Confining Li⁺ Solvation in Core–Shell Metal–Organic Frameworks for Stable Lithium Metal Batteries at 100 °C
Corresponding Author: Sangbaek Park
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 135
Abstract
The practical deployment of lithium metal batteries remains severely constrained, especially under elevated temperatures. Although metal–organic frameworks (MOFs) improve the thermal stability of liquid electrolytes by capturing them in well-ordered sub-nanopores, interparticle voids between MOF particles readily absorb liquid electrolyte, obscuring our understanding of the intrinsic role of nanopores in directing Li⁺ transport. To address this challenge, we introduce a one-dimensional (1D) MOF model architecture that eliminates interparticle effects and enables direct observation of Li⁺ solvation and de-solvation dynamics. Comparative studies of 1D HKUST-1 and ZIF-8 uncover distinct transport behaviors, supported by both experimental measurements and neural network potential-based molecular dynamics simulations. Building on these insights, we construct a hierarchical core–shell MOF architecture by integrating ZIF-8 (core) and HKUST-1 (shell) onto a hybrid fiber scaffold. This design harnesses the complementary strengths of both MOFs to achieve continuous ion pathways, directional Li⁺ conduction, and improved thermal and electrochemical resilience.
Highlights:
1 We report the in-situ growth of core–shell metal-organic frameworks on glass fiber, creating a binder-free quasi-solid-state electrolytes (QSSEs) with multiple Li+ transport pathways.
2 Pore-size-dependent solvation and de-solvation structures of Li+ are confined within HKUST-1 and ZIF-8 channels, enabling tailored ion dynamics.
3 The core–shell QSSE achieves high Li+ conductivity, suppressed dendrite growth, and stable Li plating/stripping under high-temperature conditions.
4 Lithium metal batteries with the core–shell QSSE show exceptional cycling stability at 100 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.-R. Zhu, Q. Zhang, Q.-S. Liu, Q.-Y. Bai, Y.-Z. Quan et al., Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 14(1), 4617 (2023). https://doi.org/10.1038/s41467-023-40394-8
- L. Du, G. Xu, C. Sun, Y.-H. Zhang, H. Zhang et al., Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 16(1), 2979 (2025). https://doi.org/10.1038/s41467-025-57964-7
- R. Cao, Z. Zhang, R. Shi, J. Lu, Y. Zheng et al., Model-constrained deep learning for online fault diagnosis in Li-ion batteries over stochastic conditions. Nat. Commun. 16(1), 1651 (2025). https://doi.org/10.1038/s41467-025-56832-8
- P.M. Attia, E. Moch, P.K. Herring, Challenges and opportunities for high-quality battery production at scale. Nat. Commun. 16, 611 (2025). https://doi.org/10.1038/s41467-025-55861-7
- S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16(1), 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
- J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
- W. Ji, B. Luo, Q. Wang, G. Yu, Z. Zhang et al., Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries. Nat. Commun. 15(1), 9920 (2024). https://doi.org/10.1038/s41467-024-54234-w
- H. Yuan, W. Lin, C. Tian, M. Buga, T. Huang et al., Enhancement of Li+ transport through intermediate phase in high-content inorganic composite quasi-solid-state electrolytes. Nano-Micro Lett. 17(1), 288 (2025). https://doi.org/10.1007/s40820-025-01774-5
- Y. Luo, Z. Rao, X. Yang, C. Wang, X. Sun et al., Safety concerns in solid-state lithium batteries: from materials to devices. Energy Environ. Sci. 17(20), 7543–7565 (2024). https://doi.org/10.1039/d4ee02358g
- L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593(7858), 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
- R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13(8), 2386–2403 (2020). https://doi.org/10.1039/d0ee00153h
- X.X. Liu, L. Pan, H. Zhang, C. Liu, M. Cao et al., Indium-MOF as multifunctional promoter to remove ionic conductivity and electrochemical stability constraints on fluoropolymer electrolytes for all-solid-state lithium metal battery. Nano-Micro Lett. 17(1), 249 (2025). https://doi.org/10.1007/s40820-025-01760-x
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- T. Wang, H. Yuan, H. Wang, Y. Guo, J. Yang et al., Unlocking fast ionic transport in sub-nano channels of MOF-based electrolytes for next-generation batteries. Adv. Funct. Mater. 34(45), 2405699 (2024). https://doi.org/10.1002/adfm.202405699
- M. Farina, B.B. Duff, C. Tealdi, A. Pugliese, F. Blanc et al., Li+ dynamics of liquid electrolytes nanoconfined in metal–organic frameworks. ACS Appl. Mater. Interfaces 13(45), 53986–53995 (2021). https://doi.org/10.1021/acsami.1c16214
- Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
- W. He, D. Li, S. Guo, Y. Xiao, W. Gong et al., Redistribution of electronic density in channels of metal–organic frameworks for high-performance quasi-solid lithium metal batteries. Energy Storage Mater. 47, 271–278 (2022). https://doi.org/10.1016/j.ensm.2022.02.003
- S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
- C. Wang, J. Zhang, P. Shi, Z. Zhou, Y. Zhang et al., Metal organic framework MOF-808-based solid-state electrolytes for lithium-ion batteries. New J. Chem. 47(30), 14114–14117 (2023). https://doi.org/10.1039/D3NJ02401F
- G. Lu, H. Wei, C. Shen, F. Zhou, M. Zhang et al., Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS Appl. Mater. Interfaces 14(40), 45476–45483 (2022). https://doi.org/10.1021/acsami.2c13613
- Z. Zhou, Y. Li, T. Fang, Y. Zhao, Q. Wang et al., MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials 9(11), 1574 (2019). https://doi.org/10.3390/nano9111574
- S. Suriyakumar, A.M. Stephan, N. Angulakshmi, M.H. Hassan, M.H. Alkordi, Metal–organic framework@SiO2 as permselective separator for lithium–sulfur batteries. J. Mater. Chem. A 6(30), 14623–14632 (2018). https://doi.org/10.1039/C8TA02259C
- C. Zhou, Q. He, Z. Li, J. Meng, X. Hong et al., A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 395, 124979 (2020). https://doi.org/10.1016/j.cej.2020.124979
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert et al., First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
- D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). https://doi.org/10.1103/physrevb.41.7892
- J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/physrevb.46.6671
- J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li et al., Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 13(1), 2991 (2022). https://doi.org/10.1038/s41467-022-30687-9
- C.H. Hendon, A. Walsh, Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chem. Sci. 6(7), 3674–3683 (2015). https://doi.org/10.1039/C5SC01489A
- A. Paul, I.K. Banga, S. Muthukumar, S. Prasad, Engineering the ZIF-8 pore for electrochemical sensor applications─a mini review. ACS Omega 7(31), 26993–27003 (2022). https://doi.org/10.1021/acsomega.2c00737
- M.H. Nguyen, N.M. Ngo, B.-K. Kim, S. Park, Dual ionic pathways in semi-solid electrolyte based on binary metal–organic frameworks enable stable operation of Li-metal batteries at extremely high temperatures. Adv. Sci. 11(43), 2407018 (2024). https://doi.org/10.1002/advs.202407018
- F. Khashami, Molecular motion, correlation, and relaxation time. In: Fundamentals of NMR and MRI, pp. 91–106. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-47976-2_5
References
G.-R. Zhu, Q. Zhang, Q.-S. Liu, Q.-Y. Bai, Y.-Z. Quan et al., Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 14(1), 4617 (2023). https://doi.org/10.1038/s41467-023-40394-8
L. Du, G. Xu, C. Sun, Y.-H. Zhang, H. Zhang et al., Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 16(1), 2979 (2025). https://doi.org/10.1038/s41467-025-57964-7
R. Cao, Z. Zhang, R. Shi, J. Lu, Y. Zheng et al., Model-constrained deep learning for online fault diagnosis in Li-ion batteries over stochastic conditions. Nat. Commun. 16(1), 1651 (2025). https://doi.org/10.1038/s41467-025-56832-8
P.M. Attia, E. Moch, P.K. Herring, Challenges and opportunities for high-quality battery production at scale. Nat. Commun. 16, 611 (2025). https://doi.org/10.1038/s41467-025-55861-7
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16(1), 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
W. Ji, B. Luo, Q. Wang, G. Yu, Z. Zhang et al., Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries. Nat. Commun. 15(1), 9920 (2024). https://doi.org/10.1038/s41467-024-54234-w
H. Yuan, W. Lin, C. Tian, M. Buga, T. Huang et al., Enhancement of Li+ transport through intermediate phase in high-content inorganic composite quasi-solid-state electrolytes. Nano-Micro Lett. 17(1), 288 (2025). https://doi.org/10.1007/s40820-025-01774-5
Y. Luo, Z. Rao, X. Yang, C. Wang, X. Sun et al., Safety concerns in solid-state lithium batteries: from materials to devices. Energy Environ. Sci. 17(20), 7543–7565 (2024). https://doi.org/10.1039/d4ee02358g
L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593(7858), 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13(8), 2386–2403 (2020). https://doi.org/10.1039/d0ee00153h
X.X. Liu, L. Pan, H. Zhang, C. Liu, M. Cao et al., Indium-MOF as multifunctional promoter to remove ionic conductivity and electrochemical stability constraints on fluoropolymer electrolytes for all-solid-state lithium metal battery. Nano-Micro Lett. 17(1), 249 (2025). https://doi.org/10.1007/s40820-025-01760-x
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
T. Wang, H. Yuan, H. Wang, Y. Guo, J. Yang et al., Unlocking fast ionic transport in sub-nano channels of MOF-based electrolytes for next-generation batteries. Adv. Funct. Mater. 34(45), 2405699 (2024). https://doi.org/10.1002/adfm.202405699
M. Farina, B.B. Duff, C. Tealdi, A. Pugliese, F. Blanc et al., Li+ dynamics of liquid electrolytes nanoconfined in metal–organic frameworks. ACS Appl. Mater. Interfaces 13(45), 53986–53995 (2021). https://doi.org/10.1021/acsami.1c16214
Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
W. He, D. Li, S. Guo, Y. Xiao, W. Gong et al., Redistribution of electronic density in channels of metal–organic frameworks for high-performance quasi-solid lithium metal batteries. Energy Storage Mater. 47, 271–278 (2022). https://doi.org/10.1016/j.ensm.2022.02.003
S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
C. Wang, J. Zhang, P. Shi, Z. Zhou, Y. Zhang et al., Metal organic framework MOF-808-based solid-state electrolytes for lithium-ion batteries. New J. Chem. 47(30), 14114–14117 (2023). https://doi.org/10.1039/D3NJ02401F
G. Lu, H. Wei, C. Shen, F. Zhou, M. Zhang et al., Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS Appl. Mater. Interfaces 14(40), 45476–45483 (2022). https://doi.org/10.1021/acsami.2c13613
Z. Zhou, Y. Li, T. Fang, Y. Zhao, Q. Wang et al., MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials 9(11), 1574 (2019). https://doi.org/10.3390/nano9111574
S. Suriyakumar, A.M. Stephan, N. Angulakshmi, M.H. Hassan, M.H. Alkordi, Metal–organic framework@SiO2 as permselective separator for lithium–sulfur batteries. J. Mater. Chem. A 6(30), 14623–14632 (2018). https://doi.org/10.1039/C8TA02259C
C. Zhou, Q. He, Z. Li, J. Meng, X. Hong et al., A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 395, 124979 (2020). https://doi.org/10.1016/j.cej.2020.124979
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert et al., First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). https://doi.org/10.1103/physrevb.41.7892
J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/physrevb.46.6671
J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li et al., Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 13(1), 2991 (2022). https://doi.org/10.1038/s41467-022-30687-9
C.H. Hendon, A. Walsh, Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chem. Sci. 6(7), 3674–3683 (2015). https://doi.org/10.1039/C5SC01489A
A. Paul, I.K. Banga, S. Muthukumar, S. Prasad, Engineering the ZIF-8 pore for electrochemical sensor applications─a mini review. ACS Omega 7(31), 26993–27003 (2022). https://doi.org/10.1021/acsomega.2c00737
M.H. Nguyen, N.M. Ngo, B.-K. Kim, S. Park, Dual ionic pathways in semi-solid electrolyte based on binary metal–organic frameworks enable stable operation of Li-metal batteries at extremely high temperatures. Adv. Sci. 11(43), 2407018 (2024). https://doi.org/10.1002/advs.202407018
F. Khashami, Molecular motion, correlation, and relaxation time. In: Fundamentals of NMR and MRI, pp. 91–106. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-47976-2_5