Oxide Semiconductor for Advanced Memory Architectures: Atomic Layer Deposition, Key Requirement and Challenges
Corresponding Author: Jin‑Seong Park
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 180
Abstract
Oxide semiconductors (OSs), introduced by the Hosono group in the early 2000s, have evolved from display backplane materials to promising candidates for advanced memory and logic devices. The exceptionally low leakage current of OSs and compatibility with three-dimensional (3D) architectures have recently sparked renewed interest in their use in semiconductor applications. This review begins by exploring the unique material properties of OSs, which fundamentally originate from their distinct electronic band structure. Subsequently, we focus on atomic layer deposition (ALD), a core technique for growing excellent OS films, covering both basic and advanced processes compatible with 3D scaling. The basic surface reaction mechanisms—adsorption and reaction—and their roles in film growth are introduced. Furthermore, material design strategies, such as cation selection, crystallinity control, anion doping, and heterostructure engineering, are discussed. We also highlight challenges in memory applications, including contact resistance, hydrogen instability, and lack of p-type materials, and discuss the feasibility of ALD-grown OSs as potential solutions. Lastly, we provide an outlook on the role of ALD-grown OSs in memory technologies. This review bridges material fundamentals and device-level requirements, offering a comprehensive perspective on the potential of ALD-driven OSs for next-generation semiconductor memory devices.
Highlights:
1 This review outlines the emergence of oxide semiconductors as promising channel materials for high-density, low-power next-generation memory applications.
2 Adsorption and reaction mechanisms of atomic layer deposition have enabled the design of high-performance oxide semiconductors for next-generation memory applications.
3 This review discusses key challenges toward successfully integrating oxide semiconductors into next-generation memory devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Badaroglu, M. Moore, IEEE International Roadmap for Devices and Systems Outbriefs. November 30, 2021. Santa Clara, CA, USA. IEEE 2021, 01–38 (2021). https://doi.org/10.1109/irds54852.2021.00010
- S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x
- M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era. 2011 International Electron Devices Meeting., 1.1.1–1.1.6. IEEE (2012). https://doi.org/10.1109/IEDM.2011.6131469
- W. Haensch, E.J. Nowak, R.H. Dennard, P.M. Solomon, A. Bryant et al., Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 50(4.5), 339–361 (2006). https://doi.org/10.1147/rd.504.0339
- T. Kim, C.H. Choi, J.S. Hur, D. Ha, B.J. Kuh et al., Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv. Mater. 35(43), e2204663 (2023). https://doi.org/10.1002/adma.202204663
- A.R. Choi, D.H. Lim, S.-Y. Shin, H.J. Kang, D. Kim et al., Review of material properties of oxide semiconductor thin films grown by atomic layer deposition for next-generation 3D dynamic random-access memory devices. Chem. Mater. 36(5), 2194–2219 (2024). https://doi.org/10.1021/acs.chemmater.3c02223
- E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
- H.-M. Kim, D.-G. Kim, Y.-S. Kim, M. Kim, J.-S. Park, Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook. Int. J. Extreme Manuf. 5(1), 012006 (2023). https://doi.org/10.1088/2631-7990/acb46d
- M. Si, Z. Lin, Z. Chen, P.D. Ye, High-performance atomic-layer-deposited indium oxide 3-D transistors and integrated circuits for monolithic 3-D integration. IEEE Trans. Electron Devices 68(12), 6605–6609 (2021). https://doi.org/10.1109/ted.2021.3106282
- Y. Sun, Y. Xu, Z. Zheng, Y. Wang, Y. Kang et al., BEOL three-dimensional stackable oxide semiconductor CMOS inverter with a high voltage gain of 233 at cryogenic temperatures. Nano Lett. 25(31), 11757–11761 (2025). https://doi.org/10.1021/acs.nanolett.4c04701
- Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors toward vertical logic and memory. IEEE Trans. Electron Devices 71(12), 7984–7991 (2024). https://doi.org/10.1109/ted.2024.3495632
- S. Fujii, T.F. Lu, K. Ikeda, S.Y. Chang, K. Sakamoto et al., Oxide-semiconductor channel transistor DRAM (OCTRAM) with 4F2 architecture. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873368
- J.S. Hur, S. Lee, J. Moon, H.-G. Jung, J. Jeon et al., Oxide and 2D TMD semiconductors for 3D DRAM cell transistors. Nanoscale Horiz. 9(6), 934–945 (2024). https://doi.org/10.1039/d4nh00057a
- A. Belmonte, G.S. Kar, Disrupting the DRAM roadmap with capacitor-less IGZO-DRAM technology. Nat. Rev. Electr. Eng. 2(4), 220–221 (2025). https://doi.org/10.1038/s44287-025-00162-w
- K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano et al., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300(5623), 1269–1272 (2003). https://doi.org/10.1126/science.1083212
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
- S.K. Park, C.-S. Hwang, J.-I. Lee, S.M. Chung, Y.S. Yang et al., 4.3: Transparent ZnO thin film transistor array for the application of transparent AM-OLED display. SID Symp. Dig. Tech. Pap. 37(1), 25–28 (2006). https://doi.org/10.1889/1.2433472
- J.K. Jeong, J.H. Jeong, J.H. Choi, J.S. Im, S.H. Kim et al., 12.1-Inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array, SID Symposium Digest of Technical Papers 39, 1 (2012). https://doi.org/10.1889/1.3069591
- D.-U. Jin, T.-W. Kim, H.-W. Koo, D. Stryakhilev, H.-S. Kim et al., Highly robust flexible AMOLED display on plastic substrate with new structure. SID Symp. Dig. Tech. Pap. 41(1), 703–705 (2010). https://doi.org/10.1889/1.3500565
- C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee et al., 21.2: 55-inch FHD OLED TV employing new tandem WOLEDs. SID Symp. Dig. Tech. Pap. 43(1), 279–281 (2012). https://doi.org/10.1002/j.2168-0159.2012.tb05768.x
- Y. Jimbo, T. Aoyama, N. Ohno, S. Eguchi, S. Kawashima et al., 25.1: Tri-fold flexible AMOLED with high barrier passivation layers. SID Symp. Dig. Tech. Pap. 45(1), 322–325 (2014). https://doi.org/10.1002/j.2168-0159.2014.tb00087.x
- T. Matsuo, Y. Kanzaki, H. Matsukizono, A. Oda, S. Kaneko et al., CAAC-IGZO Technology. SID Symposium Digest of Technical Papers 47, 1 (2016). https://doi.org/10.1002/SDTP.10904
- T.-K. Chang, C.-W. Lin, S. Chang, LTPO TFT technology for AMOLEDs. SID Symp. Dig. Tech. Pap. 50(1), 545–548 (2019). https://doi.org/10.1002/sdtp.12978
- Nachiket Mhatre, Why iPhone 13 LTPO display tech is game-changing. (NewsBytes, 2021), https://www.newsbytesapp.com/news/science/why-iphone-13-ltpo-display-tech-is-game-changing/story
- A. Hachiya, M. Aman, H.-Y. Chiu, T. Shinohara, W.Y. Lin et al., 46–1: 1218 ppi quest 3 display by hybrid backplane with highly reliable IGZO TFTs. SID Symp. Dig. Tech. Pap. 55(1), 615–618 (2024). https://doi.org/10.1002/sdtp.17599
- M.-J. Lee, S.I. Kim, C.B. Lee, H. Yin, S.-E. Ahn et al., Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory. Adv. Funct. Mater. 19(10), 1587–1593 (2009). https://doi.org/10.1002/adfm.200801032
- H. Sunamura, K. Kaneko, N. Furutake, S. Saito, M. Narihiro et al., High on/off-ratio P-type oxide-based transistors integrated onto Cu-interconnects for on-chip high/low voltage-bridging BEOL-CMOS I/Os. 2012 International Electron Devices Meeting. December 10–13, 2012. San Francisco, CA, USA. IEEE, (2012). pp. 18.8.1–18.8.3. https://doi.org/10.1109/iedm.2012.6479070
- Y. Kobayashi, D. Matsubayashi, S. Nagatsuka, Y. Yakubo, T. Atsumi et al., Scaling to 50-nm C-axis aligned crystalline In-Ga-Zn oxide FET with surrounded channel structure and its application for less-than-5-nsec writing speed memory. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers. June 9–12, 2014. Honolulu, HI, USA. IEEE, (2014). pp. 1–2. https://doi.org/10.1109/vlsit.2014.6894421
- D. Matsubayashi, Y. Asami, Y. Okazaki, M. Kurata, S. Sasagawa et al., 20-nm-Node trench-gate-self-aligned crystalline In-Ga-Zn-Oxide FET with high frequency and low off-state current. 2015 IEEE International Electron Devices Meeting (IEDM). December 7–9, 2015. Washington, DC, USA. IEEE, (2015). pp. 6.5.1–6.5.4. https://doi.org/10.1109/iedm.2015.7409641
- M. Oota, Y. Ando, K. Tsuda, T. Koshida, S. Oshita et al., 3D-stacked CAAC-In-Ga-Zn oxide FETs with gate length of 72nm. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). pp. 3.2.1–3.2.4. https://doi.org/10.1109/iedm19573.2019.8993506
- A. Belmonte, H. Oh, N. Rassoul, G.L. Donadio, J. Mitard et al., Capacitor-less, Long-Retention (>400s) DRAM Cell Paving the Way towards Low-Power and High-Density Monolithic 3D DRAM, 2020 IEEE International Electron Devices Meeting (IEDM) (2020). https://doi.org/10.1109/IEDM13553.2020.9371900
- X. Duan, K. Huang, J. Feng, J. Niu, H. Qin et al., Novel vertical channel-all-around(CAA) IGZO FETs for 2T0C DRAM with high density beyond 4F2 by monolithic stacking, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). https://doi.org/10.1109/IEDM19574.2021.9720682
- W. Kim, J. Kim, D. Ko, J.-H. Cha, G. Park et al., Demonstration of crystalline IGZO transistor with high thermal stability for memory applications. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185258
- D. Ha, Y. Lee, S. Yoo, W. Lee, M.H. Cho et al., Exploring innovative IGZO-channel based DRAM cell architectures and key technologies for sub-10nm node. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/imw59701.2024.10536968
- S. Yoo, D. Kim, D.-H. Choe, H.J. Lee, Y. Lee et al., Highly enhanced memory window of 17.8V in ferroelectric FET with IGZO channel via introduction of intermediate oxygen-deficient channel and gate interlayer. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631534
- Z. Zhang, Z. Lin, A. Charnas, H. Dou, Z. Shang et al., Reliability of atomic-layer-deposited gate-all-around In2O3 nano-ribbon transistors with ultra-high drain currents. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 30.3.1–30.3.4. https://doi.org/10.1109/iedm45625.2022.10019494
- P.-Y. Liao, D. Zheng, S. Alajlouni, Z. Zhang, M. Si et al., Transient thermal and electrical co-optimization of BEOL top-gated ALD In2O3 FETs toward monolithic 3-D integration. IEEE Trans. Electron Devices 70(4), 2052–2058 (2023). https://doi.org/10.1109/ted.2023.3235313
- P.-Y. Liao, S. Alajlouni, M. Si, Z. Zhang, Z. Lin et al., Thermal studies of BEOL-compatible top-gated atomically thin ALD In2O3 FETs. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 322–323. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830279
- W. Tang, Z. Wang, Z. Lin, L. Feng, Z. Liu et al., Monolithic 3D integration of vertically stacked CMOS devices and circuits with high-mobility atomic-layer-deposited In2O3n-FET and polycrystalline Si p-FET: achieving large noise margin and high voltage gain of 134 V/V. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 483–486. https://doi.org/10.1109/iedm45625.2022.10019410
- C. Niu, Z. Lin, Z. Zhang, P. Tan, M. Si et al., Record-low metal to semiconductor contact resistance in atomic-layer-deposited In2O3 TFTs reaching the quantum limit. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413708
- J.-Y. Lin, Z. Zhang, S. Alajlouni, P.-Y. Liao, Z. Lin et al., First determination of thermal resistance and thermal capacitance of atomic-layer-deposited In2O3 transistors. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413835
- Z. Zhang, Z. Lin, C. Niu, M. Si, M.A. Alam et al., Ultrahigh bias stability of ALD In2O3 FETs enabled by high temperature O2 annealing. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185292
- J.-Y. Lin, C. Niu, Z. Lin, T. Kim, B. Park et al., Quantum confinement controlled positive to negative Schottky barrier conversion in ultrathin In2O3 transistor contacts. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873514
- Z. Lin, C. Niu, H. Jang, T. Kim, Y. Zhang et al., Enhancement of In2O3 field-effect mobility up to 152 cm2.V–1·s–1Using HZO-based higher-k linear dielectric. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631497
- D. Zheng, A. Charnas, J. Anderson, H. Dou, Z. Hu et al., First demonstration of BEOL-compatible ultrathin AtomicLayer-deposited InZnO transistors with GHz operation and record high bias-stress stability. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 4.3.1–4.3.4. https://doi.org/10.1109/iedm45625.2022.10019452
- Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, W.-L. Li, Y.-C. Lu et al., Aggressively scaled atomic layer deposited amorphous InZnOx thin film transistor exhibiting prominent short channel characteristics (SS= 69 mV/dec.; dibl = 27.8 mV/V) and high Gm(802 μs/μm at VDS = 2V). 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185343
- J. Zhang, Z. Zhang, H. Dou, Z. Lin, K. Xu et al., Fluorine anion-doped ultra-thin InGaO transistors overcoming mobility-stability trade-off. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413810
- K. Hikake, Z. Li, J. Hao, C. Pandy, T. Saraya et al., A nanosheet oxide semiconductor FET using ALD InGaOx channel and InSnOx electrode with normally-off operation, high mobility and reliability for 3D integrated devices. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185234
- K.A. Aabrar, H. Park, S.G. Kirtania, E. Sarkar, M.A. Al Mamun et al., On the reliability of high-performance dual gate (DG) W-doped In2O3 FET. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631312
- F.F. Athena, E. Ambrosi, K. Jana, C.H. Wu, J. Hartanto et al., First demonstration of an N-P oxide semiconductor complementary gain cell memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873499
- S. Datta, E. Sarkar, K. Aabrar, S. Deng, J. Shin et al., Amorphous oxide semiconductors for monolithic 3D integrated circuits. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024).: 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631324
- Q. Lin, N. Safron, D. Zhong, G. Arutchelvan, C. Gilardi et al., Enhancement-mode atomic layer deposited W-doped In2O3 transistor at 55 nm channel length by oxide capping layer with improved stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873594
- J. Kwak, J. Shin, S. Deng, G. Jeong, J. Sharda et al., Bias temperature instability analysis of oxide power transistors for BEOL on-chip voltage converter in thermally-constrained H3D systems. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873303
- E. Sarkar, C. Zhang, D. Chakraborty, F.G. Waqar, S. Kirtania et al., First demonstration of W-doped In2O3 gate-all-around (GAA) nanosheet FET with improved performance and record threshold voltage stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873456
- S. Liu, K. Jana, K. Toprasertpong, J. Chen, Z. Liang et al., Gain cell memory on logic platform–device guidelines for oxide semiconductor transistor materials development. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413726
- Q. Jiang, K. Jana, K. Toprasertpong, S. Liu, H.S. Philip Wong, Positive bias stress measurement guideline and band analysis for evaluating instability of oxide semiconductor transistors. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631369
- R. An, Y. Li, J. Tang, B. Gao, Y. Du et al., A hybrid computing-In-memory architecture by monolithic 3D integration of BEOL CNT/IGZO-based CFET logic and analog RRAM. 2022 International Electron Devices Meeting (IEDM)., 18.1.1–18.1.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019473
- M. Shi, Y. Su, J. Tang, Y. Li, Y. Du et al., Counteractive coupling IGZO/CNT hybrid 2T0C DRAM accelerating RRAM-based computing-In-memory via monolithic 3D integration for edge AI. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413876
- J. Zhang, Z. Zhang, Z. Lin, K. Xu, H. Dou et al., First demonstration of BEOL-compatible atomic-layer-deposited InGaZnO TFTs with 1.5 nm channel thickness and 60 nm channel length achieving on/off ratio exceeding 1011, SS of 68 mV/dec, normal-off operation and high positive gate bias stability. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185312
- Z. Liu, Y. Dul, R. Liang, Z. Zhang, L. Pan et al., A dual-gate vertical channel IGZO transistor for BEOL stackable 3D parallel integration for memory and computing applications. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631472
- W. Zhao, W. Cui, L. Kang, S. Lu, W. Yuan et al., High-performance vertical gate-all-around oxide semiconductor transistors with 6 nm ALD IGZO channel and scaled contact CD down to 28 nm. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873430
- W. Zhao, S. Zhu, Q. Li, Q. Hu, H. Liu et al., First Demonstration of Double-Gate IGZO Transistors with Ideal Subthreshold Swing of 60 mV/dec at Room Temperature and 76 mV/dec at 380 K Over 5 Decades and gm Exceeding 1 mS/µm with Contact Length Scaling. 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10873547
- H. Inoue, T. Hirose, T. Mizuguchi, Y. Komura, T. Saito et al., Heterogeneous oxide semiconductor FETs comprising planar FET and vertical channel FETs monolithically stacked on Si CMOS, enabling 1-mbit 3D DRAM. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/imw59701.2024.10536958
- S. Miyata, K. Furutani, Y. Komura, Y. Ando, S. Saito et al., Vertical-channel crystalline In2O3FET with a pulled-up gate, monolithically stacked on Si CMOS, achieving 112.2 µA/µm on-state current. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873545
- K. Huang, X. Duan, J. Feng, Y. Sun, C. Lu et al., Vertical Channel-All-Around (caa) igzo fet under 50 nm cd with High Read Current of 32.8 μA/μm (Vth + 1 v), Well-performed Thermal Stability up to 120 ℃ for Low Latency, High-density 2t0c 3d dram Application. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 296–297. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830271
- C. Chen, X. Duan, G. Yang, C. Lu, D. Geng et al., Inter-layer dielectric engineering for monolithic stacking 4F2–2 T0C DRAM with channel-all-around (CAA) IGZO FET to achieve good reliability (>104 s bias stress, >1012 cycles endurance). 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 26.5.1–26.5.4. https://doi.org/10.1109/iedm45625.2022.10019502
- Y. Su, T. Liu, J. Tang, Y. Li, R. An et al., Complementary oxide semiconductor-based 2T0C DRAM macro with CFET peripherals using TeOx-PFET/IGZO-NFET for 3D memory integration. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873505
- C. Chen, J. Xiang, X. Duan, C. Lu, J. Niu et al., First demonstration of stacked 2T0C-DRAM bit-cell constructed by two-layers of vertical channel-all-around IGZO FETs realizing 4F2 area cost. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413790
- L. Zheng, Z. Wang, Z. Lin, M. Si, First Demonstration on the Transient Writing Characteristics of Multi-bit ald igzo 2t0c dram by Fast i-v Measurement. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873579
- M. Liu, Z. Li, W. Lu, K. Chen, J. Niu et al., First demonstration of monolithic three-dimensional integration of ultra-high density hybrid IGZO/Si SRAM and IGZO 2T0C DRAM achieving record-low latency (5000s). 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631551
- K. Chen, Z. Zhu, W. Lu, M. Liu, F. Liao et al., Improved multi-bit statistics of novel dual-gate IGZO 2T0C DRAM with in-cell VTH compensation and ΔVSN/ΔVDATA boosting technique. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413770
- G. Yan, Y. Luo, J. Wang, Z. Song, C. Niu et al., First DEMONSTRATION OF TRUE 4-bit MEMORY WITH RECORD HIGH MULTIBIT RETENTION >103s and READ WINDOW >105 by HYDROGEN SELF-ADAPTIVE-DOPING for IGZO DRAM Arrays, 2023 International Electron Devices Meeting (IEDM) (2023). https://doi.org/10.1109/IEDM45741.2023.10413762
- W. Tang, C. Chen, J. Liu, C. Zhang, C. Gu et al., 30 Mb/mm2/layer 3D eDRAM computing-in-memory with embedded beol peripherals and local layer-wise calibration based on first-demonstrated vertically-stacked CAA-IGZO 4F2 2T0C cell. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413756
- F.-M. Lee, P.-H. Tseng, Y.-Y. Lin, Y.-H. Lin, W.-L. Weng et al., Bit-cost-scalable 3D DRAM architecture and unit cell first demonstrated with integrated gate-around and channel-around IGZO FETs. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631386
- Q. Hu, Q. Li, S. Zhu, C. Gu, S. Liu et al., Optimized IGZO FETs for Capacitorless DRAM with Retention of 10 ks at RT and 7 ks at 85 ℃ at Zero Vhold with Sub-10 ns Speed and 3-bit Operation. 2022 International Electron Devices Meeting (IEDM)., 26.6.1–26.6.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019435
- W. Lu, Z. Zhu, K. Chen, M. Liu, B.M. Kang et al., First demonstration of dual-gate IGZO 2T0C DRAM with novel read operation, one bit line in single cell, ION=1500 μA/μm@VDS=1V and retention time>300s, 2022 International Electron Devices Meeting (IEDM) (2022). https://doi.org/10.1109/IEDM45625.2022.10019488
- Z. Lin, M. Si, P.D. Ye, Ultra-fast operation of BEOL-compatible atomic-layer-deposited In2O3 Fe-FETs: achieving memory performance enhancement with memory window of 2.5 V and high endurance > 109 cycles without VT drift penalty. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830156
- Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors with ultrathin In2O3 as channel and thick In2O3 as metal gate towards vertical logic and memory. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631533
- Y. Shao, J.C.C. Huang, E.R. Borujeny, T.E. Espedal, D.A. Antoniadis et al., Highly-scaled BEOL E-mode transistor and discrete-domain ferroelectric memory platform enabled by PEALD In2O3. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873392
- B. Ku, J.-M. Sim, J.S. Hur, J.K. Jeong, Y.-H. Song et al., A novel 3D gate-all-around vertical FeFET with back-gate structure for disturbance-less program operation. 2024 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2024). https://doi.org/10.1109/IMW59701.2024.10536939
- S.G. Kirtania, O. Phadke, E. Sarker, K.A. Aabrar, D. Chakraborty et al., Amorphous indium oxide channel FeFETs with write voltage of 0.9V and endurance >1012 for refresh-free 1T-1FeFET embedded memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873370
- Z. Chen, H.C. Kim, W. Zheng, R. Izmailov, B. Truijen et al., novel design strategy for high-endurance (>1010) and fast-erase oxide-semiconductor channel FeFET, 2024 IEEE International Electron Devices Meeting (IEDM) (2024). https://doi.org/10.1109/IEDM50854.2024.10873449
- Z. Chen, N. Ronchi, A. Walke, K. Banerjee, M.I. Popovici et al., Improved MW of IGZO-channel FeFET by reading scheme optimization and interfacial engineering. 2023 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2023). https://doi.org/10.1109/IMW56887.2023.10145930
- M. Zeng, Q. Hu, Q. Li, H. Liu, S. Yan et al., First demonstration of annealing-free top gate La: HZO-IGZO FeFET with record memory window and endurance. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413682
- P. Xu, P. Jiang, Y. Yang, X. Peng, W. Wei et al., A fully BEOL-compatible (300℃ annealing) IGZO FeFET with ultra-high memory window (10V) and prominent endurance (109). 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10873310
- C.-K. Chen, Z. Fang, S. Hooda, M. Lal, U. Chand et al., First demonstration of ultra-low dit top-gated ferroelectric oxide-semiconductor memtransistor with record performance by channel defect self-compensation effect for BEOL-compatible non-volatile logic switch. 2022 International Electron Devices Meeting (IEDM)., 6.1.1–6.1.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019440
- S.R. Sarangi, Next-Gen Computer Architecture: Till the End of Silicon, 2.0 (White Falcon Publishing, 2023).
- B. Jacob, D. Wang, S. Ng, Memory Systems: Cache, DRAM, Disk (Morgan Kaufmann, 2010).
- A. Belmonte, H. Oh, S. Subhechha, N. Rassoul, H. Hody et al., Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating > 103s retention, >1011 cycles endurance and Lg scalability down to 14nm, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). https://doi.org/10.1109/IEDM19574.2021.9720596
- D. Lehninger, M. Ellinger, T. Ali, S. Li, K. Mertens et al., A fully integrated ferroelectric thin-film-transistor–influence of device scaling on threshold voltage compensation in displays. Adv. Electron. Mater. 7(6), 2100082 (2021). https://doi.org/10.1002/aelm.202100082
- E. Yu, G. Kumar K, U. Saxena, K. Roy, Ferroelectric capacitors and field-effect transistors as in-memory computing elements for machine learning workloads. Sci. Rep. 14, 9426 (2024). https://doi.org/10.1038/s41598-024-59298-8
- Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, Y. Chen, K.-L. Chen et al., First demonstration of highly scaled atomic layer deposited ultrathin InSnZnO channel thin film transistor exhibiting superior electrical characteristics. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413671
- B. Tang, Z. Fang, R. Wan, S. Hooda, J.F. Leong et al., 1T1R and 2T0C1R IGZO-MoS2 all-BEOL 3D memory cells. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873575
- U. Chand, M.M. Sabry Aly, M. Lal, C. Chun-Kuei, S. Hooda et al., Sub-10nm ultra-thin ZnO channel FET with record-high 561 µA/µm ION at VDS 1V, high µ-84 Cm2/V-s and1T-1RRAM memory cell demonstration memory implications for energy-efficient deep-learning computing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 326–327. IEEE (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830250
- Y.-J. Cho, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of channel thickness on device scaling in vertical InGaZnO channel charge-trap memory transistors with ALD Al2O3 tunneling layer. Mater. Sci. Semicond. Process. 178, 108476 (2024). https://doi.org/10.1016/j.mssp.2024.108476
- H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of strategic approaches for improving the device performance of mesa-shaped nanoscale vertical-channel thin-film transistors using atomic-layer deposited In–Ga–Zn–O channel layers. Electron. Mater. Lett. 18(3), 294–303 (2022). https://doi.org/10.1007/s13391-022-00336-w
- Y.J. Baek, I.H. Kang, S.H. Hwang, Y.L. Han, M.S. Kang et al., Vertical oxide thin-film transistor with interfacial oxidation. Sci. Rep. 12, 3094 (2022). https://doi.org/10.1038/s41598-022-07052-3
- C.-E. Oh, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Impact of Al2O3 spacers on the improvement in short-channel effects for the mesa-shaped vertical-channel In-Ga-Zn-O thin-film transistors with a channel length below 100 nm. Mater. Sci. Semicond. Process. 171, 108025 (2024). https://doi.org/10.1016/j.mssp.2023.108025
- H.-I. Yeom, G. Moon, Y. Nam, J.-B. Ko, S.-H. Lee et al., 60–3: Distinguished paper: oxide vertical TFTs for the application to the ultra high resolution display. SID Symp. Dig. Tech. Pap. 47(1), 820–822 (2016). https://doi.org/10.1002/sdtp.10799
- Y.-M. Kim, H.-B. Kang, G.-H. Kim, C.-S. Hwang, S.-M. Yoon, Improvement in device performance of vertical thin-film transistors using atomic layer deposited IGZO channel and polyimide spacer. IEEE Electron Device Lett. 38(10), 1387–1389 (2017). https://doi.org/10.1109/LED.2017.2736000
- Y. Chen, X. Duan, X. Ma, P. Yuan, Z. Jiao et al., Implementation of sub-100 nm vertical channel-all-around (CAA) thin-film transistor using thermal atomic layer deposited IGZO channel. J. Semicond. 45(7), 072301 (2024). https://doi.org/10.1088/1674-4926/24010032
- H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Improvement in current drivability and stability in nanoscale vertical channel thin-film transistors via band-gap engineering in In–Ga–Zn–O bilayer channel configuration. Nanotechnology 34(15), 155301 (2023). https://doi.org/10.1088/1361-6528/acb3cc
- B. Sun, H. Huang, P. Wen, M. Xu, C. Peng et al., Research progress of vertical channel thin film transistor device. Sensors 23(14), 6623 (2023). https://doi.org/10.3390/s23146623
- H.-J. Ryoo, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Implementation of oxide vertical channel TFTs with sub-150 nm channel length using atomic-layer deposited IGZO active and HfO2 gate insulator. Nanotechnology 32(25), 255201 (2021). https://doi.org/10.1088/1361-6528/abcbc4
- H. Hun, H. Seol, H. Ho, M. Jae, L. Mo et al., Optimizing gate insulator conditions via interfacial oxidation in vertical structure TFTs. 2024 International Conference on Electronics, Information, and Communication (ICEIC)., 1–4. IEEE (2024). https://doi.org/10.1109/ICEIC61013.2024.10457204
- Y. Zhao, L. Xu, C. Chen, C. Zhang, Z. Bai et al., Deep insights into interlayer in TiN/IGZO contact and its impact on contact resistance of CAA FETs: first-principles calculation, experimental study and modeling. 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10872994
- C. Chen, C. Gu, Y. Zhao, X. Duan, C. Lu et al., Vertical channel-all-around (CAA) IGZO FET with recessed source/drain structure to improve contact characteristics. IEEE Electron Device Lett. 46(7), 1127–1130 (2025). https://doi.org/10.1109/led.2025.3563839
- X. Sun, W. Yu, F. Yang, M. Jin, C. Liu et al., Asymmetric contact resistances in IGZO vertical channel-all-around FETs. IEEE Electron Device Lett. 46(11), 2070–2073 (2025). https://doi.org/10.1109/led.2025.3604792
- Y. Fan, R. An, J. Tang, Y. Li, T. Liu et al., Monolithic 3D integration as a pathway to energy-efficient computing and beyond: from materials and devices to architectures and chips. Curr. Opin. Solid State Mater. Sci. 33, 101199 (2024). https://doi.org/10.1016/j.cossms.2024.101199
- A. Mallik, A. Vandooren, L. Witters, A. Walke, J. Franco et al., The impact of sequential-3D integration on semiconductor scaling roadmap. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017. San Francisco, CA, USA. IEEE, (2017). pp. 32.1.1–31.1.4. https://doi.org/10.1109/iedm.2017.8268483
- S. Katz, Y. Grauer, E. Megged, Optical overlay metrology trends in advanced nodes. Metrology, Inspection, and Process Control XXXVI. April 24-May 30, 2022. San Jose, USA. SPIE, (2022). pp. 101. https://doi.org/10.1117/12.2605863
- K. Dhananjay, P. Shukla, V.F. Pavlidis, A. Coskun, E. Salman, Monolithic 3D integrated circuits: recent trends and future prospects. IEEE Trans. Circuits Syst. II Express Briefs 68(3), 837–843 (2021). https://doi.org/10.1109/TCSII.2021.3051250
- M. Xie, Y. Jia, C. Nie, Z. Liu, A. Tang et al., Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory. Nat. Commun. 14(1), 5952 (2023). https://doi.org/10.1038/s41467-023-41736-2
- Mehul Naik, Challenges to Interconnect Scaling at 3nm and Beyond. (Applied Materials, 2021), https://www.appliedmaterials.com/us/en/blog/blog-posts/challenges-to-interconnect-scaling-at-3nm-and-beyond.html
- Z. Zhao, S. Clima, D. Garbin, R. Degraeve, G. Pourtois et al., Chalcogenide ovonic threshold switching selector. Nano-Micro. Lett. 16(1), 81 (2024). https://doi.org/10.1007/s40820-023-01289-x
- IEEE International Roadmap for Devices and Systems, “Metrology.” Institute of Electrical and Electronics Engineers Inc. (2023). https://doi.org/10.60627/FF6X-D213
- T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2(1), 15–22 (2010). https://doi.org/10.1038/asiamat.2010.5
- H. Hosono, Transparent Amorphous Oxide Semiconductors for Display Applications, in Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory (wiley, 2022), pp. 3–20. https://doi.org/10.1002/9781119715641.ch1a
- K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. Phys. Status Solidi A 216(5), 1800372 (2019). https://doi.org/10.1002/pssa.201800372
- T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
- J. Kyeong, The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26(3), 034008 (2011). https://doi.org/10.1088/0268-1242/26/3/034008
- K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano et al., Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45(5S), 4303 (2006). https://doi.org/10.1143/jjap.45.4303
- K. Hikake, X. Huang, S.-H. Kim, K. Sakai, Z. Li et al., Scaling potential of nanosheet oxide semiconductor FETs for monolithic 3D integration–ALD material engineering, high-field transport, statistical variability. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631493
- W. He, ALD: atomic layer deposition–precise and conformal coating for better performance. In: Handbook of Manufacturing Engineering and Technology, pp. 2959–2996. Springer London (2014). https://doi.org/10.1007/978-1-4471-4670-4_80
- Y.-S. Kim, H.-J. Oh, J. Kim, J.H. Lim, J.-S. Park, Approaches for 3D integration using plasma-enhanced atomic-layer-deposited atomically-ordered InGaZnO transistors with ultra-high mobility. Small Methods 7(10), 2300549 (2023). https://doi.org/10.1002/smtd.202300549
- S.-H. Ryu, H.-M. Kim, D.-G. Kim, J.-S. Park, Highly C-axis aligned ALD-InGaO channel improving mobility and thermal stability for next-generation 3D memory devices. Adv. Electron. Mater. 11(3), 2400377 (2025). https://doi.org/10.1002/aelm.202400377
- R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17(5), 236–246 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
- M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas et al., Why In2O3 can make 0.7 nm atomic layer thin transistors. Nano Lett. 21(1), 500–506 (2021). https://doi.org/10.1021/acs.nanolett.0c03967
- D.-G. Kim, M. Kim, D.-H. Lee, S. Lee, J. Kho et al., Facile routes to enhance doping efficiency using nanocomposite structures for high-mobility and stable PEALD-ITGO TFTs. Appl. Surf. Sci. 665, 160370 (2024). https://doi.org/10.1016/j.apsusc.2024.160370
- Y.-S. Kim, H. Hong, T. Hong, S.-H. Choi, K.-B. Chung et al., Attaining quantitatively fewer defects in close-packed InGaZnO synthesized using atomic layer deposition. Appl. Surf. Sci. 664, 160242 (2024). https://doi.org/10.1016/j.apsusc.2024.160242
- M.H. Cho, H. Seol, A. Song, S. Choi, Y. Song et al., Comparative study on performance of IGZO transistors with sputtered and atomic layer deposited channel layer. IEEE Trans. Electron Dev. 66(4), 1783–1788 (2019). https://doi.org/10.1109/ted.2019.2899586
- J. Sheng, E.J. Park, B. Shong, J.-S. Park, Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications. ACS Appl. Mater. Interfaces 9(28), 23934–23940 (2017). https://doi.org/10.1021/acsami.7b04985
- S. Lee, M. Kim, G. Mun, J. Ko, H.-I. Yeom et al., Effects of Al precursors on the characteristics of indium–aluminum oxide semiconductor grown by plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 13(33), 40134–40144 (2021). https://doi.org/10.1021/acsami.1c11304
- G.M. Jeong, H.L. Yang, A. Yoon, Y.-S. Kim, S. Lee et al., Unveiling growth mechanisms of PEALD In2O3 thin films with amide-based versus alkyl-based novel indium precursors. J. Mater. Chem. C 12(28), 10575–10584 (2024). https://doi.org/10.1039/d4tc00868e
- I.-K. Oh, B.-E. Park, S. Seo, B.C. Yeo, J. Tanskanen et al., Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited HfO2 films obtained from metal halide and amide precursors. J. Mater. Chem. C 6(27), 7367–7376 (2018). https://doi.org/10.1039/c8tc01476k
- L. Huang, B. Han, M. Fan, H. Cheng, Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO2 thin films. RSC Adv. 7(37), 22672–22678 (2017). https://doi.org/10.1039/c7ra02301d
- J.A. Libera, J.N. Hryn, J.W. Elam, Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water. Chem. Mater. 23(8), 2150–2158 (2011). https://doi.org/10.1021/cm103637t
- A.U. Mane, A.J. Allen, R.K. Kanjolia, J.W. Elam, Indium oxide thin films by atomic layer deposition using trimethylindium and ozone. J. Phys. Chem. C 120(18), 9874–9883 (2016). https://doi.org/10.1021/acs.jpcc.6b02657
- W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. J. Alloys Compd. 649, 216–221 (2015). https://doi.org/10.1016/j.jallcom.2015.07.150
- J.W. Elam, J.A. Libera, J.N. Hryn, Indium oxide ALD using cyclopentadienyl indium and mixtures of H2O and O2. ECS Trans. 41(2), 147–155 (2011). https://doi.org/10.1149/1.3633663
- J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films. ChemInform 37(42), 200642207 (2006). https://doi.org/10.1002/chin.200642207
- R.K. Ramachandran, J. Dendooven, H. Poelman, C. Detavernier, Low temperature atomic layer deposition of crystalline In2O3 films. J. Phys. Chem. C 119(21), 11786–11791 (2015). https://doi.org/10.1021/acs.jpcc.5b03255
- O. Nilsen, R. Balasundaraprabhu, E.V. Monakhov, N. Muthukumarasamy, H. Fjellvåg et al., Thin films of In2O3 by atomic layer deposition using In(acac)3. Thin Solid Films 517(23), 6320–6322 (2009). https://doi.org/10.1016/j.tsf.2009.02.059
- A. Edem, J. Ae, P. Keun, T.-M. Chung, K. Gyoun et al., Thermal atomic layer deposition of In2O3 thin films using dimethyl(N-ethoxy-2, 2-dimethylcarboxylicpropanamide)indium and H2O. Appl. Surf. Sci. 419, 758–763 (2017). https://doi.org/10.1016/j.apsusc.2017.05.066
- J. Sheng, H.-J. Lee, S. Oh, J.-S. Park, Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl. Mater. Interfaces 8(49), 33821–33828 (2016). https://doi.org/10.1021/acsami.6b11774
- W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant. Ceram. Int. 41(9), 10782–10787 (2015). https://doi.org/10.1016/j.ceramint.2015.05.015
- T. Hong, H.-J. Jeong, H.-M. Lee, S.-H. Choi, J.H. Lim et al., Significance of pairing In/Ga precursor structures on PEALD InGaOx thin-film transistor. ACS Appl. Mater. Interfaces 13(24), 28493–28502 (2021). https://doi.org/10.1021/acsami.1c06575
- J.-H. Lee, J. Sheng, H. An, T. Hong, H.Y. Kim et al., Metastable rhombohedral phase transition of semiconducting indium oxide controlled by thermal atomic layer deposition. Chem. Mater. 32(17), 7397–7403 (2020). https://doi.org/10.1021/acs.chemmater.0c02306
- S.-H. Choi, T. Hong, S.-H. Ryu, J.-S. Park, Plasma-enhanced atomic-layer-deposited indium oxide thin film using a DMION precursor within a wide process window. Ceram. Int. 48(19), 27807–27814 (2022). https://doi.org/10.1016/j.ceramint.2022.06.083
- S.-H. Ryu, T. Hong, S.-H. Choi, K. Yeom, D. Won Ryu et al., Tailoring indium oxide film characteristics through oxygen reactants in atomic layer deposition with highly reactive liquid precursor. Appl. Surf. Sci. 664, 160271 (2024). https://doi.org/10.1016/j.apsusc.2024.160271
- S.-H. Choi, H.-J. Jeong, T. Hong, Y.H. Na, C.K. Park et al., Plasma-enhanced atomic layer deposited indium oxide film using a novel dimethylbutylamino-trimethylindium precursor for thin film transistors. J. Vac. Sci. Technol. A 39(3), 032406 (2021). https://doi.org/10.1116/6.0000842
- D.J. Comstock, J.W. Elam, Atomic layer deposition of Ga2O3 films using trimethylgallium and ozone. Chem. Mater. 24(21), 4011–4018 (2012). https://doi.org/10.1021/cm300712x
- H.-Y. Shih, F.-C. Chu, A. Das, C.-Y. Lee, M.-J. Chen et al., Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. Nanoscale Res. Lett. 11(1), 235 (2016). https://doi.org/10.1186/s11671-016-1448-z
- M. Nieminen, L. Niinistö, E. Rauhala, Growth of gallium oxide thin films from gallium acetylacetonate by atomic layer epitaxy. J. Mater. Chem. 6(1), 27–31 (1996). https://doi.org/10.1039/JM9960600027
- D.-W. Choi, K.-B. Chung, J.-S. Park, Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films 546, 31–34 (2013). https://doi.org/10.1016/j.tsf.2013.03.066
- R.K. Ramachandran, J. Dendooven, J. Botterman, S. Pulinthanathu Sree, D. Poelman et al., Plasma enhanced atomic layer deposition of Ga2O3 thin films. J. Mater. Chem. A 2(45), 19232–19238 (2014). https://doi.org/10.1039/c4ta05007j
- J. Dezelah, K. Niinistö, L. Arstila, C.H. Niinistö, Winter, Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor. Chem. Mater. 18(2), 471–475 (2006). https://doi.org/10.1021/cm0521424
- R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H.-W. Becker et al., Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans. 46(47), 16551–16561 (2017). https://doi.org/10.1039/C7DT03427J
- L. Aarik, H. Mändar, J. Kozlova, A. Tarre, J. Aarik, Atomic layer deposition of Ga2O3 from GaI3 and O3: growth of high-density phases. Cryst. Growth Des. 23(8), 5899–5911 (2023). https://doi.org/10.1021/acs.cgd.3c00502
- W.-J. Lee, S. Bera, Z. Wan, W. Dai, J.-S. Bae et al., Comparative study of the electrical characteristics of ALD-ZnO thin films using H2O and H2O2 as the oxidants. J. Am. Ceram. Soc. 102(10), 5881–5889 (2019). https://doi.org/10.1111/jace.16429
- K. Keun, H. Seong, P. Ko, Y. Jin, Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant. Thin Solid Films 478(1–2), 103–108 (2005). https://doi.org/10.1016/j.tsf.2004.10.015
- T. Muneshwar, G. Shoute, D. Barlage, K. Cadien, Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: effect of precursor decomposition. J. Vac. Sci. Technol. A 34(5), 050605 (2016). https://doi.org/10.1116/1.4961885
- S. Stefanovic, N. Gheshlaghi, D. Zanders, I. Kundrata, B. Zhao et al., Direct-patterning ZnO deposition by atomic-layer additive manufacturing using a safe and economical precursor. Small 19(36), 2301774 (2023). https://doi.org/10.1002/smll.202301774
- L. Johnston, J. Obenlüneschloß, M.F. Khan Niazi, M. Weber, C. Lausecker et al., Assessing the potential of non-pyrophoric Zn(DMP)2 for the fast deposition of ZnO functional coatings by spatial atomic layer deposition. RSC Appl. Interfaces 1(6), 1371–1381 (2024). https://doi.org/10.1039/D4LF00160E
- M.-J. Jung, D. Kim, H.C. Kim, S. Kim, Y. Kim et al., ZnO thin films with stable, tunable electrical and optical properties deposited by atomic layer deposition using Et2Zn: NEtMe2 precursor. Appl. Surf. Sci. 682, 161728 (2025). https://doi.org/10.1016/j.apsusc.2024.161728
- J. Heo, A.S. Hock, R.G. Gordon, Low temperature atomic layer deposition of tin oxide. Chem. Mater. 22(17), 4964–4973 (2010). https://doi.org/10.1021/cm1011108
- D.-W. Choi, J.-S. Park, Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant. Surf. Coat. Technol. 259, 238–243 (2014). https://doi.org/10.1016/j.surfcoat.2014.02.012
- J.-H. Han, D.-Y. Kim, S. Lee, H.L. Yang, B.H. Park et al., A study on the growth mechanism and gas diffusion barrier property of homogeneously mixed silicon–tin oxide by atomic layer deposition. Ceram. Int. 47(24), 34774–34782 (2021). https://doi.org/10.1016/j.ceramint.2021.09.016
- S.-H. Ryu, H.-M. Kim, K.-H. Lee, H.-J. Sung, J.-E. Yang et al., High-temperature stable amorphous Sn-rich InSnGaO thin films fabricated via atomic layer deposition for next-generation dynamic random-access memory applications. Nano Lett. 24(50), 16039–16046 (2024). https://doi.org/10.1021/acs.nanolett.4c04499
- D.-H. Lee, D.-G. Kim, M. Kim, S. Uhm, T. Kim et al., Developing subthreshold-swing limit of PEALD In–Sn–Ga–O transistor via atomic-scaled Sn control. ACS Appl. Electron. Mater. 4(11), 5608–5616 (2022). https://doi.org/10.1021/acsaelm.2c01222
- X. Du, S.M. George, Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuat. B Chem. 135(1), 152–160 (2008). https://doi.org/10.1016/j.snb.2008.08.015
- J.-H. Lee, M. Yoo, D. Kang, H.-M. Lee, W.-H. Choi et al., Selective SnOx atomic layer deposition driven by oxygen reactants. ACS Appl. Mater. Interfaces 10(39), 33335–33342 (2018). https://doi.org/10.1021/acsami.8b12251
- H.Y. Kim, J.H. Nam, S.M. George, J.-S. Park, B.K. Park et al., Phase-controlled SnO2 and SnO growth by atomic layer deposition using bis(N-ethoxy-2, 2-dimethyl propanamido)tin precursor. Ceram. Int. 45(4), 5124–5132 (2019). https://doi.org/10.1016/j.ceramint.2018.09.263
- M.-J. Choi, C.J. Cho, K.-C. Kim, J.J. Pyeon, H.-H. Park et al., SnO2 thin films grown by atomic layer deposition using a novel Sn precursor. Appl. Surf. Sci. 320, 188–194 (2014). https://doi.org/10.1016/j.apsusc.2014.09.054
- C. Gil, J. Kim, J. Won, P. Keun, T.-M. Chung et al., High field-effect mobility and on/off current ratio of p-type ALD SnO thin-film transistor. ACS Appl. Electron. Mater. 5(4), 1992–1999 (2023). https://doi.org/10.1021/acsaelm.2c01107
- I.-K. Oh, T.E. Sandoval, T.-L. Liu, N.E. Richey, S.F. Bent, Role of precursor choice on area-selective atomic layer deposition. Chem. Mater. 33(11), 3926–3935 (2021). https://doi.org/10.1021/acs.chemmater.0c04718
- H.Y. Lee, J.S. Hur, I. Cho, C.H. Choi, S.H. Yoon et al., Comparative study on indium precursors for plasma-enhanced atomic layer deposition of In2O3 and application to high-performance field-effect transistors. ACS Appl. Mater. Interfaces 15(44), 51399–51410 (2023). https://doi.org/10.1021/acsami.3c11796
- Y. Wu, S.E. Potts, P.M. Hermkens, H.C.M. Knoops, F. Roozeboom et al., Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor. Chem. Mater. 25(22), 4619–4622 (2013). https://doi.org/10.1021/cm402974j
- Z. Gao, P. Banerjee, Review : atomic layer deposition of doped ZnO films. J. Vac. Sci. Technol. A Vac. Surf. Films 37(5), 050802 (2019). https://doi.org/10.1116/1.5112777
- N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee et al., Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem. Mater. 22(16), 4769–4775 (2010). https://doi.org/10.1021/cm101227h
- O.V. Bilousov, A. Voznyi, B. Landeke-Wilsmark, M.M.S. Villamayor, T. Nyberg et al., Substrate effects on crystal phase in atomic layer deposition of tin monosulfide. Chem. Mater. 33(8), 2901–2912 (2021). https://doi.org/10.1021/acs.chemmater.1c00241
- P.C. Lemaire, M. King, G.N. Parsons, Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. J. Chem. Phys. 146(5), 052811 (2017). https://doi.org/10.1063/1.4967811
- J.S. Kim, Y. Jang, S. Kang, Y. Lee, K. Kim et al., Substrate-dependent growth behavior of atomic-layer-deposited zinc oxide and zinc tin oxide thin films for thin-film transistor applications. J. Phys. Chem. C 124(49), 26780–26792 (2020). https://doi.org/10.1021/acs.jpcc.0c07800
- S.H. Yoon, J.H. Cho, I. Cho, M.J. Kim, J.S. Hur et al., Tailoring subthreshold swing in A-IGZO thin-film transistors for amoled displays: impact of conversion mechanism on peald deposition sequences. Small Meth. 8(8), 2470043 (2024). https://doi.org/10.1002/smtd.202470043
- J. Lee, J.-M. Lee, H. Oh, C. Kim, J. Kim et al., Inherently area-selective atomic layer deposition of SiO2 thin films to confer oxide versus nitride selectivity. Adv. Funct. Mater. 31(33), 2102556 (2021). https://doi.org/10.1002/adfm.202102556
- L. Xu, L. He, L. Yang, Z. Zhang, S. Guo et al., Plasma treatment to tailor growth and photoelectric performance of plasma-enhanced atomic layer deposition SnOx infrared transparent conductive thin films. Surf. Coat. Technol. 403, 126414 (2020). https://doi.org/10.1016/j.surfcoat.2020.126414
- R. Krumpolec, D.C. Cameron, T. Homola, M. Černák, Surface chemistry and initial growth of Al2O3 on plasma modified PTFE studied by ALD. Surf. Interfaces 6, 223–228 (2017). https://doi.org/10.1016/j.surfin.2016.10.005
- H. Jung, W.-H. Kim, B.-E. Park, W.J. Woo, I.-K. Oh et al., Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y2O3 with ozone. ACS Appl. Mater. Interfaces 10(2), 2143–2150 (2018). https://doi.org/10.1021/acsami.7b14260
- J. Yang, A. Bahrami, X. Ding, S. Lehmann, N. Kruse et al., Characteristics of ALD-ZnO thin film transistor using H2O and H2O2 as oxygen sources. Adv. Mater. Interfaces 9(15), 2101953 (2022). https://doi.org/10.1002/admi.202101953
- S. Seo, T. Nam, H.-B.-R. Lee, H. Kim, B. Shong, Molecular oxidation of surface–CH3 during atomic layer deposition of Al2O3 with H2O, H2O2, and O3: a theoretical study. Appl. Surf. Sci. 457, 376–380 (2018). https://doi.org/10.1016/j.apsusc.2018.06.160
- D.R. Boris, V.D. Wheeler, N. Nepal, S.B. Qadri, S.G. Walton et al., The role of plasma in plasma-enhanced atomic layer deposition of crystalline films. J. Vac. Sci. Technol. A 38(4), 040801 (2020). https://doi.org/10.1116/6.0000145
- D.-G. Kim, H. Choi, Y.-S. Kim, D.-H. Lee, H.-J. Oh et al., Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability. ACS Appl. Mater. Interfaces 15(26), 31652–31663 (2023). https://doi.org/10.1021/acsami.3c05678
- A.R. Choi, S. Seo, S. Kim, D. Kim, S.-W. Ryu et al., Reaction mechanism and film properties of the atomic layer deposition of ZrO2 thin films with a heteroleptic CpZr(N(CH3)2)3 precursor. Appl. Surf. Sci. 624, 157104 (2023). https://doi.org/10.1016/j.apsusc.2023.157104
- H.C.M. Knoops, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Conformality of plasma-assisted ALD: physical processes and modeling. J. Electrochem. Soc. 157(12), G241 (2010). https://doi.org/10.1149/1.3491381
- K. Arts, M. Utriainen, R.L. Puurunen, W.M.M. Kessels, H.C.M. Knoops, Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO2, TiO2, Al2O3, and HfO2. J. Phys. Chem. C 123(44), 27030–27035 (2019). https://doi.org/10.1021/acs.jpcc.9b08176
- J. Dendooven, D. Deduytsche, J. Musschoot, R.L. Vanmeirhaeghe, C. Detavernier, Conformality of Al2O3 and AlN deposited by plasma-enhanced atomic layer deposition. J. Electrochem. Soc. 157(4), G111 (2010). https://doi.org/10.1149/1.3301664
- X. Meng, Y.-C. Byun, H.S. Kim, J.S. Lee, A.T. Lucero et al., Atomic layer deposition of silicon nitride thin films: a review of recent progress, challenges, and outlooks. Materials 9(12), 1007 (2016). https://doi.org/10.3390/ma9121007
- D.-G. Kim, W.-B. Lee, S. Lee, J. Koh, B. Kuh et al., Thermally activated defect engineering for highly stable and uniform ALD-amorphous IGZO TFTs with high-temperature compatibility. ACS Appl. Mater. Interfaces 15(30), 36550–36563 (2023). https://doi.org/10.1021/acsami.3c06517
- T. Hong, W.-H. Choi, S.-H. Choi, H. Lee, J.H. Seok et al., Plasma enhanced atomic layer deposited amorphous gallium oxide thin films using novel trimethyl [N-(2-methoxyethyl)-2-methylpropan-2-amine] gallium. Ceram. Int. 47(2), 1588–1593 (2021). https://doi.org/10.1016/j.ceramint.2020.08.272
- M.-Y. Li, Y.-Y. Chang, H.-C. Wu, C.-S. Huang, J.-C. Chen et al., Effect of process pressure on atomic layer deposition of Al2O3. J. Electrochem. Soc. 154(11), H967 (2007). https://doi.org/10.1149/1.2778861
- P. Poodt, A. Mameli, J. Schulpen, W.M.M.E. Kessels, F. Roozeboom, Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 35(2), 021502 (2017). https://doi.org/10.1116/1.4973350
- K.S. Yoo, C.-H. Lee, D.-G. Kim, S.-H. Choi, W.-B. Lee et al., High mobility and productivity of flexible In2O3 thin-film transistors on polyimide substrates via atmospheric pressure spatial atomic layer deposition. Appl. Surf. Sci. 646, 158950 (2024). https://doi.org/10.1016/j.apsusc.2023.158950
- C.-H. Lee, K.S. Yoo, D.-G. Kim, C.-K. Park, J.-S. Park, Compositionally engineered amorphous InZnO thin-film transistor with high mobility and stability via atmospheric pressure spatial atomic layer deposition. J. Ind. Eng. Chem. 140, 269–276 (2024). https://doi.org/10.1016/j.jiec.2024.05.046
- D. Kim, K.S. Yoo, C.-H. Lee, J.-M. Kim, D.-G. Kim et al., High-throughput and performance InZnAlO thin film transistor on polyimide substrate via atmospheric pressure spatial atomic layer deposition. J. Alloys Compd. 1023, 180031 (2025). https://doi.org/10.1016/j.jallcom.2025.180031
- C.-H. Lee, K.S. Yoo, D. Kim, J.-M. Kim, J.-S. Park, Advanced atmospheric-pressure spatial atomic layer deposition for OLED encapsulation: controlling growth dynamics for superior film performance. Chem. Eng. J. 503, 158424 (2025). https://doi.org/10.1016/j.cej.2024.158424
- M.B.M. Mousa, C.J. Oldham, G.N. Parsons, Atmospheric pressure atomic layer deposition of Al2O3 using trimethyl aluminum and ozone. Langmuir 30(13), 3741–3748 (2014). https://doi.org/10.1021/la500796r
- H.-M. Kim, W.-B. Lee, H. Koo, S.-Y. Kim, J.-S. Park, Controlled 2D growth approach via atomic layer deposition for improved stability and performance in flexible SnO thin-film transistors. J. Mater. Chem. C 12(23), 8390–8397 (2024). https://doi.org/10.1039/d4tc01169d
- J.C. Park, C.I. Choi, S.-G. Lee, S.J. Yoo, J.-H. Lee et al., Advanced atomic layer deposition: metal oxide thin film growth using the discrete feeding method. J. Mater. Chem. C 11(4), 1298–1303 (2023). https://doi.org/10.1039/d2tc03485a
- H. Won, J. Soo, K. Jeong, H. Sun, W.-H. Kim et al., Advanced atomic layer deposition: ultrathin and continuous metal thin film growth and work function control using the discrete feeding method. Nano Lett. 22(11), 4589–4595 (2022). https://doi.org/10.1021/acs.nanolett.2c00811
- H. Lin Yang, H.-M. Kim, S. Kamimura, A. Eizawa, T. Teramoto et al., Boosted growth rate using discrete reactant feeding method and novel precursor of indium oxide by atomic layer deposition. Appl. Surf. Sci. 654, 159508 (2024). https://doi.org/10.1016/j.apsusc.2024.159508
- J.A. Dean, N. Adolph, Lange, Lange’s Handbook of Chemistry (McGraw-Hill; [Distributed by] Knovel, 2001).
- E. Sarkar, C. Zhang, D. Chakraborty, S. Gopal Kirtania, K. Akif Aabrar et al., First demonstration of high-performance and extremely stable W-doped In₂O₃ gate-all-around (GAA) nanosheet FET. IEEE Trans. Electron Devices 72(5), 2662–2669 (2025). https://doi.org/10.1109/ted.2025.3535463
- T.-C. Chiang, Y.-C. Chang, C.-R. Huang, C.-H. Hsu, P.-T. Liu, First demonstration of BEOL-compatible ALD-deposited 2 nm-thick indium-tungsten-tin-oxide (IWTO) TFTs with superior short-channel electrical characteristics: achieving enhancement-mode VTH, ION/IOFF >1010, SS ~ 63.3 mV/dec, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075200
- X. Ding, J. Yang, J. Li, J. Zhang, Fully atomic layer deposition induced InAlO thin film transistors. Vacuum 227, 113455 (2024). https://doi.org/10.1016/j.vacuum.2024.113455
- S.-H. Choi, S.-H. Ryu, D.-G. Kim, J.-H. Kwag, C. Yeon et al., C-axis aligned 3 nm thick In2O3 crystal using new liquid DBADMIn precursor for highly scaled FET beyond the mobility–stability trade-off. Nano Lett. 24(4), 1324–1331 (2024). https://doi.org/10.1021/acs.nanolett.3c04312
- Y.-M. Kim, K.-S. Jeong, H.-J. Yun, S.-D. Yang, S.-Y. Lee et al., Investigation of zinc interstitial ions as the origin of anomalous stress-induced hump in amorphous indium gallium zinc oxide thin film transistors. Appl. Phys. Lett. 102(17), 173502 (2013). https://doi.org/10.1063/1.4803536
- A. Murat, A.U. Adler, T.O. Mason, J.E. Medvedeva, Carrier generation in multicomponent wide-bandgap oxides: InGaZnO4. J. Am. Chem. Soc. 135(15), 5685–5692 (2013). https://doi.org/10.1021/ja311955g
- S. Yamazaki, F. Isaka, T. Ohno, Y. Egi, S. Tezuka et al., High-performance single-crystalline In2O3 field effect transistor toward three-dimensional large-scale integration circuits. Commun. Mater. 5, 184 (2024). https://doi.org/10.1038/s43246-024-00625-x
- Y.-S. Kim, W.-B. Lee, H.-J. Oh, T. Hong, J.-S. Park, Remarkable stability improvement with a high-performance PEALD-IZO/IGZO top-gate thin-film transistor via modulating dual-channel effects. Adv. Mater. Interfaces 9(16), 2200501 (2022). https://doi.org/10.1002/admi.202200501
- X. Li, C. Gu, T. Yu, Y. Zhao, C. Chen et al., First demonstration of atomic-interlayer-tuning driven by first principles calculations and atomic layer deposition towards high thermal stable BEOL IGZO-FETs with SS=62mV/dec, PBTI < 7mV@ 3MV/cm and 353K, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075061
- D.-G. Kim, S.-H. Choi, W.-B. Lee, G.M. Jeong, J. Koh et al., Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated via two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. Small Struct. 5(2), 2300375 (2024). https://doi.org/10.1002/sstr.202300375
- L.-Y. Su, H.-Y. Lin, H.-K. Lin, S.-L. Wang, L.-H. Peng et al., Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. IEEE Electron Device Lett. 32(9), 1245–1247 (2011). https://doi.org/10.1109/LED.2011.2160931
- A. Chasin, J. Franco, K. Triantopoulos, H. Dekkers, N. Rassoul et al., Understanding and modelling the PBTI reliability of thin-film IGZO transistors. 2021 IEEE International Electron Devices Meeting (IEDM). December 11–16, 2021. San Francisco, CA, USA. IEEE, (2021). pp. 31.1.1–31.1.4. https://doi.org/10.1109/iedm19574.2021.9720666
- A. Chasin, J. Franco, S. Van Beek, H. Dekkers, A. Kruv et al., Unraveling BTI in IGZO devices: impact of device architecture, channel film deposition method and stoichiometry/phase, and device operating conditions. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873388
- J.H. Jeong, J.E. Oh, D. Kim, D. Ha, J.K. Jeong, Advancements and hurdles in contact engineering for miniaturized sub-micrometer oxide semiconductor devices. J. Mater. Chem. C 13(10), 4861–4875 (2025). https://doi.org/10.1039/D4TC04792C
- M.J. van Setten, H.F.W. Dekkers, L. Kljucar, J. Mitard, C. Pashartis et al., Oxygen defect stability in amorphous, C-axis aligned, and spinel IGZO. ACS Appl. Electron. Mater. 3(9), 4037–4046 (2021). https://doi.org/10.1021/acsaelm.1c00553
- J.-Y. Lin, C. Niu, Z. Lin, S. Lee, T. Kim et al., Analyzing the contact-doping effect in In₂O₃ FETs: unveiling the mechanisms behind the threshold-voltage roll-off in oxide semiconductor transistors. IEEE Trans. Electron Devices 72(6), 3004–3011 (2025). https://doi.org/10.1109/TED.2025.3564265
- S. Subhechha, N. Rassoul, A. Belmonte, H. Hody, H. Dekkers et al., Ultra-low leakage IGZO-TFTs with raised source/drain for Vt > 0 V and ion > 30 µA/µm, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830448
- J.H. Jeong, S.W. Seo, D. Kim, S.H. Yoon, S.H. Lee et al., Specific contact resistivity reduction in amorphous IGZO thin-film transistors through a TiN/IGTO heterogeneous interlayer. Sci. Rep. 14(1), 10953 (2024). https://doi.org/10.1038/s41598-024-61837-2
- J.-L. Kim, L. Kyu, K. Jae, L. Ho, J. Kyeong, Role of MoTi diffusion barrier in amorphous indium-gallium-zinc-oxide thin-film transistors with a copper source/drain electrode. Thin Solid Films 731, 138759 (2021). https://doi.org/10.1016/j.tsf.2021.138759
- H. Park, J. Yun, Y. Chung, P-22: effects of self-assembled monolayer on contact resistance between IGZO and electrode for high-resolution display. SID Symp. Dig. Tech. Pap. 53(1), 1118–1121 (2022). https://doi.org/10.1002/sdtp.15697
- S. Lee, S. Lee, M. Lee, S.M. Rho, H.T. Kim et al., Tailored self-assembled monolayer using chemical coupling for indium–gallium–zinc oxide thin-film transistors: multifunctional copper diffusion barrier. ACS Appl. Mater. Interfaces 14(50), 56310–56320 (2022). https://doi.org/10.1021/acsami.2c16593
- J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, S.-I. Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90(26), 262106 (2007). https://doi.org/10.1063/1.2753107
- D.-G. Kim, S.-H. Ryu, H.-J. Jeong, J.-S. Park, Facile and stable n+ doping process via simultaneous ultraviolet and thermal energy for coplanar ALD-IGZO thin-film transistors. ACS Appl. Electron. Mater. 3(8), 3530–3537 (2021). https://doi.org/10.1021/acsaelm.1c00463
- S. Knobelspies, A. Takabayashi, A. Daus, G. Cantarella, N. Münzenrieder et al., Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF4/O2 plasma treatment. Solid State Electron. 150, 23–
References
M. Badaroglu, M. Moore, IEEE International Roadmap for Devices and Systems Outbriefs. November 30, 2021. Santa Clara, CA, USA. IEEE 2021, 01–38 (2021). https://doi.org/10.1109/irds54852.2021.00010
S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x
M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era. 2011 International Electron Devices Meeting., 1.1.1–1.1.6. IEEE (2012). https://doi.org/10.1109/IEDM.2011.6131469
W. Haensch, E.J. Nowak, R.H. Dennard, P.M. Solomon, A. Bryant et al., Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 50(4.5), 339–361 (2006). https://doi.org/10.1147/rd.504.0339
T. Kim, C.H. Choi, J.S. Hur, D. Ha, B.J. Kuh et al., Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv. Mater. 35(43), e2204663 (2023). https://doi.org/10.1002/adma.202204663
A.R. Choi, D.H. Lim, S.-Y. Shin, H.J. Kang, D. Kim et al., Review of material properties of oxide semiconductor thin films grown by atomic layer deposition for next-generation 3D dynamic random-access memory devices. Chem. Mater. 36(5), 2194–2219 (2024). https://doi.org/10.1021/acs.chemmater.3c02223
E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
H.-M. Kim, D.-G. Kim, Y.-S. Kim, M. Kim, J.-S. Park, Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook. Int. J. Extreme Manuf. 5(1), 012006 (2023). https://doi.org/10.1088/2631-7990/acb46d
M. Si, Z. Lin, Z. Chen, P.D. Ye, High-performance atomic-layer-deposited indium oxide 3-D transistors and integrated circuits for monolithic 3-D integration. IEEE Trans. Electron Devices 68(12), 6605–6609 (2021). https://doi.org/10.1109/ted.2021.3106282
Y. Sun, Y. Xu, Z. Zheng, Y. Wang, Y. Kang et al., BEOL three-dimensional stackable oxide semiconductor CMOS inverter with a high voltage gain of 233 at cryogenic temperatures. Nano Lett. 25(31), 11757–11761 (2025). https://doi.org/10.1021/acs.nanolett.4c04701
Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors toward vertical logic and memory. IEEE Trans. Electron Devices 71(12), 7984–7991 (2024). https://doi.org/10.1109/ted.2024.3495632
S. Fujii, T.F. Lu, K. Ikeda, S.Y. Chang, K. Sakamoto et al., Oxide-semiconductor channel transistor DRAM (OCTRAM) with 4F2 architecture. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873368
J.S. Hur, S. Lee, J. Moon, H.-G. Jung, J. Jeon et al., Oxide and 2D TMD semiconductors for 3D DRAM cell transistors. Nanoscale Horiz. 9(6), 934–945 (2024). https://doi.org/10.1039/d4nh00057a
A. Belmonte, G.S. Kar, Disrupting the DRAM roadmap with capacitor-less IGZO-DRAM technology. Nat. Rev. Electr. Eng. 2(4), 220–221 (2025). https://doi.org/10.1038/s44287-025-00162-w
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano et al., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300(5623), 1269–1272 (2003). https://doi.org/10.1126/science.1083212
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
S.K. Park, C.-S. Hwang, J.-I. Lee, S.M. Chung, Y.S. Yang et al., 4.3: Transparent ZnO thin film transistor array for the application of transparent AM-OLED display. SID Symp. Dig. Tech. Pap. 37(1), 25–28 (2006). https://doi.org/10.1889/1.2433472
J.K. Jeong, J.H. Jeong, J.H. Choi, J.S. Im, S.H. Kim et al., 12.1-Inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array, SID Symposium Digest of Technical Papers 39, 1 (2012). https://doi.org/10.1889/1.3069591
D.-U. Jin, T.-W. Kim, H.-W. Koo, D. Stryakhilev, H.-S. Kim et al., Highly robust flexible AMOLED display on plastic substrate with new structure. SID Symp. Dig. Tech. Pap. 41(1), 703–705 (2010). https://doi.org/10.1889/1.3500565
C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee et al., 21.2: 55-inch FHD OLED TV employing new tandem WOLEDs. SID Symp. Dig. Tech. Pap. 43(1), 279–281 (2012). https://doi.org/10.1002/j.2168-0159.2012.tb05768.x
Y. Jimbo, T. Aoyama, N. Ohno, S. Eguchi, S. Kawashima et al., 25.1: Tri-fold flexible AMOLED with high barrier passivation layers. SID Symp. Dig. Tech. Pap. 45(1), 322–325 (2014). https://doi.org/10.1002/j.2168-0159.2014.tb00087.x
T. Matsuo, Y. Kanzaki, H. Matsukizono, A. Oda, S. Kaneko et al., CAAC-IGZO Technology. SID Symposium Digest of Technical Papers 47, 1 (2016). https://doi.org/10.1002/SDTP.10904
T.-K. Chang, C.-W. Lin, S. Chang, LTPO TFT technology for AMOLEDs. SID Symp. Dig. Tech. Pap. 50(1), 545–548 (2019). https://doi.org/10.1002/sdtp.12978
Nachiket Mhatre, Why iPhone 13 LTPO display tech is game-changing. (NewsBytes, 2021), https://www.newsbytesapp.com/news/science/why-iphone-13-ltpo-display-tech-is-game-changing/story
A. Hachiya, M. Aman, H.-Y. Chiu, T. Shinohara, W.Y. Lin et al., 46–1: 1218 ppi quest 3 display by hybrid backplane with highly reliable IGZO TFTs. SID Symp. Dig. Tech. Pap. 55(1), 615–618 (2024). https://doi.org/10.1002/sdtp.17599
M.-J. Lee, S.I. Kim, C.B. Lee, H. Yin, S.-E. Ahn et al., Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory. Adv. Funct. Mater. 19(10), 1587–1593 (2009). https://doi.org/10.1002/adfm.200801032
H. Sunamura, K. Kaneko, N. Furutake, S. Saito, M. Narihiro et al., High on/off-ratio P-type oxide-based transistors integrated onto Cu-interconnects for on-chip high/low voltage-bridging BEOL-CMOS I/Os. 2012 International Electron Devices Meeting. December 10–13, 2012. San Francisco, CA, USA. IEEE, (2012). pp. 18.8.1–18.8.3. https://doi.org/10.1109/iedm.2012.6479070
Y. Kobayashi, D. Matsubayashi, S. Nagatsuka, Y. Yakubo, T. Atsumi et al., Scaling to 50-nm C-axis aligned crystalline In-Ga-Zn oxide FET with surrounded channel structure and its application for less-than-5-nsec writing speed memory. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers. June 9–12, 2014. Honolulu, HI, USA. IEEE, (2014). pp. 1–2. https://doi.org/10.1109/vlsit.2014.6894421
D. Matsubayashi, Y. Asami, Y. Okazaki, M. Kurata, S. Sasagawa et al., 20-nm-Node trench-gate-self-aligned crystalline In-Ga-Zn-Oxide FET with high frequency and low off-state current. 2015 IEEE International Electron Devices Meeting (IEDM). December 7–9, 2015. Washington, DC, USA. IEEE, (2015). pp. 6.5.1–6.5.4. https://doi.org/10.1109/iedm.2015.7409641
M. Oota, Y. Ando, K. Tsuda, T. Koshida, S. Oshita et al., 3D-stacked CAAC-In-Ga-Zn oxide FETs with gate length of 72nm. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). pp. 3.2.1–3.2.4. https://doi.org/10.1109/iedm19573.2019.8993506
A. Belmonte, H. Oh, N. Rassoul, G.L. Donadio, J. Mitard et al., Capacitor-less, Long-Retention (>400s) DRAM Cell Paving the Way towards Low-Power and High-Density Monolithic 3D DRAM, 2020 IEEE International Electron Devices Meeting (IEDM) (2020). https://doi.org/10.1109/IEDM13553.2020.9371900
X. Duan, K. Huang, J. Feng, J. Niu, H. Qin et al., Novel vertical channel-all-around(CAA) IGZO FETs for 2T0C DRAM with high density beyond 4F2 by monolithic stacking, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). https://doi.org/10.1109/IEDM19574.2021.9720682
W. Kim, J. Kim, D. Ko, J.-H. Cha, G. Park et al., Demonstration of crystalline IGZO transistor with high thermal stability for memory applications. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185258
D. Ha, Y. Lee, S. Yoo, W. Lee, M.H. Cho et al., Exploring innovative IGZO-channel based DRAM cell architectures and key technologies for sub-10nm node. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/imw59701.2024.10536968
S. Yoo, D. Kim, D.-H. Choe, H.J. Lee, Y. Lee et al., Highly enhanced memory window of 17.8V in ferroelectric FET with IGZO channel via introduction of intermediate oxygen-deficient channel and gate interlayer. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631534
Z. Zhang, Z. Lin, A. Charnas, H. Dou, Z. Shang et al., Reliability of atomic-layer-deposited gate-all-around In2O3 nano-ribbon transistors with ultra-high drain currents. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 30.3.1–30.3.4. https://doi.org/10.1109/iedm45625.2022.10019494
P.-Y. Liao, D. Zheng, S. Alajlouni, Z. Zhang, M. Si et al., Transient thermal and electrical co-optimization of BEOL top-gated ALD In2O3 FETs toward monolithic 3-D integration. IEEE Trans. Electron Devices 70(4), 2052–2058 (2023). https://doi.org/10.1109/ted.2023.3235313
P.-Y. Liao, S. Alajlouni, M. Si, Z. Zhang, Z. Lin et al., Thermal studies of BEOL-compatible top-gated atomically thin ALD In2O3 FETs. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 322–323. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830279
W. Tang, Z. Wang, Z. Lin, L. Feng, Z. Liu et al., Monolithic 3D integration of vertically stacked CMOS devices and circuits with high-mobility atomic-layer-deposited In2O3n-FET and polycrystalline Si p-FET: achieving large noise margin and high voltage gain of 134 V/V. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 483–486. https://doi.org/10.1109/iedm45625.2022.10019410
C. Niu, Z. Lin, Z. Zhang, P. Tan, M. Si et al., Record-low metal to semiconductor contact resistance in atomic-layer-deposited In2O3 TFTs reaching the quantum limit. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413708
J.-Y. Lin, Z. Zhang, S. Alajlouni, P.-Y. Liao, Z. Lin et al., First determination of thermal resistance and thermal capacitance of atomic-layer-deposited In2O3 transistors. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413835
Z. Zhang, Z. Lin, C. Niu, M. Si, M.A. Alam et al., Ultrahigh bias stability of ALD In2O3 FETs enabled by high temperature O2 annealing. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185292
J.-Y. Lin, C. Niu, Z. Lin, T. Kim, B. Park et al., Quantum confinement controlled positive to negative Schottky barrier conversion in ultrathin In2O3 transistor contacts. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873514
Z. Lin, C. Niu, H. Jang, T. Kim, Y. Zhang et al., Enhancement of In2O3 field-effect mobility up to 152 cm2.V–1·s–1Using HZO-based higher-k linear dielectric. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631497
D. Zheng, A. Charnas, J. Anderson, H. Dou, Z. Hu et al., First demonstration of BEOL-compatible ultrathin AtomicLayer-deposited InZnO transistors with GHz operation and record high bias-stress stability. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 4.3.1–4.3.4. https://doi.org/10.1109/iedm45625.2022.10019452
Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, W.-L. Li, Y.-C. Lu et al., Aggressively scaled atomic layer deposited amorphous InZnOx thin film transistor exhibiting prominent short channel characteristics (SS= 69 mV/dec.; dibl = 27.8 mV/V) and high Gm(802 μs/μm at VDS = 2V). 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185343
J. Zhang, Z. Zhang, H. Dou, Z. Lin, K. Xu et al., Fluorine anion-doped ultra-thin InGaO transistors overcoming mobility-stability trade-off. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413810
K. Hikake, Z. Li, J. Hao, C. Pandy, T. Saraya et al., A nanosheet oxide semiconductor FET using ALD InGaOx channel and InSnOx electrode with normally-off operation, high mobility and reliability for 3D integrated devices. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185234
K.A. Aabrar, H. Park, S.G. Kirtania, E. Sarkar, M.A. Al Mamun et al., On the reliability of high-performance dual gate (DG) W-doped In2O3 FET. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631312
F.F. Athena, E. Ambrosi, K. Jana, C.H. Wu, J. Hartanto et al., First demonstration of an N-P oxide semiconductor complementary gain cell memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873499
S. Datta, E. Sarkar, K. Aabrar, S. Deng, J. Shin et al., Amorphous oxide semiconductors for monolithic 3D integrated circuits. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024).: 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631324
Q. Lin, N. Safron, D. Zhong, G. Arutchelvan, C. Gilardi et al., Enhancement-mode atomic layer deposited W-doped In2O3 transistor at 55 nm channel length by oxide capping layer with improved stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873594
J. Kwak, J. Shin, S. Deng, G. Jeong, J. Sharda et al., Bias temperature instability analysis of oxide power transistors for BEOL on-chip voltage converter in thermally-constrained H3D systems. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873303
E. Sarkar, C. Zhang, D. Chakraborty, F.G. Waqar, S. Kirtania et al., First demonstration of W-doped In2O3 gate-all-around (GAA) nanosheet FET with improved performance and record threshold voltage stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873456
S. Liu, K. Jana, K. Toprasertpong, J. Chen, Z. Liang et al., Gain cell memory on logic platform–device guidelines for oxide semiconductor transistor materials development. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413726
Q. Jiang, K. Jana, K. Toprasertpong, S. Liu, H.S. Philip Wong, Positive bias stress measurement guideline and band analysis for evaluating instability of oxide semiconductor transistors. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631369
R. An, Y. Li, J. Tang, B. Gao, Y. Du et al., A hybrid computing-In-memory architecture by monolithic 3D integration of BEOL CNT/IGZO-based CFET logic and analog RRAM. 2022 International Electron Devices Meeting (IEDM)., 18.1.1–18.1.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019473
M. Shi, Y. Su, J. Tang, Y. Li, Y. Du et al., Counteractive coupling IGZO/CNT hybrid 2T0C DRAM accelerating RRAM-based computing-In-memory via monolithic 3D integration for edge AI. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413876
J. Zhang, Z. Zhang, Z. Lin, K. Xu, H. Dou et al., First demonstration of BEOL-compatible atomic-layer-deposited InGaZnO TFTs with 1.5 nm channel thickness and 60 nm channel length achieving on/off ratio exceeding 1011, SS of 68 mV/dec, normal-off operation and high positive gate bias stability. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185312
Z. Liu, Y. Dul, R. Liang, Z. Zhang, L. Pan et al., A dual-gate vertical channel IGZO transistor for BEOL stackable 3D parallel integration for memory and computing applications. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631472
W. Zhao, W. Cui, L. Kang, S. Lu, W. Yuan et al., High-performance vertical gate-all-around oxide semiconductor transistors with 6 nm ALD IGZO channel and scaled contact CD down to 28 nm. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873430
W. Zhao, S. Zhu, Q. Li, Q. Hu, H. Liu et al., First Demonstration of Double-Gate IGZO Transistors with Ideal Subthreshold Swing of 60 mV/dec at Room Temperature and 76 mV/dec at 380 K Over 5 Decades and gm Exceeding 1 mS/µm with Contact Length Scaling. 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10873547
H. Inoue, T. Hirose, T. Mizuguchi, Y. Komura, T. Saito et al., Heterogeneous oxide semiconductor FETs comprising planar FET and vertical channel FETs monolithically stacked on Si CMOS, enabling 1-mbit 3D DRAM. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/imw59701.2024.10536958
S. Miyata, K. Furutani, Y. Komura, Y. Ando, S. Saito et al., Vertical-channel crystalline In2O3FET with a pulled-up gate, monolithically stacked on Si CMOS, achieving 112.2 µA/µm on-state current. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873545
K. Huang, X. Duan, J. Feng, Y. Sun, C. Lu et al., Vertical Channel-All-Around (caa) igzo fet under 50 nm cd with High Read Current of 32.8 μA/μm (Vth + 1 v), Well-performed Thermal Stability up to 120 ℃ for Low Latency, High-density 2t0c 3d dram Application. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 296–297. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830271
C. Chen, X. Duan, G. Yang, C. Lu, D. Geng et al., Inter-layer dielectric engineering for monolithic stacking 4F2–2 T0C DRAM with channel-all-around (CAA) IGZO FET to achieve good reliability (>104 s bias stress, >1012 cycles endurance). 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 26.5.1–26.5.4. https://doi.org/10.1109/iedm45625.2022.10019502
Y. Su, T. Liu, J. Tang, Y. Li, R. An et al., Complementary oxide semiconductor-based 2T0C DRAM macro with CFET peripherals using TeOx-PFET/IGZO-NFET for 3D memory integration. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873505
C. Chen, J. Xiang, X. Duan, C. Lu, J. Niu et al., First demonstration of stacked 2T0C-DRAM bit-cell constructed by two-layers of vertical channel-all-around IGZO FETs realizing 4F2 area cost. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413790
L. Zheng, Z. Wang, Z. Lin, M. Si, First Demonstration on the Transient Writing Characteristics of Multi-bit ald igzo 2t0c dram by Fast i-v Measurement. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873579
M. Liu, Z. Li, W. Lu, K. Chen, J. Niu et al., First demonstration of monolithic three-dimensional integration of ultra-high density hybrid IGZO/Si SRAM and IGZO 2T0C DRAM achieving record-low latency (5000s). 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631551
K. Chen, Z. Zhu, W. Lu, M. Liu, F. Liao et al., Improved multi-bit statistics of novel dual-gate IGZO 2T0C DRAM with in-cell VTH compensation and ΔVSN/ΔVDATA boosting technique. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413770
G. Yan, Y. Luo, J. Wang, Z. Song, C. Niu et al., First DEMONSTRATION OF TRUE 4-bit MEMORY WITH RECORD HIGH MULTIBIT RETENTION >103s and READ WINDOW >105 by HYDROGEN SELF-ADAPTIVE-DOPING for IGZO DRAM Arrays, 2023 International Electron Devices Meeting (IEDM) (2023). https://doi.org/10.1109/IEDM45741.2023.10413762
W. Tang, C. Chen, J. Liu, C. Zhang, C. Gu et al., 30 Mb/mm2/layer 3D eDRAM computing-in-memory with embedded beol peripherals and local layer-wise calibration based on first-demonstrated vertically-stacked CAA-IGZO 4F2 2T0C cell. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413756
F.-M. Lee, P.-H. Tseng, Y.-Y. Lin, Y.-H. Lin, W.-L. Weng et al., Bit-cost-scalable 3D DRAM architecture and unit cell first demonstrated with integrated gate-around and channel-around IGZO FETs. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631386
Q. Hu, Q. Li, S. Zhu, C. Gu, S. Liu et al., Optimized IGZO FETs for Capacitorless DRAM with Retention of 10 ks at RT and 7 ks at 85 ℃ at Zero Vhold with Sub-10 ns Speed and 3-bit Operation. 2022 International Electron Devices Meeting (IEDM)., 26.6.1–26.6.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019435
W. Lu, Z. Zhu, K. Chen, M. Liu, B.M. Kang et al., First demonstration of dual-gate IGZO 2T0C DRAM with novel read operation, one bit line in single cell, ION=1500 μA/μm@VDS=1V and retention time>300s, 2022 International Electron Devices Meeting (IEDM) (2022). https://doi.org/10.1109/IEDM45625.2022.10019488
Z. Lin, M. Si, P.D. Ye, Ultra-fast operation of BEOL-compatible atomic-layer-deposited In2O3 Fe-FETs: achieving memory performance enhancement with memory window of 2.5 V and high endurance > 109 cycles without VT drift penalty. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830156
Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors with ultrathin In2O3 as channel and thick In2O3 as metal gate towards vertical logic and memory. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631533
Y. Shao, J.C.C. Huang, E.R. Borujeny, T.E. Espedal, D.A. Antoniadis et al., Highly-scaled BEOL E-mode transistor and discrete-domain ferroelectric memory platform enabled by PEALD In2O3. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873392
B. Ku, J.-M. Sim, J.S. Hur, J.K. Jeong, Y.-H. Song et al., A novel 3D gate-all-around vertical FeFET with back-gate structure for disturbance-less program operation. 2024 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2024). https://doi.org/10.1109/IMW59701.2024.10536939
S.G. Kirtania, O. Phadke, E. Sarker, K.A. Aabrar, D. Chakraborty et al., Amorphous indium oxide channel FeFETs with write voltage of 0.9V and endurance >1012 for refresh-free 1T-1FeFET embedded memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873370
Z. Chen, H.C. Kim, W. Zheng, R. Izmailov, B. Truijen et al., novel design strategy for high-endurance (>1010) and fast-erase oxide-semiconductor channel FeFET, 2024 IEEE International Electron Devices Meeting (IEDM) (2024). https://doi.org/10.1109/IEDM50854.2024.10873449
Z. Chen, N. Ronchi, A. Walke, K. Banerjee, M.I. Popovici et al., Improved MW of IGZO-channel FeFET by reading scheme optimization and interfacial engineering. 2023 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2023). https://doi.org/10.1109/IMW56887.2023.10145930
M. Zeng, Q. Hu, Q. Li, H. Liu, S. Yan et al., First demonstration of annealing-free top gate La: HZO-IGZO FeFET with record memory window and endurance. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413682
P. Xu, P. Jiang, Y. Yang, X. Peng, W. Wei et al., A fully BEOL-compatible (300℃ annealing) IGZO FeFET with ultra-high memory window (10V) and prominent endurance (109). 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10873310
C.-K. Chen, Z. Fang, S. Hooda, M. Lal, U. Chand et al., First demonstration of ultra-low dit top-gated ferroelectric oxide-semiconductor memtransistor with record performance by channel defect self-compensation effect for BEOL-compatible non-volatile logic switch. 2022 International Electron Devices Meeting (IEDM)., 6.1.1–6.1.4. IEEE (2023). https://doi.org/10.1109/IEDM45625.2022.10019440
S.R. Sarangi, Next-Gen Computer Architecture: Till the End of Silicon, 2.0 (White Falcon Publishing, 2023).
B. Jacob, D. Wang, S. Ng, Memory Systems: Cache, DRAM, Disk (Morgan Kaufmann, 2010).
A. Belmonte, H. Oh, S. Subhechha, N. Rassoul, H. Hody et al., Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating > 103s retention, >1011 cycles endurance and Lg scalability down to 14nm, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). https://doi.org/10.1109/IEDM19574.2021.9720596
D. Lehninger, M. Ellinger, T. Ali, S. Li, K. Mertens et al., A fully integrated ferroelectric thin-film-transistor–influence of device scaling on threshold voltage compensation in displays. Adv. Electron. Mater. 7(6), 2100082 (2021). https://doi.org/10.1002/aelm.202100082
E. Yu, G. Kumar K, U. Saxena, K. Roy, Ferroelectric capacitors and field-effect transistors as in-memory computing elements for machine learning workloads. Sci. Rep. 14, 9426 (2024). https://doi.org/10.1038/s41598-024-59298-8
Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, Y. Chen, K.-L. Chen et al., First demonstration of highly scaled atomic layer deposited ultrathin InSnZnO channel thin film transistor exhibiting superior electrical characteristics. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). https://doi.org/10.1109/IEDM45741.2023.10413671
B. Tang, Z. Fang, R. Wan, S. Hooda, J.F. Leong et al., 1T1R and 2T0C1R IGZO-MoS2 all-BEOL 3D memory cells. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873575
U. Chand, M.M. Sabry Aly, M. Lal, C. Chun-Kuei, S. Hooda et al., Sub-10nm ultra-thin ZnO channel FET with record-high 561 µA/µm ION at VDS 1V, high µ-84 Cm2/V-s and1T-1RRAM memory cell demonstration memory implications for energy-efficient deep-learning computing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 326–327. IEEE (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830250
Y.-J. Cho, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of channel thickness on device scaling in vertical InGaZnO channel charge-trap memory transistors with ALD Al2O3 tunneling layer. Mater. Sci. Semicond. Process. 178, 108476 (2024). https://doi.org/10.1016/j.mssp.2024.108476
H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of strategic approaches for improving the device performance of mesa-shaped nanoscale vertical-channel thin-film transistors using atomic-layer deposited In–Ga–Zn–O channel layers. Electron. Mater. Lett. 18(3), 294–303 (2022). https://doi.org/10.1007/s13391-022-00336-w
Y.J. Baek, I.H. Kang, S.H. Hwang, Y.L. Han, M.S. Kang et al., Vertical oxide thin-film transistor with interfacial oxidation. Sci. Rep. 12, 3094 (2022). https://doi.org/10.1038/s41598-022-07052-3
C.-E. Oh, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Impact of Al2O3 spacers on the improvement in short-channel effects for the mesa-shaped vertical-channel In-Ga-Zn-O thin-film transistors with a channel length below 100 nm. Mater. Sci. Semicond. Process. 171, 108025 (2024). https://doi.org/10.1016/j.mssp.2023.108025
H.-I. Yeom, G. Moon, Y. Nam, J.-B. Ko, S.-H. Lee et al., 60–3: Distinguished paper: oxide vertical TFTs for the application to the ultra high resolution display. SID Symp. Dig. Tech. Pap. 47(1), 820–822 (2016). https://doi.org/10.1002/sdtp.10799
Y.-M. Kim, H.-B. Kang, G.-H. Kim, C.-S. Hwang, S.-M. Yoon, Improvement in device performance of vertical thin-film transistors using atomic layer deposited IGZO channel and polyimide spacer. IEEE Electron Device Lett. 38(10), 1387–1389 (2017). https://doi.org/10.1109/LED.2017.2736000
Y. Chen, X. Duan, X. Ma, P. Yuan, Z. Jiao et al., Implementation of sub-100 nm vertical channel-all-around (CAA) thin-film transistor using thermal atomic layer deposited IGZO channel. J. Semicond. 45(7), 072301 (2024). https://doi.org/10.1088/1674-4926/24010032
H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Improvement in current drivability and stability in nanoscale vertical channel thin-film transistors via band-gap engineering in In–Ga–Zn–O bilayer channel configuration. Nanotechnology 34(15), 155301 (2023). https://doi.org/10.1088/1361-6528/acb3cc
B. Sun, H. Huang, P. Wen, M. Xu, C. Peng et al., Research progress of vertical channel thin film transistor device. Sensors 23(14), 6623 (2023). https://doi.org/10.3390/s23146623
H.-J. Ryoo, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Implementation of oxide vertical channel TFTs with sub-150 nm channel length using atomic-layer deposited IGZO active and HfO2 gate insulator. Nanotechnology 32(25), 255201 (2021). https://doi.org/10.1088/1361-6528/abcbc4
H. Hun, H. Seol, H. Ho, M. Jae, L. Mo et al., Optimizing gate insulator conditions via interfacial oxidation in vertical structure TFTs. 2024 International Conference on Electronics, Information, and Communication (ICEIC)., 1–4. IEEE (2024). https://doi.org/10.1109/ICEIC61013.2024.10457204
Y. Zhao, L. Xu, C. Chen, C. Zhang, Z. Bai et al., Deep insights into interlayer in TiN/IGZO contact and its impact on contact resistance of CAA FETs: first-principles calculation, experimental study and modeling. 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). https://doi.org/10.1109/IEDM50854.2024.10872994
C. Chen, C. Gu, Y. Zhao, X. Duan, C. Lu et al., Vertical channel-all-around (CAA) IGZO FET with recessed source/drain structure to improve contact characteristics. IEEE Electron Device Lett. 46(7), 1127–1130 (2025). https://doi.org/10.1109/led.2025.3563839
X. Sun, W. Yu, F. Yang, M. Jin, C. Liu et al., Asymmetric contact resistances in IGZO vertical channel-all-around FETs. IEEE Electron Device Lett. 46(11), 2070–2073 (2025). https://doi.org/10.1109/led.2025.3604792
Y. Fan, R. An, J. Tang, Y. Li, T. Liu et al., Monolithic 3D integration as a pathway to energy-efficient computing and beyond: from materials and devices to architectures and chips. Curr. Opin. Solid State Mater. Sci. 33, 101199 (2024). https://doi.org/10.1016/j.cossms.2024.101199
A. Mallik, A. Vandooren, L. Witters, A. Walke, J. Franco et al., The impact of sequential-3D integration on semiconductor scaling roadmap. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017. San Francisco, CA, USA. IEEE, (2017). pp. 32.1.1–31.1.4. https://doi.org/10.1109/iedm.2017.8268483
S. Katz, Y. Grauer, E. Megged, Optical overlay metrology trends in advanced nodes. Metrology, Inspection, and Process Control XXXVI. April 24-May 30, 2022. San Jose, USA. SPIE, (2022). pp. 101. https://doi.org/10.1117/12.2605863
K. Dhananjay, P. Shukla, V.F. Pavlidis, A. Coskun, E. Salman, Monolithic 3D integrated circuits: recent trends and future prospects. IEEE Trans. Circuits Syst. II Express Briefs 68(3), 837–843 (2021). https://doi.org/10.1109/TCSII.2021.3051250
M. Xie, Y. Jia, C. Nie, Z. Liu, A. Tang et al., Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory. Nat. Commun. 14(1), 5952 (2023). https://doi.org/10.1038/s41467-023-41736-2
Mehul Naik, Challenges to Interconnect Scaling at 3nm and Beyond. (Applied Materials, 2021), https://www.appliedmaterials.com/us/en/blog/blog-posts/challenges-to-interconnect-scaling-at-3nm-and-beyond.html
Z. Zhao, S. Clima, D. Garbin, R. Degraeve, G. Pourtois et al., Chalcogenide ovonic threshold switching selector. Nano-Micro. Lett. 16(1), 81 (2024). https://doi.org/10.1007/s40820-023-01289-x
IEEE International Roadmap for Devices and Systems, “Metrology.” Institute of Electrical and Electronics Engineers Inc. (2023). https://doi.org/10.60627/FF6X-D213
T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2(1), 15–22 (2010). https://doi.org/10.1038/asiamat.2010.5
H. Hosono, Transparent Amorphous Oxide Semiconductors for Display Applications, in Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory (wiley, 2022), pp. 3–20. https://doi.org/10.1002/9781119715641.ch1a
K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. Phys. Status Solidi A 216(5), 1800372 (2019). https://doi.org/10.1002/pssa.201800372
T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
J. Kyeong, The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26(3), 034008 (2011). https://doi.org/10.1088/0268-1242/26/3/034008
K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano et al., Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45(5S), 4303 (2006). https://doi.org/10.1143/jjap.45.4303
K. Hikake, X. Huang, S.-H. Kim, K. Sakai, Z. Li et al., Scaling potential of nanosheet oxide semiconductor FETs for monolithic 3D integration–ALD material engineering, high-field transport, statistical variability. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631493
W. He, ALD: atomic layer deposition–precise and conformal coating for better performance. In: Handbook of Manufacturing Engineering and Technology, pp. 2959–2996. Springer London (2014). https://doi.org/10.1007/978-1-4471-4670-4_80
Y.-S. Kim, H.-J. Oh, J. Kim, J.H. Lim, J.-S. Park, Approaches for 3D integration using plasma-enhanced atomic-layer-deposited atomically-ordered InGaZnO transistors with ultra-high mobility. Small Methods 7(10), 2300549 (2023). https://doi.org/10.1002/smtd.202300549
S.-H. Ryu, H.-M. Kim, D.-G. Kim, J.-S. Park, Highly C-axis aligned ALD-InGaO channel improving mobility and thermal stability for next-generation 3D memory devices. Adv. Electron. Mater. 11(3), 2400377 (2025). https://doi.org/10.1002/aelm.202400377
R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17(5), 236–246 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas et al., Why In2O3 can make 0.7 nm atomic layer thin transistors. Nano Lett. 21(1), 500–506 (2021). https://doi.org/10.1021/acs.nanolett.0c03967
D.-G. Kim, M. Kim, D.-H. Lee, S. Lee, J. Kho et al., Facile routes to enhance doping efficiency using nanocomposite structures for high-mobility and stable PEALD-ITGO TFTs. Appl. Surf. Sci. 665, 160370 (2024). https://doi.org/10.1016/j.apsusc.2024.160370
Y.-S. Kim, H. Hong, T. Hong, S.-H. Choi, K.-B. Chung et al., Attaining quantitatively fewer defects in close-packed InGaZnO synthesized using atomic layer deposition. Appl. Surf. Sci. 664, 160242 (2024). https://doi.org/10.1016/j.apsusc.2024.160242
M.H. Cho, H. Seol, A. Song, S. Choi, Y. Song et al., Comparative study on performance of IGZO transistors with sputtered and atomic layer deposited channel layer. IEEE Trans. Electron Dev. 66(4), 1783–1788 (2019). https://doi.org/10.1109/ted.2019.2899586
J. Sheng, E.J. Park, B. Shong, J.-S. Park, Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications. ACS Appl. Mater. Interfaces 9(28), 23934–23940 (2017). https://doi.org/10.1021/acsami.7b04985
S. Lee, M. Kim, G. Mun, J. Ko, H.-I. Yeom et al., Effects of Al precursors on the characteristics of indium–aluminum oxide semiconductor grown by plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 13(33), 40134–40144 (2021). https://doi.org/10.1021/acsami.1c11304
G.M. Jeong, H.L. Yang, A. Yoon, Y.-S. Kim, S. Lee et al., Unveiling growth mechanisms of PEALD In2O3 thin films with amide-based versus alkyl-based novel indium precursors. J. Mater. Chem. C 12(28), 10575–10584 (2024). https://doi.org/10.1039/d4tc00868e
I.-K. Oh, B.-E. Park, S. Seo, B.C. Yeo, J. Tanskanen et al., Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited HfO2 films obtained from metal halide and amide precursors. J. Mater. Chem. C 6(27), 7367–7376 (2018). https://doi.org/10.1039/c8tc01476k
L. Huang, B. Han, M. Fan, H. Cheng, Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO2 thin films. RSC Adv. 7(37), 22672–22678 (2017). https://doi.org/10.1039/c7ra02301d
J.A. Libera, J.N. Hryn, J.W. Elam, Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water. Chem. Mater. 23(8), 2150–2158 (2011). https://doi.org/10.1021/cm103637t
A.U. Mane, A.J. Allen, R.K. Kanjolia, J.W. Elam, Indium oxide thin films by atomic layer deposition using trimethylindium and ozone. J. Phys. Chem. C 120(18), 9874–9883 (2016). https://doi.org/10.1021/acs.jpcc.6b02657
W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. J. Alloys Compd. 649, 216–221 (2015). https://doi.org/10.1016/j.jallcom.2015.07.150
J.W. Elam, J.A. Libera, J.N. Hryn, Indium oxide ALD using cyclopentadienyl indium and mixtures of H2O and O2. ECS Trans. 41(2), 147–155 (2011). https://doi.org/10.1149/1.3633663
J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films. ChemInform 37(42), 200642207 (2006). https://doi.org/10.1002/chin.200642207
R.K. Ramachandran, J. Dendooven, H. Poelman, C. Detavernier, Low temperature atomic layer deposition of crystalline In2O3 films. J. Phys. Chem. C 119(21), 11786–11791 (2015). https://doi.org/10.1021/acs.jpcc.5b03255
O. Nilsen, R. Balasundaraprabhu, E.V. Monakhov, N. Muthukumarasamy, H. Fjellvåg et al., Thin films of In2O3 by atomic layer deposition using In(acac)3. Thin Solid Films 517(23), 6320–6322 (2009). https://doi.org/10.1016/j.tsf.2009.02.059
A. Edem, J. Ae, P. Keun, T.-M. Chung, K. Gyoun et al., Thermal atomic layer deposition of In2O3 thin films using dimethyl(N-ethoxy-2, 2-dimethylcarboxylicpropanamide)indium and H2O. Appl. Surf. Sci. 419, 758–763 (2017). https://doi.org/10.1016/j.apsusc.2017.05.066
J. Sheng, H.-J. Lee, S. Oh, J.-S. Park, Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl. Mater. Interfaces 8(49), 33821–33828 (2016). https://doi.org/10.1021/acsami.6b11774
W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant. Ceram. Int. 41(9), 10782–10787 (2015). https://doi.org/10.1016/j.ceramint.2015.05.015
T. Hong, H.-J. Jeong, H.-M. Lee, S.-H. Choi, J.H. Lim et al., Significance of pairing In/Ga precursor structures on PEALD InGaOx thin-film transistor. ACS Appl. Mater. Interfaces 13(24), 28493–28502 (2021). https://doi.org/10.1021/acsami.1c06575
J.-H. Lee, J. Sheng, H. An, T. Hong, H.Y. Kim et al., Metastable rhombohedral phase transition of semiconducting indium oxide controlled by thermal atomic layer deposition. Chem. Mater. 32(17), 7397–7403 (2020). https://doi.org/10.1021/acs.chemmater.0c02306
S.-H. Choi, T. Hong, S.-H. Ryu, J.-S. Park, Plasma-enhanced atomic-layer-deposited indium oxide thin film using a DMION precursor within a wide process window. Ceram. Int. 48(19), 27807–27814 (2022). https://doi.org/10.1016/j.ceramint.2022.06.083
S.-H. Ryu, T. Hong, S.-H. Choi, K. Yeom, D. Won Ryu et al., Tailoring indium oxide film characteristics through oxygen reactants in atomic layer deposition with highly reactive liquid precursor. Appl. Surf. Sci. 664, 160271 (2024). https://doi.org/10.1016/j.apsusc.2024.160271
S.-H. Choi, H.-J. Jeong, T. Hong, Y.H. Na, C.K. Park et al., Plasma-enhanced atomic layer deposited indium oxide film using a novel dimethylbutylamino-trimethylindium precursor for thin film transistors. J. Vac. Sci. Technol. A 39(3), 032406 (2021). https://doi.org/10.1116/6.0000842
D.J. Comstock, J.W. Elam, Atomic layer deposition of Ga2O3 films using trimethylgallium and ozone. Chem. Mater. 24(21), 4011–4018 (2012). https://doi.org/10.1021/cm300712x
H.-Y. Shih, F.-C. Chu, A. Das, C.-Y. Lee, M.-J. Chen et al., Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. Nanoscale Res. Lett. 11(1), 235 (2016). https://doi.org/10.1186/s11671-016-1448-z
M. Nieminen, L. Niinistö, E. Rauhala, Growth of gallium oxide thin films from gallium acetylacetonate by atomic layer epitaxy. J. Mater. Chem. 6(1), 27–31 (1996). https://doi.org/10.1039/JM9960600027
D.-W. Choi, K.-B. Chung, J.-S. Park, Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films 546, 31–34 (2013). https://doi.org/10.1016/j.tsf.2013.03.066
R.K. Ramachandran, J. Dendooven, J. Botterman, S. Pulinthanathu Sree, D. Poelman et al., Plasma enhanced atomic layer deposition of Ga2O3 thin films. J. Mater. Chem. A 2(45), 19232–19238 (2014). https://doi.org/10.1039/c4ta05007j
J. Dezelah, K. Niinistö, L. Arstila, C.H. Niinistö, Winter, Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor. Chem. Mater. 18(2), 471–475 (2006). https://doi.org/10.1021/cm0521424
R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H.-W. Becker et al., Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans. 46(47), 16551–16561 (2017). https://doi.org/10.1039/C7DT03427J
L. Aarik, H. Mändar, J. Kozlova, A. Tarre, J. Aarik, Atomic layer deposition of Ga2O3 from GaI3 and O3: growth of high-density phases. Cryst. Growth Des. 23(8), 5899–5911 (2023). https://doi.org/10.1021/acs.cgd.3c00502
W.-J. Lee, S. Bera, Z. Wan, W. Dai, J.-S. Bae et al., Comparative study of the electrical characteristics of ALD-ZnO thin films using H2O and H2O2 as the oxidants. J. Am. Ceram. Soc. 102(10), 5881–5889 (2019). https://doi.org/10.1111/jace.16429
K. Keun, H. Seong, P. Ko, Y. Jin, Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant. Thin Solid Films 478(1–2), 103–108 (2005). https://doi.org/10.1016/j.tsf.2004.10.015
T. Muneshwar, G. Shoute, D. Barlage, K. Cadien, Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: effect of precursor decomposition. J. Vac. Sci. Technol. A 34(5), 050605 (2016). https://doi.org/10.1116/1.4961885
S. Stefanovic, N. Gheshlaghi, D. Zanders, I. Kundrata, B. Zhao et al., Direct-patterning ZnO deposition by atomic-layer additive manufacturing using a safe and economical precursor. Small 19(36), 2301774 (2023). https://doi.org/10.1002/smll.202301774
L. Johnston, J. Obenlüneschloß, M.F. Khan Niazi, M. Weber, C. Lausecker et al., Assessing the potential of non-pyrophoric Zn(DMP)2 for the fast deposition of ZnO functional coatings by spatial atomic layer deposition. RSC Appl. Interfaces 1(6), 1371–1381 (2024). https://doi.org/10.1039/D4LF00160E
M.-J. Jung, D. Kim, H.C. Kim, S. Kim, Y. Kim et al., ZnO thin films with stable, tunable electrical and optical properties deposited by atomic layer deposition using Et2Zn: NEtMe2 precursor. Appl. Surf. Sci. 682, 161728 (2025). https://doi.org/10.1016/j.apsusc.2024.161728
J. Heo, A.S. Hock, R.G. Gordon, Low temperature atomic layer deposition of tin oxide. Chem. Mater. 22(17), 4964–4973 (2010). https://doi.org/10.1021/cm1011108
D.-W. Choi, J.-S. Park, Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant. Surf. Coat. Technol. 259, 238–243 (2014). https://doi.org/10.1016/j.surfcoat.2014.02.012
J.-H. Han, D.-Y. Kim, S. Lee, H.L. Yang, B.H. Park et al., A study on the growth mechanism and gas diffusion barrier property of homogeneously mixed silicon–tin oxide by atomic layer deposition. Ceram. Int. 47(24), 34774–34782 (2021). https://doi.org/10.1016/j.ceramint.2021.09.016
S.-H. Ryu, H.-M. Kim, K.-H. Lee, H.-J. Sung, J.-E. Yang et al., High-temperature stable amorphous Sn-rich InSnGaO thin films fabricated via atomic layer deposition for next-generation dynamic random-access memory applications. Nano Lett. 24(50), 16039–16046 (2024). https://doi.org/10.1021/acs.nanolett.4c04499
D.-H. Lee, D.-G. Kim, M. Kim, S. Uhm, T. Kim et al., Developing subthreshold-swing limit of PEALD In–Sn–Ga–O transistor via atomic-scaled Sn control. ACS Appl. Electron. Mater. 4(11), 5608–5616 (2022). https://doi.org/10.1021/acsaelm.2c01222
X. Du, S.M. George, Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuat. B Chem. 135(1), 152–160 (2008). https://doi.org/10.1016/j.snb.2008.08.015
J.-H. Lee, M. Yoo, D. Kang, H.-M. Lee, W.-H. Choi et al., Selective SnOx atomic layer deposition driven by oxygen reactants. ACS Appl. Mater. Interfaces 10(39), 33335–33342 (2018). https://doi.org/10.1021/acsami.8b12251
H.Y. Kim, J.H. Nam, S.M. George, J.-S. Park, B.K. Park et al., Phase-controlled SnO2 and SnO growth by atomic layer deposition using bis(N-ethoxy-2, 2-dimethyl propanamido)tin precursor. Ceram. Int. 45(4), 5124–5132 (2019). https://doi.org/10.1016/j.ceramint.2018.09.263
M.-J. Choi, C.J. Cho, K.-C. Kim, J.J. Pyeon, H.-H. Park et al., SnO2 thin films grown by atomic layer deposition using a novel Sn precursor. Appl. Surf. Sci. 320, 188–194 (2014). https://doi.org/10.1016/j.apsusc.2014.09.054
C. Gil, J. Kim, J. Won, P. Keun, T.-M. Chung et al., High field-effect mobility and on/off current ratio of p-type ALD SnO thin-film transistor. ACS Appl. Electron. Mater. 5(4), 1992–1999 (2023). https://doi.org/10.1021/acsaelm.2c01107
I.-K. Oh, T.E. Sandoval, T.-L. Liu, N.E. Richey, S.F. Bent, Role of precursor choice on area-selective atomic layer deposition. Chem. Mater. 33(11), 3926–3935 (2021). https://doi.org/10.1021/acs.chemmater.0c04718
H.Y. Lee, J.S. Hur, I. Cho, C.H. Choi, S.H. Yoon et al., Comparative study on indium precursors for plasma-enhanced atomic layer deposition of In2O3 and application to high-performance field-effect transistors. ACS Appl. Mater. Interfaces 15(44), 51399–51410 (2023). https://doi.org/10.1021/acsami.3c11796
Y. Wu, S.E. Potts, P.M. Hermkens, H.C.M. Knoops, F. Roozeboom et al., Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor. Chem. Mater. 25(22), 4619–4622 (2013). https://doi.org/10.1021/cm402974j
Z. Gao, P. Banerjee, Review : atomic layer deposition of doped ZnO films. J. Vac. Sci. Technol. A Vac. Surf. Films 37(5), 050802 (2019). https://doi.org/10.1116/1.5112777
N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee et al., Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem. Mater. 22(16), 4769–4775 (2010). https://doi.org/10.1021/cm101227h
O.V. Bilousov, A. Voznyi, B. Landeke-Wilsmark, M.M.S. Villamayor, T. Nyberg et al., Substrate effects on crystal phase in atomic layer deposition of tin monosulfide. Chem. Mater. 33(8), 2901–2912 (2021). https://doi.org/10.1021/acs.chemmater.1c00241
P.C. Lemaire, M. King, G.N. Parsons, Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. J. Chem. Phys. 146(5), 052811 (2017). https://doi.org/10.1063/1.4967811
J.S. Kim, Y. Jang, S. Kang, Y. Lee, K. Kim et al., Substrate-dependent growth behavior of atomic-layer-deposited zinc oxide and zinc tin oxide thin films for thin-film transistor applications. J. Phys. Chem. C 124(49), 26780–26792 (2020). https://doi.org/10.1021/acs.jpcc.0c07800
S.H. Yoon, J.H. Cho, I. Cho, M.J. Kim, J.S. Hur et al., Tailoring subthreshold swing in A-IGZO thin-film transistors for amoled displays: impact of conversion mechanism on peald deposition sequences. Small Meth. 8(8), 2470043 (2024). https://doi.org/10.1002/smtd.202470043
J. Lee, J.-M. Lee, H. Oh, C. Kim, J. Kim et al., Inherently area-selective atomic layer deposition of SiO2 thin films to confer oxide versus nitride selectivity. Adv. Funct. Mater. 31(33), 2102556 (2021). https://doi.org/10.1002/adfm.202102556
L. Xu, L. He, L. Yang, Z. Zhang, S. Guo et al., Plasma treatment to tailor growth and photoelectric performance of plasma-enhanced atomic layer deposition SnOx infrared transparent conductive thin films. Surf. Coat. Technol. 403, 126414 (2020). https://doi.org/10.1016/j.surfcoat.2020.126414
R. Krumpolec, D.C. Cameron, T. Homola, M. Černák, Surface chemistry and initial growth of Al2O3 on plasma modified PTFE studied by ALD. Surf. Interfaces 6, 223–228 (2017). https://doi.org/10.1016/j.surfin.2016.10.005
H. Jung, W.-H. Kim, B.-E. Park, W.J. Woo, I.-K. Oh et al., Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y2O3 with ozone. ACS Appl. Mater. Interfaces 10(2), 2143–2150 (2018). https://doi.org/10.1021/acsami.7b14260
J. Yang, A. Bahrami, X. Ding, S. Lehmann, N. Kruse et al., Characteristics of ALD-ZnO thin film transistor using H2O and H2O2 as oxygen sources. Adv. Mater. Interfaces 9(15), 2101953 (2022). https://doi.org/10.1002/admi.202101953
S. Seo, T. Nam, H.-B.-R. Lee, H. Kim, B. Shong, Molecular oxidation of surface–CH3 during atomic layer deposition of Al2O3 with H2O, H2O2, and O3: a theoretical study. Appl. Surf. Sci. 457, 376–380 (2018). https://doi.org/10.1016/j.apsusc.2018.06.160
D.R. Boris, V.D. Wheeler, N. Nepal, S.B. Qadri, S.G. Walton et al., The role of plasma in plasma-enhanced atomic layer deposition of crystalline films. J. Vac. Sci. Technol. A 38(4), 040801 (2020). https://doi.org/10.1116/6.0000145
D.-G. Kim, H. Choi, Y.-S. Kim, D.-H. Lee, H.-J. Oh et al., Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability. ACS Appl. Mater. Interfaces 15(26), 31652–31663 (2023). https://doi.org/10.1021/acsami.3c05678
A.R. Choi, S. Seo, S. Kim, D. Kim, S.-W. Ryu et al., Reaction mechanism and film properties of the atomic layer deposition of ZrO2 thin films with a heteroleptic CpZr(N(CH3)2)3 precursor. Appl. Surf. Sci. 624, 157104 (2023). https://doi.org/10.1016/j.apsusc.2023.157104
H.C.M. Knoops, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Conformality of plasma-assisted ALD: physical processes and modeling. J. Electrochem. Soc. 157(12), G241 (2010). https://doi.org/10.1149/1.3491381
K. Arts, M. Utriainen, R.L. Puurunen, W.M.M. Kessels, H.C.M. Knoops, Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO2, TiO2, Al2O3, and HfO2. J. Phys. Chem. C 123(44), 27030–27035 (2019). https://doi.org/10.1021/acs.jpcc.9b08176
J. Dendooven, D. Deduytsche, J. Musschoot, R.L. Vanmeirhaeghe, C. Detavernier, Conformality of Al2O3 and AlN deposited by plasma-enhanced atomic layer deposition. J. Electrochem. Soc. 157(4), G111 (2010). https://doi.org/10.1149/1.3301664
X. Meng, Y.-C. Byun, H.S. Kim, J.S. Lee, A.T. Lucero et al., Atomic layer deposition of silicon nitride thin films: a review of recent progress, challenges, and outlooks. Materials 9(12), 1007 (2016). https://doi.org/10.3390/ma9121007
D.-G. Kim, W.-B. Lee, S. Lee, J. Koh, B. Kuh et al., Thermally activated defect engineering for highly stable and uniform ALD-amorphous IGZO TFTs with high-temperature compatibility. ACS Appl. Mater. Interfaces 15(30), 36550–36563 (2023). https://doi.org/10.1021/acsami.3c06517
T. Hong, W.-H. Choi, S.-H. Choi, H. Lee, J.H. Seok et al., Plasma enhanced atomic layer deposited amorphous gallium oxide thin films using novel trimethyl [N-(2-methoxyethyl)-2-methylpropan-2-amine] gallium. Ceram. Int. 47(2), 1588–1593 (2021). https://doi.org/10.1016/j.ceramint.2020.08.272
M.-Y. Li, Y.-Y. Chang, H.-C. Wu, C.-S. Huang, J.-C. Chen et al., Effect of process pressure on atomic layer deposition of Al2O3. J. Electrochem. Soc. 154(11), H967 (2007). https://doi.org/10.1149/1.2778861
P. Poodt, A. Mameli, J. Schulpen, W.M.M.E. Kessels, F. Roozeboom, Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 35(2), 021502 (2017). https://doi.org/10.1116/1.4973350
K.S. Yoo, C.-H. Lee, D.-G. Kim, S.-H. Choi, W.-B. Lee et al., High mobility and productivity of flexible In2O3 thin-film transistors on polyimide substrates via atmospheric pressure spatial atomic layer deposition. Appl. Surf. Sci. 646, 158950 (2024). https://doi.org/10.1016/j.apsusc.2023.158950
C.-H. Lee, K.S. Yoo, D.-G. Kim, C.-K. Park, J.-S. Park, Compositionally engineered amorphous InZnO thin-film transistor with high mobility and stability via atmospheric pressure spatial atomic layer deposition. J. Ind. Eng. Chem. 140, 269–276 (2024). https://doi.org/10.1016/j.jiec.2024.05.046
D. Kim, K.S. Yoo, C.-H. Lee, J.-M. Kim, D.-G. Kim et al., High-throughput and performance InZnAlO thin film transistor on polyimide substrate via atmospheric pressure spatial atomic layer deposition. J. Alloys Compd. 1023, 180031 (2025). https://doi.org/10.1016/j.jallcom.2025.180031
C.-H. Lee, K.S. Yoo, D. Kim, J.-M. Kim, J.-S. Park, Advanced atmospheric-pressure spatial atomic layer deposition for OLED encapsulation: controlling growth dynamics for superior film performance. Chem. Eng. J. 503, 158424 (2025). https://doi.org/10.1016/j.cej.2024.158424
M.B.M. Mousa, C.J. Oldham, G.N. Parsons, Atmospheric pressure atomic layer deposition of Al2O3 using trimethyl aluminum and ozone. Langmuir 30(13), 3741–3748 (2014). https://doi.org/10.1021/la500796r
H.-M. Kim, W.-B. Lee, H. Koo, S.-Y. Kim, J.-S. Park, Controlled 2D growth approach via atomic layer deposition for improved stability and performance in flexible SnO thin-film transistors. J. Mater. Chem. C 12(23), 8390–8397 (2024). https://doi.org/10.1039/d4tc01169d
J.C. Park, C.I. Choi, S.-G. Lee, S.J. Yoo, J.-H. Lee et al., Advanced atomic layer deposition: metal oxide thin film growth using the discrete feeding method. J. Mater. Chem. C 11(4), 1298–1303 (2023). https://doi.org/10.1039/d2tc03485a
H. Won, J. Soo, K. Jeong, H. Sun, W.-H. Kim et al., Advanced atomic layer deposition: ultrathin and continuous metal thin film growth and work function control using the discrete feeding method. Nano Lett. 22(11), 4589–4595 (2022). https://doi.org/10.1021/acs.nanolett.2c00811
H. Lin Yang, H.-M. Kim, S. Kamimura, A. Eizawa, T. Teramoto et al., Boosted growth rate using discrete reactant feeding method and novel precursor of indium oxide by atomic layer deposition. Appl. Surf. Sci. 654, 159508 (2024). https://doi.org/10.1016/j.apsusc.2024.159508
J.A. Dean, N. Adolph, Lange, Lange’s Handbook of Chemistry (McGraw-Hill; [Distributed by] Knovel, 2001).
E. Sarkar, C. Zhang, D. Chakraborty, S. Gopal Kirtania, K. Akif Aabrar et al., First demonstration of high-performance and extremely stable W-doped In₂O₃ gate-all-around (GAA) nanosheet FET. IEEE Trans. Electron Devices 72(5), 2662–2669 (2025). https://doi.org/10.1109/ted.2025.3535463
T.-C. Chiang, Y.-C. Chang, C.-R. Huang, C.-H. Hsu, P.-T. Liu, First demonstration of BEOL-compatible ALD-deposited 2 nm-thick indium-tungsten-tin-oxide (IWTO) TFTs with superior short-channel electrical characteristics: achieving enhancement-mode VTH, ION/IOFF >1010, SS ~ 63.3 mV/dec, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075200
X. Ding, J. Yang, J. Li, J. Zhang, Fully atomic layer deposition induced InAlO thin film transistors. Vacuum 227, 113455 (2024). https://doi.org/10.1016/j.vacuum.2024.113455
S.-H. Choi, S.-H. Ryu, D.-G. Kim, J.-H. Kwag, C. Yeon et al., C-axis aligned 3 nm thick In2O3 crystal using new liquid DBADMIn precursor for highly scaled FET beyond the mobility–stability trade-off. Nano Lett. 24(4), 1324–1331 (2024). https://doi.org/10.1021/acs.nanolett.3c04312
Y.-M. Kim, K.-S. Jeong, H.-J. Yun, S.-D. Yang, S.-Y. Lee et al., Investigation of zinc interstitial ions as the origin of anomalous stress-induced hump in amorphous indium gallium zinc oxide thin film transistors. Appl. Phys. Lett. 102(17), 173502 (2013). https://doi.org/10.1063/1.4803536
A. Murat, A.U. Adler, T.O. Mason, J.E. Medvedeva, Carrier generation in multicomponent wide-bandgap oxides: InGaZnO4. J. Am. Chem. Soc. 135(15), 5685–5692 (2013). https://doi.org/10.1021/ja311955g
S. Yamazaki, F. Isaka, T. Ohno, Y. Egi, S. Tezuka et al., High-performance single-crystalline In2O3 field effect transistor toward three-dimensional large-scale integration circuits. Commun. Mater. 5, 184 (2024). https://doi.org/10.1038/s43246-024-00625-x
Y.-S. Kim, W.-B. Lee, H.-J. Oh, T. Hong, J.-S. Park, Remarkable stability improvement with a high-performance PEALD-IZO/IGZO top-gate thin-film transistor via modulating dual-channel effects. Adv. Mater. Interfaces 9(16), 2200501 (2022). https://doi.org/10.1002/admi.202200501
X. Li, C. Gu, T. Yu, Y. Zhao, C. Chen et al., First demonstration of atomic-interlayer-tuning driven by first principles calculations and atomic layer deposition towards high thermal stable BEOL IGZO-FETs with SS=62mV/dec, PBTI < 7mV@ 3MV/cm and 353K, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075061
D.-G. Kim, S.-H. Choi, W.-B. Lee, G.M. Jeong, J. Koh et al., Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated via two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. Small Struct. 5(2), 2300375 (2024). https://doi.org/10.1002/sstr.202300375
L.-Y. Su, H.-Y. Lin, H.-K. Lin, S.-L. Wang, L.-H. Peng et al., Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. IEEE Electron Device Lett. 32(9), 1245–1247 (2011). https://doi.org/10.1109/LED.2011.2160931
A. Chasin, J. Franco, K. Triantopoulos, H. Dekkers, N. Rassoul et al., Understanding and modelling the PBTI reliability of thin-film IGZO transistors. 2021 IEEE International Electron Devices Meeting (IEDM). December 11–16, 2021. San Francisco, CA, USA. IEEE, (2021). pp. 31.1.1–31.1.4. https://doi.org/10.1109/iedm19574.2021.9720666
A. Chasin, J. Franco, S. Van Beek, H. Dekkers, A. Kruv et al., Unraveling BTI in IGZO devices: impact of device architecture, channel film deposition method and stoichiometry/phase, and device operating conditions. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. https://doi.org/10.1109/iedm50854.2024.10873388
J.H. Jeong, J.E. Oh, D. Kim, D. Ha, J.K. Jeong, Advancements and hurdles in contact engineering for miniaturized sub-micrometer oxide semiconductor devices. J. Mater. Chem. C 13(10), 4861–4875 (2025). https://doi.org/10.1039/D4TC04792C
M.J. van Setten, H.F.W. Dekkers, L. Kljucar, J. Mitard, C. Pashartis et al., Oxygen defect stability in amorphous, C-axis aligned, and spinel IGZO. ACS Appl. Electron. Mater. 3(9), 4037–4046 (2021). https://doi.org/10.1021/acsaelm.1c00553
J.-Y. Lin, C. Niu, Z. Lin, S. Lee, T. Kim et al., Analyzing the contact-doping effect in In₂O₃ FETs: unveiling the mechanisms behind the threshold-voltage roll-off in oxide semiconductor transistors. IEEE Trans. Electron Devices 72(6), 3004–3011 (2025). https://doi.org/10.1109/TED.2025.3564265
S. Subhechha, N. Rassoul, A. Belmonte, H. Hody, H. Dekkers et al., Ultra-low leakage IGZO-TFTs with raised source/drain for Vt > 0 V and ion > 30 µA/µm, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830448
J.H. Jeong, S.W. Seo, D. Kim, S.H. Yoon, S.H. Lee et al., Specific contact resistivity reduction in amorphous IGZO thin-film transistors through a TiN/IGTO heterogeneous interlayer. Sci. Rep. 14(1), 10953 (2024). https://doi.org/10.1038/s41598-024-61837-2
J.-L. Kim, L. Kyu, K. Jae, L. Ho, J. Kyeong, Role of MoTi diffusion barrier in amorphous indium-gallium-zinc-oxide thin-film transistors with a copper source/drain electrode. Thin Solid Films 731, 138759 (2021). https://doi.org/10.1016/j.tsf.2021.138759
H. Park, J. Yun, Y. Chung, P-22: effects of self-assembled monolayer on contact resistance between IGZO and electrode for high-resolution display. SID Symp. Dig. Tech. Pap. 53(1), 1118–1121 (2022). https://doi.org/10.1002/sdtp.15697
S. Lee, S. Lee, M. Lee, S.M. Rho, H.T. Kim et al., Tailored self-assembled monolayer using chemical coupling for indium–gallium–zinc oxide thin-film transistors: multifunctional copper diffusion barrier. ACS Appl. Mater. Interfaces 14(50), 56310–56320 (2022). https://doi.org/10.1021/acsami.2c16593
J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, S.-I. Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90(26), 262106 (2007). https://doi.org/10.1063/1.2753107
D.-G. Kim, S.-H. Ryu, H.-J. Jeong, J.-S. Park, Facile and stable n+ doping process via simultaneous ultraviolet and thermal energy for coplanar ALD-IGZO thin-film transistors. ACS Appl. Electron. Mater. 3(8), 3530–3537 (2021). https://doi.org/10.1021/acsaelm.1c00463
S. Knobelspies, A. Takabayashi, A. Daus, G. Cantarella, N. Münzenrieder et al., Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF4/O2 plasma treatment. Solid State Electron. 150, 23–