solvents and lithium salts. J. Phys. Chem. B 125(40), 11242–11255 (2021). https://doi.org/10.1021/acs.jpcb.1c05744
D. Bedrov, J.-P. Piquemal, O. Borodin, A.D. MacKerell Jr., B. Roux et al., Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119(13), 7940–7995 (2019). https://doi.org/10.1021/acs.chemrev.8b00763
K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries (adv. funct. mater. 5/2022). Adv. Funct. Mater. 32(5), 2270031 (2022). https://doi.org/10.1002/adfm.202270031
B.-H. Kang, S.-F. Li, J. Yang, Z.-M. Li, Y.-F. Huang, Uniform lithium plating for dendrite-free lithium metal batteries: role of dipolar channels in poly(vinylidene fluoride and PbZrxTi1–xO3 interface. ACS Nano 17(14), 14114–14122 (2023). https://doi.org/10.1021/acsnano.3c04684
Y. Zhao, M. Gao, Y. Qin, X. Da, X. Deng et al., Electric field induced molecular orientation to construct the composite polymer electrolytes with vertically aligned ion diffusion pathways for stable solid-state lithium metal batteries. Chem. Eng. J. 495, 153645 (2024). https://doi.org/10.1016/j.cej.2024.153645
W. Chen, Y. Chen, H. Li, S. Zhang, D. Li et al., Multiple enhancement effects of dipoles within polyimide cathode promoting highly efficient energy storage of lithium-ion batteries. Energy Storage Mater. 73, 103779 (2024). https://doi.org/10.1016/j.ensm.2024.103779
P.-C. Li, Z.-Q. Zhang, Z.-W. Zhao, J.-Q. Li, Z.-X. Xu et al., Dipole moment influences the reversibility and corrosion of lithium metal anodes. Adv. Mater. 36(31), 2406359 (2024). https://doi.org/10.1002/adma.202406359
S. Zhang, H. Ao, J. Dong, D. Wang, C. Wang et al., Dipole moment dictates the preferential immobilization in gel electrolytes for AH-level aqueous zinc-metal batteries. Angew. Chem. Int. Ed. 64(2), e202414702 (2025). https://doi.org/10.1002/anie.202414702
S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
D. Zhang, Z. Luo, H. Xu, Y. Guo, H. Chen et al., Liberating lithium ions from polymer matrix via harnessing ion-dipole interaction toward stable solid-state lithium metal batteries. Adv. Funct. Mater. 34(49), 2409134 (2024). https://doi.org/10.1002/adfm.202409134
Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2204007 (2023). https://doi.org/10.1002/aenm.202204007
S.-H. Huh, S.H. Kim, J.-S. Bae, S.-H. Yu, Understanding the impact of stripping behavior on subsequent lithium metal growth for achieving homogeneity. ENERGY ENVIRONMENTAL Mater 8(4), e70003 (2025). https://doi.org/10.1002/eem2.70003
B.-K. Cho, S.-H. Huh, S.H. Kim, S. Yu, J.-S. Bae et al., Long cycle-life aqueous Zn battery enabled by facile carbon nanotube coating on Cu current collector. Carbon Energy 6(6), e441 (2024). https://doi.org/10.1002/cey2.441
Z. Zha, D. Li, T. Sun, Q. Sun, J. Hou et al., Electrolyte design via cation–anion association regulation for high-rate and dendrite-free zinc metal batteries at low temperature. J. Am. Chem. Soc. 146(46), 31612–31623 (2024). https://doi.org/10.1021/jacs.4c09524
M. Fu, H. Yu, S. Huang, Q. Li, B. Qu et al., Building sustainable saturated fatty acid-zinc interfacial layer toward ultra-stable zinc metal anodes. Nano Lett. 23(8), 3573–3581 (2023). https://doi.org/10.1021/acs.nanolett.3c00741
R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang et al., Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 31(2), 2001867 (2021). https://doi.org/10.1002/adfm.202001867
J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei et al., Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small 18(21), 2200006 (2022). https://doi.org/10.1002/smll.202200006
S. Huang, R. Tang, X. Liu, Y. Zhang, Y. Tang et al., Ion–dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes. Energy Environ. Sci. 17(2), 591–601 (2024). https://doi.org/10.1039/D3EE02945J
W. Deng, N. Zhang, X. Wang, Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem. Eng. J. 432, 134378 (2022). https://doi.org/10.1016/j.cej.2021.134378
X. Meng, X. Cui, M. Rager, S. Zhang, Z. Wang et al., Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance. Nano Energy 52, 123–133 (2018). https://doi.org/10.1016/j.nanoen.2018.07.028
Q. Zhang, Y. Li, E.T. Poh, Z. Xing, M. Zhang et al., Rational design of benzo-crown ether electrolyte additives for high-performance Li-O2 batteries. Adv. Energy Mater. 13(37), 2301748 (2023). https://doi.org/10.1002/aenm.202301748
J. Wang, Q. Gao, H. He, X. Li, Z. Ren et al., Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning. J. Alloys Compd. 579, 617–621 (2013). https://doi.org/10.1016/j.jallcom.2013.07.099
X. Liu, E.F. McCandlish, L.E. McCandlish, K. Mikulka-Bolen, R. Ramesh et al., Single-crystal-like materials by the self-assembly of cube-shaped lead zirconate titanate (PZT) microcrystals. Langmuir 21(8), 3207–3212 (2005). https://doi.org/10.1021/la047655o
C.M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy et al., Single-crystal Pb(ZrxTi1–x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81(5), 2349–2357 (1997). https://doi.org/10.1063/1.364239
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
Q. Wang, L. Jiang, Y. Yu, J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55, 93–114 (2019). https://doi.org/10.1016/j.nanoen.2018.10.035
M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
L. Zhao, J. Fei, W. Wei, Q. Zheng, Y. Pang et al., Tetramethylguanidine-modified graphene oxide as a gel polymer electrolyte additive for improving the performance of flexible zinc-air batteries. Small 21(7), 2410207 (2025). https://doi.org/10.1002/smll.202410207
H. Luo, Q. Gou, Y. Zheng, K. Wang, R. Yuan et al., Machine learning-assisted high-donor-number electrolyte additive screening toward construction of dendrite-free aqueous zinc-ion batteries. ACS Nano 19(2), 2427–2443 (2025). https://doi.org/10.1021/acsnano.4c13312
S. Zhang, D. Guan, Z. Xue, C. Shen, Y. Shen et al., Enhanced elevated-temperature performance of LiMn2O4 cathodes in lithium-ion batteries via a multifunctional electrolyte additive. Chem. Eng. J. 503, 158219 (2025). https://doi.org/10.1016/j.cej.2024.158219
Z. Xu, L. Sun, Y. Yang, X. Li, Y. Liu et al., Ion-dipole regulation based on bidentate solvent for stabilizing high-voltage lithium metal batteries. J. Energy Chem. 98, 432–440 (2024). https://doi.org/10.1016/j.jechem.2024.06.053
Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie et al., An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
X. Qi, F. Yang, P. Sang, Z. Zhu, X. Jin et al., Electrochemical reactivation of dead Li2S for Li−S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62(9), e202218803 (2023). https://doi.org/10.1002/anie.202218803
H. Noh, J. Song, J.-K. Park, H.-T. Kim, A new insight on capacity fading of lithium–sulfur batteries: the effect of Li2S phase structure. J. Power. Sources 293, 329–335 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.072
H.-J. Peng, J.-Q. Huang, X.-Y. Liu, X.-B. Cheng, W.-T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139(25), 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
R. Jiang, X. Qi, J. Ji, F. Yang, C. Feng et al., Accelerated Li2S conversion in sparingly-solvating electrolytes enabled with dipole-dipole interaction for wide-temperature Li-S batteries. Energy Storage Mater. 66, 103215 (2024). https://doi.org/10.1016/j.ensm.2024.103215
P. Li, L. Ma, T. Wu, H. Ye, J. Zhou et al., Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li-S and Na-S batteries. Adv. Energy Mater. 8(22), 1800624 (2018). https://doi.org/10.1002/aenm.201800624
J. Jiang, J. Ontaneda, S. Pal, Z. Guo, C. Forrester et al., Enhanced polysulfide trapping in Li–S batteries by dipole alignment in ferroelectric BaTiO3. Energy Environ. Sci. 17(17), 6291–6301 (2024). https://doi.org/10.1039/D4EE01936A
X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
X. Chen, X. Zhang, H. Li, Q. Zhang, Cation−Solvent, Cation−Anion, and Solvent−Solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps. 2(2), 128–131 (2019). https://doi.org/10.1002/batt.201800118
C. Wang, S. Liu, H. Xu, X. Wang, G. Tian et al., Adjusting Li+ solvation structures via dipole–dipole interaction to construct inorganic-rich interphase for high-performance Li metal batteries. Small 20(24), 2308995 (2024). https://doi.org/10.1002/smll.202308995
Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013). https://doi.org/10.1039/c3cc46665e
P.K. Muhuri, B. Das, D.K. Hazra, Ionic association of some lithium salts in 1, 2-dimethoxyethane. A raman spectroscopic and conductivity study. J. Phys. Chem. B 101(17), 3329–3332 (1997). https://doi.org/10.1021/jp963747d
H. Wu, Y. Xu, X. Ren, B. Liu, M.H. Engelhard et al., Polymer-in-“quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9(41), 1902108 (2019). https://doi.org/10.1002/aenm.201902108
P. Zhang, H. Jin, T. Wang, M. Wang, Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1, 2-dimethoxyethane electrolytes. Electrochim. Acta 277, 116–126 (2018). https://doi.org/10.1016/j.electacta.2018.05.002
C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium–metal anodes. Angew. Chem. Int. Ed. 60(19), 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
S. Liu, X. Yu, Y. Yan, T. Zeng, X. Wang et al., Dendrite-free lithium deposition enabled by interfacial regulation via dipole-dipole interaction in anode-free lithium metal batteries. Energy Storage Mater. 62, 102959 (2023). https://doi.org/10.1016/j.ensm.2023.102959
B. Xu, L. Ma, W. Wang, H. Zhu, Y. Zhang et al., Orderly arranged dipoles regulate anion-derived solid–electrolyte interphase for stable lithium metal chemistry. Adv. Mater. 36(18), 2311938 (2024). https://doi.org/10.1002/adma.202311938
D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), 2101051 (2021). https://doi.org/10.1002/advs.202101051
J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
Y. Xiao, R. Xu, L. Xu, J.-F. Ding, J.-Q. Huang, Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater. 1(2), 100013 (2022). https://doi.org/10.20517/energymater.2021.17
R. Jiang, L. Hong, Y. Liu, Y. Wang, S. Patel et al., An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 42, 370–379 (2021). https://doi.org/10.1016/j.ensm.2021.07.047
M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
X. Zhao, X. Liang, Y. Li, Q. Chen, M. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59(9), 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
H. Yang, L. Yin, H. Shi, K. He, H.-M. Cheng et al., Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 55(88), 13211–13214 (2019). https://doi.org/10.1039/c9cc07092c
A. Miyagawa, V. Ayerdurai, S. Nobukawa, M. Yamaguchi, Viscoelastic properties of poly(methyl methacrylate with high glass transition temperature by lithium salt addition. J. Polym. Sci. Part B Polym. Phys. 54(22), 2388–2394 (2016). https://doi.org/10.1002/polb.24227
Y. Sato, A. Ito, S. Maeda, M. Yamaguchi, Structure and optical properties of transparent polyamide 6 containing lithium bromide. J. Polym. Sci. Part B Polym. Phys. 56(22), 1513–1520 (2018). https://doi.org/10.1002/polb.24739
S. Tomie, N. Tsugawa, M. Yamaguchi, Modifying the thermal and mechanical properties of poly(lactic acid by adding lithium trifluoromethanesulfonate. J. Polym. Res. 25(9), 206 (2018). https://doi.org/10.1007/s10965-018-1605-4
G. Yan, K. Reeves, D. Foix, Z. Li, C. Cometto et al., A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv. Energy Mater. 9(41), 1901431 (2019). https://doi.org/10.1002/aenm.201901431
Q.-K. Zhang, X.-Q. Zhang, H. Yuan, J.-Q. Huang, Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Sci. 1(10), 2100058 (2021). https://doi.org/10.1002/smsc.202100058
T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu et al., Stable high-temperature lithium-metal batteries enabled by strong multiple ion–dipole interactions. Angew. Chem. Int. Ed. 61(35), e202207645 (2022). https://doi.org/10.1002/anie.202207645
X.-Q. Zhang, Q. Jin, Y.-L. Nan, L.-P. Hou, B.-Q. Li et al., Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries. Angew. Chem. Int. Ed. 60(28), 15503–15509 (2021). https://doi.org/10.1002/anie.202103470
Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
K. Chen, X. Shen, L. Luo, H. Chen, R. Cao et al., Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries. Angew. Chem. Int. Ed. 62(47), e202312373 (2023). https://doi.org/10.1002/anie.202312373
N. Hu, W. Lv, W. Chen, H. Tang, X. Zhang et al., A double-charged organic molecule additive to customize electric double layer for super-stable and deep-rechargeable Zn metal pouch batteries. Adv. Funct. Mater. 34(8), 2311773 (2024). https://doi.org/10.1002/adfm.202311773
Z. Fan, W. Zhao, S. Shi, M. Zhou, J. Li et al., Regulating electric double layer via self-assembled monolayer for stable solid/electrolyte interphase on Mg metal anode. Angew. Chem. Int. Ed. 64(4), e202416582 (2025). https://doi.org/10.1002/anie.202416582
Q. Sun, Z. Cao, Z. Ma, J. Zhang, H. Cheng et al., Dipole–dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett. 7(10), 3545–3556 (2022). https://doi.org/10.1021/acsenergylett.2c01408
H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI: progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
E. Peled, S. Menkin, SEI: past, present and future. J. Electrochem. Soc. 164(7), A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes
W. Liu, P. Liu, D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
O. Borodin, D. Bedrov, Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte. J. Phys. Chem. C 118(32), 18362–18371 (2014). https://doi.org/10.1021/jp504598n
G. Fang, Y. Liu, Y. Feng, Y. Pan, H. Yang et al., Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chin. Chem. Lett. 36(1), 110385 (2025). https://doi.org/10.1016/j.cclet.2024.110385
X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
R. Zhang, X. Shen, X.-B. Cheng, Q. Zhang, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029
X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59(20), 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
Q. Wang, F. Liu, Z. Qi, G. Qin, L. Wang et al., UV-triggered in situ formation of a robust SEI on black phosphorus for advanced energy storage: boosting efficiency and safety via rapid charge integration plasticity. Adv. Energy Mater. 15(9), 2403188 (2025). https://doi.org/10.1002/aenm.202403188
C. Zhu, D. Wu, C. Wang, J. Ma, Flame-retardant, self-purging, high-voltage electrolyte for safe and long-cycling sodium metal batteries. Adv. Funct. Mater. 34(45), 2406764 (2024). https://doi.org/10.1002/adfm.202406764
X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
Z. Zhu, Y. Li, J. Ji, X. Qi, J. Pan et al., Taming the ion-dipole interaction via rational diluent selection for low-temperature Li-metal batteries. Angew. Chem. Int. Ed. 137(15), e202423940 (2025). https://doi.org/10.1002/ange.202423940
J. Sun, Y. Yao, X. Cui, J. Luo, J. Zhang et al., Improving low-temperature tolerance of a lithium-ion battery by a localized high-concentration electrolyte based on the weak solvation effect. Battery Energy (2025). https://doi.org/10.1002/bte2.20240106
H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy Sci. Eng. 10(5), 1643–1671 (2022). https://doi.org/10.1002/ese3.1163
J.-H. Shin, W.A. Henderson, S. Passerini, Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5(12), 1016–1020 (2003). https://doi.org/10.1016/j.elecom.2003.09.017
Y. Ye, X. Zhu, N. Meng, F. Lian, Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 33(45), 2307045 (2023). https://doi.org/10.1002/adfm.202307045
Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116(9), 5216–5300 (2016). https://doi.org/10.1021/acs.chemrev.5b00583
L. Ni, H. Chen, S. Guo, A. Dai, J. Gao et al., Enabling structure/interface regulation for high performance Ni-rich cathodes. Adv. Funct. Mater. 33(51), 2307126 (2023). https://doi.org/10.1002/adfm.202307126
G. Wang, H. Fu, J. Lu, S. Huang, C. Pei et al., Gradient-structured and robust solid electrolyte interphase in situ formed by hydrated eutectic electrolytes for high-performance zinc metal batteries. Adv. Energy Mater. 14(8), 2303549 (2024). https://doi.org/10.1002/aenm.202303549
K. Yang, H. Fu, Y. Duan, Z. Ma, D. Wang et al., Poloxamer pre-solvation sheath ion encapsulation strategy for zinc anode–electrolyte interfaces. ACS Energy Lett. 9(1), 209–217 (2024). https://doi.org/10.1021/acsenergylett.3c02337
M. Wang, Z. Peng, W. Luo, Q. Zhang, Z. Li et al., Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv. Sci. 7(13), 2000237 (2020). https://doi.org/10.1002/advs.202000237