Nanoreactor-Structured Defective MoS2: Suppressing Intercalation-Induced Phase Transitions and Enhancing Reversibility for Potassium-Ion Batteries
Corresponding Author: Hui Xiong
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 138
Abstract
Conversion-type electrode materials hold significant promise for potassium-ion batteries (PIBs) due to their high theoretical capacities, yet their practical deployment is hindered by sluggish kinetics and irreversible structural degradation. To overcome these limitations, we propose a rationally engineered nanoreactor architecture that stabilizes defect-rich MoS2 via interlayer incorporation of a carbon monolayer, followed by encapsulation within a nitrogen-doped carbon shell, forming a MoSSe@NC heterostructure. This tailored structure synergistically accelerates both K+ diffusion kinetics and electron transfer, enabling unprecedented rate performance (107 mAh g−1 at 10 A g−1) and ultralong cyclability (86.5% capacity retention after 1200 cycles at 3 A g−1). Mechanistic insights reveal a distinctive “adsorption-conversion” pathway, where sulfur vacancies on exposed S–Mo–S basal planes act as preferential K+ adsorption sites, effectively suppressing parasitic phase transitions during intercalation. In situ X-ray diffraction and transmission electron microscopy corroborate the structural reversibility of the conversion reaction, with the carbon matrix dynamically accommodating strain while preserving electrode integrity. This work not only advances the understanding of defect-driven interfacial chemistry in conversion-type materials but also provides a versatile strategy for designing high-performance anodes in next-generation PIBs through heterostructure engineering.
Highlights:
1 A nanoreactor-structured MoSSe@NC heterostructure was constructed via defect engineering and carbon intercalation, simultaneously achieving phase transition suppression and enhanced ion transport.
2 Selenium-induced lattice disorder and carbon layer confinement synergistically inhibit the 1T–2H phase transition and buffer structural strain during cycling.
3 The designed heterostructure exhibits high capacity, excellent rate performance, and long-term cycling stability, offering a generalizable strategy for high-performance potassium-ion battery anodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
- C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
- D. Sun, D. Huang, H. Wang, G.-L. Xu, X. Zhang et al., 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61, 361–369 (2019). https://doi.org/10.1016/j.nanoen.2019.04.063
- J. Li, Y. Zhang, Y. Mao, Y. Zhao, D. Kan et al., Dual-functional Z-scheme TiO2@MoS2@NC multi-heterostructures for photo-driving ultrafast sodium ion storage. Angew. Chem. Int. Ed. 62(34), e202303056 (2023). https://doi.org/10.1002/anie.202303056
- F. Pan, Z. Li, S. Yao, J. Liu, Z. Wei et al., Combined intercalation and space-charge mechanism enabled high-capacity, ultrafast and long-lifespan sodium-ion storage for chalcogenide anodes. Energy Environ. Sci. 18(4), 1856–1866 (2025). https://doi.org/10.1039/d4ee03217a
- J.B. Cook, T.C. Lin, H.-S. Kim, A. Siordia, B.S. Dunn et al., Suppression of electrochemically driven phase transitions in nanostructured MoS2 pseudocapacitors probed using operando X-ray diffraction. ACS Nano 13(2), 1223–1231 (2019). https://doi.org/10.1021/acsnano.8b06381
- Z. Li, M. Han, J. Wang, L. Zhang, P. Yu et al., Superparamagnetic Fe conversion induces MoS2 fast ion transport in wide-temperature-range sodium-ion batteries. Adv. Funct. Mater. 34(41), 2404263 (2024). https://doi.org/10.1002/adfm.202404263
- W. Zhao, X. Ma, X. Wang, H. Zhou, X. He et al., Synergistically coupling atomic-level defect-manipulation and nanoscopic-level interfacial engineering enables fast and durable sodium storage. Small 20(28), e2311055 (2024). https://doi.org/10.1002/smll.202311055
- Z. Tian, N. Chui, R. Lian, Q. Yang, W. Wang et al., Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 27, 591–598 (2020). https://doi.org/10.1016/j.ensm.2019.12.016
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8(26), 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- H.-N. Fan, X.-Y. Wang, H.-B. Yu, Q.-F. Gu, S.-L. Chen et al., Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 10(21), 1904162 (2020). https://doi.org/10.1002/aenm.201904162
- H. Zhang, S. Zhang, B. Guo, L.-J. Yu, L. Ma et al., Mos2 hollow multishelled nanospheres doped Fe single atoms capable of fast phase transformation for fast-charging Na-ion batteries. Angew. Chem. Int. Ed. 63(17), e202400285 (2024). https://doi.org/10.1002/anie.202400285
- X. Yang, R. Liu, Z. Zhong, H. Huang, J. Shao et al., Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chem. Eng. J. 409, 127381 (2021). https://doi.org/10.1016/j.cej.2020.127381
- X. Liu, Y. Yu, K. Li, Y. Li, X. Li et al., Intergrating hollow multishelled structure and high entropy engineering toward enhanced mechano-electrochemical properties in lithium battery. Adv. Mater. 36(19), e2312583 (2024). https://doi.org/10.1002/adma.202312583
- Y. Yang, J. Zhou, H. Fu, J. Wen, Y. Wu et al., Enhancing structural integrity with stress-resilient carbon for stable potassium-ion storage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508466
- S. Wang, F. Cao, Y. Li, Z. Zhang, D. Zhou et al., MoS2-coupled carbon nanosheets encapsulated on sodium titanate nanowires as super-durable anode material for sodium-ion batteries. Adv. Sci. 6(10), 1900028 (2019). https://doi.org/10.1002/advs.201900028
- D. Sun, S. Lin, S. Kuai, T. Zhang, L. Liu et al., Interfacial Mo–N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries. Chem. Eng. J. 501, 157786 (2024). https://doi.org/10.1016/j.cej.2024.157786
- C. Ma, Z. Xu, J. Jiang, Z. Ma, T. Olsen et al., Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage. J. Mater. Chem. A 8(21), 11011–11018 (2020). https://doi.org/10.1039/d0ta03390a
- C. Cui, Z. Wei, J. Xu, Y. Zhang, S. Liu et al., Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Mater. 15, 22–30 (2018). https://doi.org/10.1016/j.ensm.2018.03.011
- J. Wen, H. Fu, C. Gao, J. Zhou, A.M. Rao et al., Synergy between weak solvent and solid electrolyte interphase enables high-rate and temperature-resilient potassium ion batteries. Angew. Chem. Int. Ed. 64(23), e202501155 (2025). https://doi.org/10.1002/anie.202501155
- J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16(8), 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
- L. Ma, X. Zhou, J. Sun, P. Zhang, B. Hou et al., Synergy mechanism of defect engineering in MoS2/FeS2/C heterostructure for high-performance sodium-ion battery. J. Energy Chem. 82, 268–276 (2023). https://doi.org/10.1016/j.jechem.2023.03.011
- X. Jin, T. Lee, A. Soon, S.-J. Hwang, Vacancy-assisted transformation of MoS2 nanosheets into defective MoSx nanoclusters to regulate sodium-ion electrode functionality. Adv. Funct. Mater. 34(36), 2316446 (2024). https://doi.org/10.1002/adfm.202316446
- B. Chen, E. Liu, T. Cao, F. He, C. Shi et al., Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33, 247–256 (2017). https://doi.org/10.1016/j.nanoen.2017.01.034
- X. Zuo, M. Zhen, D. Liu, L. Fu, Y. Qiu et al., Hollow and porous N-doped carbon framework as lithium-sulfur battery interlayer for accelerating polysulfide redox kinetics. Adv. Funct. Mater. 34(44), 2405486 (2024). https://doi.org/10.1002/adfm.202405486
- H. Jia, J. Fan, P. Su, T. Guo, M.-C. Liu, Cobalt nitride nanops encapsulated in N-doped carbon nanotubes modified separator of Li–S battery achieving the synergistic effect of restriction-adsorption-catalysis of polysulfides. Small 20(26), 2311343 (2024). https://doi.org/10.1002/smll.202311343
- S. Yang, D. Jiang, Q. Su, S. Yuan, Y. Guo et al., In situ constructing a TiO2/TiN heterostructure modified carbon interlayer for balancing the surface adsorption and conversion of polysulfides in Li–S batteries. Adv. Energy Mater. 14(24), 2400648 (2024). https://doi.org/10.1002/aenm.202400648
- Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
- H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo et al., 2D monolayer MoS2–carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27(24), 3687–3695 (2015). https://doi.org/10.1002/adma.201501059
- C. Zhu, X. Mu, P.A. Van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53(8), 2152–2156 (2014). https://doi.org/10.1002/anie.201308354
- R. Kang, D. Zhang, H. Wang, B. Zhang, X. Zhang et al., Synergistic optimization of electronic and lattice structures through Ti-intercalation and Se-vacancy engineering for high-performance aluminum storage. Energy Environ. Sci. 17(19), 7135–7146 (2024). https://doi.org/10.1039/D4EE02227K
- K. Liao, L. Chen, R. Meng, Y. Feng, S. Meng et al., Reconstructable carbon monolayer-MoS2 intercalated heterostructure enabled by atomic layers-confined topotactic transformation for ultrafast lithium storage. J. Am. Chem. Soc. 146(17), 12020–12029 (2024). https://doi.org/10.1021/jacs.4c01550
- B. Li, W. Cao, S. Wang, Z. Cao, Y. Shi et al., Adv. Sci. 9(32), 2204232 (2022). https://doi.org/10.1002/advs.202204232
- B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N‐doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high‐performance anodes of sodium‐based dual‐ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
- A. Gaur, T.M. Hartmann Dabros, M. Høj, A. Boubnov, T. Prüssmann et al., Probing the active sites of MoS2 based hydrotreating catalysts using modulation excitation spectroscopy. ACS Catal. 9(3), 2568–2579 (2019). https://doi.org/10.1021/acscatal.8b04778
- H. Xu, Y. Li, D. Zhu, Z. Li, F. Sun et al., Synchrotron radiation spectroscopic studies of Mg2+ storage mechanisms in high-performance rechargeable magnesium batteries with Co-doped FeS2 cathodes. Adv. Energy Mater. 12(38), 2201608 (2022). https://doi.org/10.1002/aenm.202201608
- H. Xia, L. Zan, P. Yuan, G. Qu, H. Dong et al., Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe−Nx towards enhanced sodium ion storage. Angew. Chem. Int. Ed. 62(14), e202218282 (2023). https://doi.org/10.1002/anie.202218282
- M. Xie, Z. Lv, Y. Wang, W. Zhao, X. Pang et al., Homogeneous intercalation chemistry and ultralow strain of 1T’’’ MoS2 for stable potassium storage. Adv. Funct. Mater. 33(49), 2306550 (2023). https://doi.org/10.1002/adfm.202306550
- M. Niu, Z. Zhu, Z. Mou, W. Kang, Yolk-shelled MoS2/C@void@C@MoS2 nanospheres as a stable and high-rate anode in sodium/potassium ion batteries. Chem. Commun. 60(95), 14053–14056 (2024). https://doi.org/10.1039/D4CC05088F
- L. Yang, X. Wang, C. Zhu, H. Wang, J. Shi et al., Optimized few-layer MoS2 confined in carbon bowls via pore filling and chemical bond enabling fast kinetics for high-rate potassium storage. Chem. Eng. J. 502, 157821 (2024). https://doi.org/10.1016/j.cej.2024.157821
- J. Guo, X. Sun, K. Shen, X. Li, N. Zhang et al., Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chem. Eng. J. 393, 124703 (2020). https://doi.org/10.1016/j.cej.2020.124703
- C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou et al., Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 24, 208–219 (2020). https://doi.org/10.1016/j.ensm.2019.08.018
- S. Park, C. Kim, S.O. Park, N.K. Oh, U. Kim et al., Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 32(33), 2001889 (2020). https://doi.org/10.1002/adma.202001889
- Y. Cui, W. Liu, W. Feng, Y. Zhang, Y. Du et al., Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv. Funct. Mater. 30(10), 1908755 (2020). https://doi.org/10.1002/adfm.201908755
- E. Allcorn, S.O. Kim, A. Manthiram, Lithium diffusivity in antimony-based intermetallic and FeSb–TiC composite anodes as measured by GITT. Phys. Chem. Chem. Phys. 17(43), 28837–28843 (2015). https://doi.org/10.1039/c5cp04023j
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
References
Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
D. Sun, D. Huang, H. Wang, G.-L. Xu, X. Zhang et al., 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61, 361–369 (2019). https://doi.org/10.1016/j.nanoen.2019.04.063
J. Li, Y. Zhang, Y. Mao, Y. Zhao, D. Kan et al., Dual-functional Z-scheme TiO2@MoS2@NC multi-heterostructures for photo-driving ultrafast sodium ion storage. Angew. Chem. Int. Ed. 62(34), e202303056 (2023). https://doi.org/10.1002/anie.202303056
F. Pan, Z. Li, S. Yao, J. Liu, Z. Wei et al., Combined intercalation and space-charge mechanism enabled high-capacity, ultrafast and long-lifespan sodium-ion storage for chalcogenide anodes. Energy Environ. Sci. 18(4), 1856–1866 (2025). https://doi.org/10.1039/d4ee03217a
J.B. Cook, T.C. Lin, H.-S. Kim, A. Siordia, B.S. Dunn et al., Suppression of electrochemically driven phase transitions in nanostructured MoS2 pseudocapacitors probed using operando X-ray diffraction. ACS Nano 13(2), 1223–1231 (2019). https://doi.org/10.1021/acsnano.8b06381
Z. Li, M. Han, J. Wang, L. Zhang, P. Yu et al., Superparamagnetic Fe conversion induces MoS2 fast ion transport in wide-temperature-range sodium-ion batteries. Adv. Funct. Mater. 34(41), 2404263 (2024). https://doi.org/10.1002/adfm.202404263
W. Zhao, X. Ma, X. Wang, H. Zhou, X. He et al., Synergistically coupling atomic-level defect-manipulation and nanoscopic-level interfacial engineering enables fast and durable sodium storage. Small 20(28), e2311055 (2024). https://doi.org/10.1002/smll.202311055
Z. Tian, N. Chui, R. Lian, Q. Yang, W. Wang et al., Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 27, 591–598 (2020). https://doi.org/10.1016/j.ensm.2019.12.016
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8(26), 1801514 (2018). https://doi.org/10.1002/aenm.201801514
H.-N. Fan, X.-Y. Wang, H.-B. Yu, Q.-F. Gu, S.-L. Chen et al., Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 10(21), 1904162 (2020). https://doi.org/10.1002/aenm.201904162
H. Zhang, S. Zhang, B. Guo, L.-J. Yu, L. Ma et al., Mos2 hollow multishelled nanospheres doped Fe single atoms capable of fast phase transformation for fast-charging Na-ion batteries. Angew. Chem. Int. Ed. 63(17), e202400285 (2024). https://doi.org/10.1002/anie.202400285
X. Yang, R. Liu, Z. Zhong, H. Huang, J. Shao et al., Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chem. Eng. J. 409, 127381 (2021). https://doi.org/10.1016/j.cej.2020.127381
X. Liu, Y. Yu, K. Li, Y. Li, X. Li et al., Intergrating hollow multishelled structure and high entropy engineering toward enhanced mechano-electrochemical properties in lithium battery. Adv. Mater. 36(19), e2312583 (2024). https://doi.org/10.1002/adma.202312583
Y. Yang, J. Zhou, H. Fu, J. Wen, Y. Wu et al., Enhancing structural integrity with stress-resilient carbon for stable potassium-ion storage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508466
S. Wang, F. Cao, Y. Li, Z. Zhang, D. Zhou et al., MoS2-coupled carbon nanosheets encapsulated on sodium titanate nanowires as super-durable anode material for sodium-ion batteries. Adv. Sci. 6(10), 1900028 (2019). https://doi.org/10.1002/advs.201900028
D. Sun, S. Lin, S. Kuai, T. Zhang, L. Liu et al., Interfacial Mo–N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries. Chem. Eng. J. 501, 157786 (2024). https://doi.org/10.1016/j.cej.2024.157786
C. Ma, Z. Xu, J. Jiang, Z. Ma, T. Olsen et al., Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage. J. Mater. Chem. A 8(21), 11011–11018 (2020). https://doi.org/10.1039/d0ta03390a
C. Cui, Z. Wei, J. Xu, Y. Zhang, S. Liu et al., Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Mater. 15, 22–30 (2018). https://doi.org/10.1016/j.ensm.2018.03.011
J. Wen, H. Fu, C. Gao, J. Zhou, A.M. Rao et al., Synergy between weak solvent and solid electrolyte interphase enables high-rate and temperature-resilient potassium ion batteries. Angew. Chem. Int. Ed. 64(23), e202501155 (2025). https://doi.org/10.1002/anie.202501155
J. Sun, Z. Zhang, G. Lian, Y. Li, L. Jing et al., Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16(8), 12425–12436 (2022). https://doi.org/10.1021/acsnano.2c03623
L. Ma, X. Zhou, J. Sun, P. Zhang, B. Hou et al., Synergy mechanism of defect engineering in MoS2/FeS2/C heterostructure for high-performance sodium-ion battery. J. Energy Chem. 82, 268–276 (2023). https://doi.org/10.1016/j.jechem.2023.03.011
X. Jin, T. Lee, A. Soon, S.-J. Hwang, Vacancy-assisted transformation of MoS2 nanosheets into defective MoSx nanoclusters to regulate sodium-ion electrode functionality. Adv. Funct. Mater. 34(36), 2316446 (2024). https://doi.org/10.1002/adfm.202316446
B. Chen, E. Liu, T. Cao, F. He, C. Shi et al., Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33, 247–256 (2017). https://doi.org/10.1016/j.nanoen.2017.01.034
X. Zuo, M. Zhen, D. Liu, L. Fu, Y. Qiu et al., Hollow and porous N-doped carbon framework as lithium-sulfur battery interlayer for accelerating polysulfide redox kinetics. Adv. Funct. Mater. 34(44), 2405486 (2024). https://doi.org/10.1002/adfm.202405486
H. Jia, J. Fan, P. Su, T. Guo, M.-C. Liu, Cobalt nitride nanops encapsulated in N-doped carbon nanotubes modified separator of Li–S battery achieving the synergistic effect of restriction-adsorption-catalysis of polysulfides. Small 20(26), 2311343 (2024). https://doi.org/10.1002/smll.202311343
S. Yang, D. Jiang, Q. Su, S. Yuan, Y. Guo et al., In situ constructing a TiO2/TiN heterostructure modified carbon interlayer for balancing the surface adsorption and conversion of polysulfides in Li–S batteries. Adv. Energy Mater. 14(24), 2400648 (2024). https://doi.org/10.1002/aenm.202400648
Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo et al., 2D monolayer MoS2–carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27(24), 3687–3695 (2015). https://doi.org/10.1002/adma.201501059
C. Zhu, X. Mu, P.A. Van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53(8), 2152–2156 (2014). https://doi.org/10.1002/anie.201308354
R. Kang, D. Zhang, H. Wang, B. Zhang, X. Zhang et al., Synergistic optimization of electronic and lattice structures through Ti-intercalation and Se-vacancy engineering for high-performance aluminum storage. Energy Environ. Sci. 17(19), 7135–7146 (2024). https://doi.org/10.1039/D4EE02227K
K. Liao, L. Chen, R. Meng, Y. Feng, S. Meng et al., Reconstructable carbon monolayer-MoS2 intercalated heterostructure enabled by atomic layers-confined topotactic transformation for ultrafast lithium storage. J. Am. Chem. Soc. 146(17), 12020–12029 (2024). https://doi.org/10.1021/jacs.4c01550
B. Li, W. Cao, S. Wang, Z. Cao, Y. Shi et al., Adv. Sci. 9(32), 2204232 (2022). https://doi.org/10.1002/advs.202204232
B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N‐doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high‐performance anodes of sodium‐based dual‐ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
A. Gaur, T.M. Hartmann Dabros, M. Høj, A. Boubnov, T. Prüssmann et al., Probing the active sites of MoS2 based hydrotreating catalysts using modulation excitation spectroscopy. ACS Catal. 9(3), 2568–2579 (2019). https://doi.org/10.1021/acscatal.8b04778
H. Xu, Y. Li, D. Zhu, Z. Li, F. Sun et al., Synchrotron radiation spectroscopic studies of Mg2+ storage mechanisms in high-performance rechargeable magnesium batteries with Co-doped FeS2 cathodes. Adv. Energy Mater. 12(38), 2201608 (2022). https://doi.org/10.1002/aenm.202201608
H. Xia, L. Zan, P. Yuan, G. Qu, H. Dong et al., Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe−Nx towards enhanced sodium ion storage. Angew. Chem. Int. Ed. 62(14), e202218282 (2023). https://doi.org/10.1002/anie.202218282
M. Xie, Z. Lv, Y. Wang, W. Zhao, X. Pang et al., Homogeneous intercalation chemistry and ultralow strain of 1T’’’ MoS2 for stable potassium storage. Adv. Funct. Mater. 33(49), 2306550 (2023). https://doi.org/10.1002/adfm.202306550
M. Niu, Z. Zhu, Z. Mou, W. Kang, Yolk-shelled MoS2/C@void@C@MoS2 nanospheres as a stable and high-rate anode in sodium/potassium ion batteries. Chem. Commun. 60(95), 14053–14056 (2024). https://doi.org/10.1039/D4CC05088F
L. Yang, X. Wang, C. Zhu, H. Wang, J. Shi et al., Optimized few-layer MoS2 confined in carbon bowls via pore filling and chemical bond enabling fast kinetics for high-rate potassium storage. Chem. Eng. J. 502, 157821 (2024). https://doi.org/10.1016/j.cej.2024.157821
J. Guo, X. Sun, K. Shen, X. Li, N. Zhang et al., Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chem. Eng. J. 393, 124703 (2020). https://doi.org/10.1016/j.cej.2020.124703
C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou et al., Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 24, 208–219 (2020). https://doi.org/10.1016/j.ensm.2019.08.018
S. Park, C. Kim, S.O. Park, N.K. Oh, U. Kim et al., Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 32(33), 2001889 (2020). https://doi.org/10.1002/adma.202001889
Y. Cui, W. Liu, W. Feng, Y. Zhang, Y. Du et al., Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv. Funct. Mater. 30(10), 1908755 (2020). https://doi.org/10.1002/adfm.201908755
E. Allcorn, S.O. Kim, A. Manthiram, Lithium diffusivity in antimony-based intermetallic and FeSb–TiC composite anodes as measured by GITT. Phys. Chem. Chem. Phys. 17(43), 28837–28843 (2015). https://doi.org/10.1039/c5cp04023j
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w