Multisensory Neuromorphic Devices: From Physics to Integration
Corresponding Author: Shenghuang Lin
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 113
Abstract
The increasing complexity of intelligent sensing environments, driven by the growth of Internet of Things technologies, has created a strong demand for neuromorphic systems capable of real-time, low-power multisensory perception. Traditional sensory architectures, constrained by single-modal processing and centralized computing, struggle to meet the requirements of diverse and dynamic input conditions. Multisensory neuromorphic devices offer a promising solution by mimicking the distributed, event-driven processing of biological systems. Recent efforts have explored synaptic devices and material systems that respond to various input modalities, including visual, tactile, thermal, and chemical stimuli. However, challenges remain in signal conversion, encoding compatibility, and the fusion of heterogeneous inputs without loss of unisensory information. This review provides a comprehensive overview of the physical mechanisms, device behaviors, and integration strategies that underpin signal processing in neuromorphic hardware. We highlight synaptic mechanisms conducive to cross-modal interaction, analyze representative signal fusion approaches at the device level, and discuss future directions for constructing efficient, scalable, and biologically inspired multisensory neuromorphic systems.
Highlights:
1 This review provides a comprehensive overview of the physical mechanisms, device behaviors, and integration strategies that underpin multimodal signal processing in neuromorphic hardware.
2 This review examines implementation strategies for multimodal integration, including signal fusion methods and processing techniques for handling cross-modal stimuli.
3 This review categorizes multimodal neuromorphic devices into three distinct frameworks and comprehensively discusses their respective advantages and limitations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, Y. Wang, X. Cai, B. Wang, C. Zhao et al., A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors. Nat. Electron. 8(3), 254–266 (2025). https://doi.org/10.1038/s41928-025-01357-7
- Y. Peng, Y. Wu, J. Bian, J. Xu, Hybrid federated learning for multimodal IoT systems. IEEE Internet Things J. 11(21), 34055–34064 (2024). https://doi.org/10.1109/JIOT.2024.3443267
- R. Khan, N. Ilyas, M.Z.M. Shamim, M.I. Khan, M. Sohail et al., Oxide-based resistive switching-based devices: fabrication, influence parameters and applications. J. Mater. Chem. C 9(44), 15755–15788 (2021). https://doi.org/10.1039/d1tc03420k
- G. Gong, Y. Zhou, Q. Li, W. Zhao, S. Geng et al., Bioinspired adaptive sensors: a review on current developments in theory and application. Adv. Mater. (2025). https://doi.org/10.1002/adma.202505420
- Z. Zhong, Y. Zhuang, X. Cheng, J. Zheng, Q. Yang et al., Ionic-electronic photodetector for vision assistance with in-sensor image processing. Nat. Commun. 16(1), 7096 (2025). https://doi.org/10.1038/s41467-025-62563-7
- J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
- I. Krauhausen, S. Griggs, I. McCulloch, J.M.J. den Toonder, P. Gkoupidenis et al., Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics. Nat. Commun. 15(1), 4765 (2024). https://doi.org/10.1038/s41467-024-48881-2
- H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), 2202622 (2022). https://doi.org/10.1002/adma.202202622
- Y. Guo, H. Li, Y. Li, X. Wei, S. Gao et al., Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 32(44), 2203585 (2022). https://doi.org/10.1002/adfm.202203585
- G. Zhou, J. Li, Q. Song, L. Wang, Z. Ren et al., Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Nat. Commun. 14(1), 8489 (2023). https://doi.org/10.1038/s41467-023-43944-2
- D. Kudithipudi, C. Schuman, C.M. Vineyard, T. Pandit, C. Merkel et al., Neuromorphic computing at scale. Nature 637(8047), 801–812 (2025). https://doi.org/10.1038/s41586-024-08253-8
- Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11(39), 2402582 (2024). https://doi.org/10.1002/advs.202402582
- P. Li, M. Zhang, Q. Zhou, Q. Zhang, D. Xie et al., Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15, 3257 (2024). https://doi.org/10.1038/s41467-024-47580-2
- S. Wang, S. Gao, C. Tang, E. Occhipinti, C. Li et al., Memristor-based adaptive neuromorphic perception in unstructured environments. Nat. Commun. 15(1), 4671 (2024). https://doi.org/10.1038/s41467-024-48908-8
- Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
- F.L. Hoch, Q. Wang, K.-G. Lim, D.K. Loke, Multifunctional organic materials, devices, and mechanisms for neuroscience, neuromorphic computing, and bioelectronics. Nano-Micro Lett. 17(1), 251 (2025). https://doi.org/10.1007/s40820-025-01756-7
- B. Li, F. Bao, Y. Hou, F. Li, H. Li et al., Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat. Commun. 15(1), 6541 (2024). https://doi.org/10.1038/s41467-024-50837-5
- N. Fei, Z. Lu, Y. Gao, G. Yang, Y. Huo et al., Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13(1), 3094 (2022). https://doi.org/10.1038/s41467-022-30761-2
- X. Tang, J. Zhang, Y. He, X. Zhang, Z. Lin et al., Explainable multi-task learning for multi-modality biological data analysis. Nat. Commun. 14, 2546 (2023). https://doi.org/10.1038/s41467-023-37477-x
- H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12, 1120 (2021). https://doi.org/10.1038/s41467-021-21404-z
- Y. Liang, H. Li, H. Tang, C. Zhang, D. Men et al., Bioinspired electrolyte-gated organic synaptic transistors: from fundamental requirements to applications. Nano-Micro Lett. 17(1), 198 (2025). https://doi.org/10.1007/s40820-025-01708-1
- I. Rabinowitch, D.A. Colón-Ramos, M. Krieg, Understanding neural circuit function through synaptic engineering. Nat. Rev. Neurosci. 25(2), 131–139 (2024). https://doi.org/10.1038/s41583-023-00777-8
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
- H.L. Atwood, S. Karunanithi, Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3(7), 497–516 (2002). https://doi.org/10.1038/nrn876
- F. Zenke, E.J. Agnes, W. Gerstner, Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015). https://doi.org/10.1038/ncomms7922
- C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11(1), 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
- I. Krauhausen, D.A. Koutsouras, A. Melianas, S.T. Keene, K. Lieberth et al., Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Sci. Adv. 7(50), eabl5068 (2021). https://doi.org/10.1126/sciadv.abl5068
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- G. Zhang, Y. Chen, Z. Zheng, R. Shao, J. Zhou et al., Thin film ferroelectric photonic-electronic memory. Light Sci. Appl. 13, 206 (2024). https://doi.org/10.1038/s41377-024-01555-6
- Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
- G. Ding, S.-T. Han, Y. Zhou, A reconfigurable single-gate transistor. Nat. Electron. 6(11), 797–798 (2023). https://doi.org/10.1038/s41928-023-01077-w
- P. Wang, J. Li, W. Xue, W. Ci, F. Jiang et al., Integrated in-memory sensor and computing of artificial vision based on full-vdW optoelectronic ferroelectric field-effect transistor. Adv. Sci. 11(3), 2305679 (2024). https://doi.org/10.1002/advs.202305679
- S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- T. Wang, M. Wang, L. Yang, Z. Li, X.J. Loh et al., Cyber–physiochemical interfaces. Adv. Mater. 32(8), 1905522 (2020). https://doi.org/10.1002/adma.201905522
- D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
- X. Liu, C. Sun, X. Ye, X. Zhu, C. Hu et al., Neuromorphic nanoionics for human-machine interaction: from materials to applications. Adv. Mater. 36(37), e2311472 (2024). https://doi.org/10.1002/adma.202311472
- L. Chen, S. Karilanova, S. Chaki, C. Wen, L. Wang et al., Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 384(6696), 660–665 (2024). https://doi.org/10.1126/science.adf3708
- X. Liu, K. Xing, C.S. Tang, S. Sun, P. Chen et al., Contact resistance and interfacial engineering: advances in high-performance 2D-TMD based devices. Prog. Mater. Sci. 148, 101390 (2025). https://doi.org/10.1016/j.pmatsci.2024.101390
- F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
- Z. Li, Z. Li, W. Tang, J. Yao, Z. Dou et al., Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15(1), 7275 (2024). https://doi.org/10.1038/s41467-024-51609-x
- J. Shi, Y. Lin, Z. Wang, X. Shan, Y. Tao et al., Adaptive processing enabled by sodium alginate based complementary memristor for neuromorphic sensory system. Adv. Mater. 36(32), 2314156 (2024). https://doi.org/10.1002/adma.202314156
- X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
- S. DeWeerdt, How to map the brain. Nature 571(7766), S6–S8 (2019). https://doi.org/10.1038/d41586-019-02208-0
- Y. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu et al., Two-dimensional metal-organic framework film for realizing optoelectronic synaptic plasticity. Angew. Chem. Int. Ed. 60(32), 17440–17445 (2021). https://doi.org/10.1002/anie.202106519
- H. Kasai, N.E. Ziv, H. Okazaki, S. Yagishita, T. Toyoizumi, Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22(7), 407–422 (2021). https://doi.org/10.1038/s41583-021-00467-3
- S. Pidathala, S. Liao, Y. Dai, X. Li, C. Long et al., Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2. Nature 623(7989), 1086–1092 (2023). https://doi.org/10.1038/s41586-023-06727-9
- D.J. Weingarten, A. Shrestha, K. Juda-Nelson, S.A. Kissiwaa, E. Spruston et al., Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 611(7935), 320–325 (2022). https://doi.org/10.1038/s41586-022-05337-1
- G. Dellaferrera, S. Woźniak, G. Indiveri, A. Pantazi, E. Eleftheriou, Introducing principles of synaptic integration in the optimization of deep neural networks. Nat. Commun. 13(1), 1885 (2022). https://doi.org/10.1038/s41467-022-29491-2
- X. Zheng, M. Dong, Q. Li, L. Wang, Y. Liu et al., Retina-inspired artificial synapses with UV modulated and immediate switchable plasticity. Adv. Funct. Mater. 35(30), 2420612 (2025). https://doi.org/10.1002/adfm.202420612
- V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15(7), 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z
- Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
- Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), 2004659 (2020). https://doi.org/10.1002/adma.202004659
- W. Huh, D. Lee, C.-H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32(51), 2002092 (2020). https://doi.org/10.1002/adma.202002092
- M. Xu, X. Chen, Y. Guo, Y. Wang, D. Qiu et al., Reconfigurable neuromorphic computing: materials, devices, and integration. Adv. Mater. 35(51), 2301063 (2023). https://doi.org/10.1002/adma.202301063
- L. Li, R. Long, T. Bertolini, O.V. Prezhdo, Sulfur adatom and vacancy accelerate charge recombination in MoS2 but by different mechanisms: time-domain ab initio analysis. Nano Lett. 17(12), 7962–7967 (2017). https://doi.org/10.1021/acs.nanolett.7b04374
- X. Zhao, X. Bai, R. Zhai, Y. Gao, M. Gu et al., Trap engineering in violet antimony phosphorus: modulating photoelectron transfer pathways for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. Energy 370, 125166 (2025). https://doi.org/10.1016/j.apcatb.2025.125166
- K. Kobbekaduwa, S. Shrestha, P. Adhikari, E. Liu, L. Coleman et al., In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nat. Commun. 12, 1636 (2021). https://doi.org/10.1038/s41467-021-21946-2
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- A. Block, A. Principi, N.C.H. Hesp, A.W. Cummings, M. Liebel et al., Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16(11), 1195–1200 (2021). https://doi.org/10.1038/s41565-021-00957-6
- T. Yamamoto, A. Chikamatsu, S. Kitagawa, N. Izumo, S. Yamashita et al., Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides. Nat. Commun. 11(1), 5923 (2020). https://doi.org/10.1038/s41467-020-19217-7
- M. Li, S. Wang, A. Wood, J.D. Yeager, S.P. Stepanoff et al., Defect repairing in lead bromide perovskite single crystals with biasing and bromine for X-ray photon-counting detectors. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02310-x
- T. Wei, H. Jiang, Y. Hu, Q. Zhang, L. Zeng et al., Photodetection-photosynapse multimodal integrated device for synergistic applications in encrypted optical communication and image processing. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512960
- H. Rao, S. Ye, T. Salim, R. Mayengbam, Y. Guo et al., Selective templating growth of chemically inert low-dimensional interfaces for perovskite solar cells. Nat. Energy 10(8), 991–1000 (2025). https://doi.org/10.1038/s41560-025-01815-8
- J. Deng, Y. Liu, M. Li, S. Xu, Y. Lun et al., Thickness-dependent in-plane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6. Small 16(1), 1904529 (2020). https://doi.org/10.1002/smll.201904529
- H. Zhang, Z. Li, Y. Wang, A.D. Fortes, T.G. Saunders et al., Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain. Nat. Commun. 16(1), 1720 (2025). https://doi.org/10.1038/s41467-025-56920-9
- Z. Xu, L. Zeng, J. Hu, Z. Wang, P. Zhang et al., Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022). https://doi.org/10.1016/j.nanoen.2021.106658
- Y. Yan, X. Liang, L. Wang, Y. Zhang, J. Zhou et al., Flexoelectric manipulation of ferroelectric polarization in self-strained tellurium. Sci. Adv. 11(31), eadu1716 (2025). https://doi.org/10.1126/sciadv.adu1716
- Y. Liu, Y. Zhou, H. Qin, T. Yang, X. Chen et al., Electro-thermal actuation in percolative ferroelectric polymer nanocomposites. Nat. Mater. 22(7), 873–879 (2023). https://doi.org/10.1038/s41563-023-01564-7
- S.M. Park, B. Wang, S. Das, S.C. Chae, J.-S. Chung et al., Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 13(5), 366–370 (2018). https://doi.org/10.1038/s41565-018-0083-5
- P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang et al., Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat. Commun. 15(1), 1012 (2024). https://doi.org/10.1038/s41467-024-45320-0
- R. Guo, Q. Feng, K. Ma, G.-H. Lee, M. Jamal et al., Memsensing by surface ion migration within Debye length. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02312-9
- Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai et al., Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572(7771), 634–638 (2019). https://doi.org/10.1038/s41586-019-1504-9
- H. Tan, Z. Ni, W. Peng, S. Du, X. Liu et al., Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy 52, 422–430 (2018). https://doi.org/10.1016/j.nanoen.2018.08.018
- D. Li, C. Li, N. Ilyas, X. Jiang, F. Liu et al., Color-recognizing Si-based photonic synapse for artificial visual system. Adv. Intell. Syst. 2(11), 2000107 (2020). https://doi.org/10.1002/aisy.202000107
- Y. Li, S. Cai, W.K. Lai, C. Wang, L. Rogée et al., Impurity-induced robust trionic effect in layered violet phosphorus. Adv. Opt. Mater. 10(1), 2101538 (2022). https://doi.org/10.1002/adom.202101538
- P. Wang, H. Mu, T. Yun, D. Ji, B. Wei et al., High rectification and gate-tunable photoresponse in 1D–2D lateral van der Waals heterojunctions. Innov. Mater. 3(1), 100113 (2025). https://doi.org/10.59717/j.xinn-mater.2024.100113
- H.-N. Wang, F. An, C.Y. Wong, K. Yin, J. Liu et al., Solution-processable ordered defect compound semiconductors for high-performance electronics. Sci. Adv. 10(41), eadr8636 (2024). https://doi.org/10.1126/sciadv.adr8636
- M. Kan, C. Yang, Q. Wang, Q. Zhang, Y. Yan et al., Defect-assisted electron tunneling for photoelectrochemical CO2 reduction to ethanol at low overpotentials. Adv. Energy Mater. 12(26), 2201134 (2022). https://doi.org/10.1002/aenm.202201134
- D. Wu, J. Guo, C. Wang, X. Ren, Y. Chen et al., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15(6), 10119–10129 (2021). https://doi.org/10.1021/acsnano.1c02007
- U.Y. Won, Q. An Vu, S.B. Park, M.H. Park, V. Dam Do et al., Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat. Commun. 14(1), 3070 (2023). https://doi.org/10.1038/s41467-023-38667-3
- L. Danial, E. Pikhay, E. Herbelin, N. Wainstein, V. Gupta et al., Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2(12), 596–605 (2019). https://doi.org/10.1038/s41928-019-0331-1
- W. Wang, L. Danial, Y. Li, E. Herbelin, E. Pikhay et al., A memristive deep belief neural network based on silicon synapses. Nat. Electron. 5(12), 870–880 (2022). https://doi.org/10.1038/s41928-022-00878-9
- C. Gao, M.-P. Lee, M. Li, K.-C. Lee, F.-S. Yang et al., Mimic drug dosage modulation for neuroplasticity based on charge-trap layered electronics. Adv. Funct. Mater. 31(5), 2005182 (2021). https://doi.org/10.1002/adfm.202005182
- L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/C8NR00914G
- J. Hao, Y.-H. Kim, S.N. Habisreutinger, S.P. Harvey, E.M. Miller et al., Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 7(18), eabf1959 (2021). https://doi.org/10.1126/sciadv.abf1959
- Y. Li, M. Zhao, X. Ma, L. Zhang, S. Zhao et al., Reconfigurable, nonvolatile, optoelectronic synaptic memtransistor based on MoS2/Te van der Waals heterostructures. Adv. Funct. Mater. 35(34), 2423333 (2025). https://doi.org/10.1002/adfm.202423333
- Y. Liu, L. Wu, Q. Liu, L. Liu, S. Ke et al., Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 32(14), 2110900 (2022). https://doi.org/10.1002/adfm.202110900
- H.-C. Chang, C.-L. Liu, W.-C. Chen, Flexible nonvolatile transistor memory devices based on one-dimensional electrospun P3HT: Au hybrid nanofibers. Adv. Funct. Mater. 23(39), 4960–4968 (2013). https://doi.org/10.1002/adfm.201300283
- J. Zhang, M. Xie, Y. Xin, C. Han, L. Xie et al., Organophosphine-sandwiched copper iodide cluster enables charge trapping. Angew. Chem. Int. Ed. 60(47), 24894–24900 (2021). https://doi.org/10.1002/anie.202111320
- B. Cai, H. Song, A. Brnovic, M.V. Pavliuk, L. Hammarström et al., Promoted charge separation and long-lived charge-separated state in porphyrin-viologen dyad nanops. J. Am. Chem. Soc. 145(34), 18687–18692 (2023). https://doi.org/10.1021/jacs.3c04372
- H. Chen, L. Shan, C. Gao, C. Chen, D. Liu et al., Artificial multisensory system with optical feedback for multimodal perceptual imaging. Chem. Eng. J. 487, 150542 (2024). https://doi.org/10.1016/j.cej.2024.150542
- C. Qian, Y. Choi, S. Kim, S. Kim, Y.J. Choi et al., Risk-perceptional and feedback-controlled response system based on NO2-detecting artificial sensory synapse. Adv. Funct. Mater. 32(18), 2112490 (2022). https://doi.org/10.1002/adfm.202112490
- H. Fang, S. Ma, J. Wang, L. Zhao, F. Nie et al., Multimodal in-sensor computing implemented by easily-fabricated oxide-heterojunction optoelectronic synapses. Adv. Funct. Mater. 34(49), 2409045 (2024). https://doi.org/10.1002/adfm.202409045
- S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9(1), 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- Y. Zheng, S. Ghosh, S. Das, A butterfly-inspired multisensory neuromorphic platform for integration of visual and chemical cues. Adv. Mater. 36(13), 2307380 (2024). https://doi.org/10.1002/adma.202307380
- H. Wan, J. Zhao, L.-W. Lo, Y. Cao, N. Sepúlveda et al., Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 15(9), 14587–14597 (2021). https://doi.org/10.1021/acsnano.1c04298
- P. Wang, W. Xue, J. Zeng, W. Ci, Q. Chen et al., Wavelength-selective photodetector and neuromorphic visual sensor utilizing intrinsic defect semiconductor. Adv. Funct. Mater. 34(46), 2407746 (2024). https://doi.org/10.1002/adfm.202407746
- M. Dong, Y. Zhang, J. Zhu, X. Zhu, J. Zhao et al., All-in-one 2D molecular crystal optoelectronic synapse for polarization-sensitive neuromorphic visual system. Adv. Mater. 36(40), 2409550 (2024). https://doi.org/10.1002/adma.202409550
- V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(7693), 500–504 (2018). https://doi.org/10.1038/nature25747
- J.H. Nam, S. Oh, H.Y. Jang, O. Kwon, H. Park et al., Low power MoS2/Nb2O5 memtransistor device with highly reliable heterosynaptic plasticity. Adv. Funct. Mater. 31(40), 2170294 (2021). https://doi.org/10.1002/adfm.202170294
- F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
- F. Bi, Q. Meng, Y. Zhang, H. Chen, B. Jiang et al., Engineering triple O-Ti-O vacancy associates for efficient water-activation catalysis. Nat. Commun. 16(1), 851 (2025). https://doi.org/10.1038/s41467-025-56190-5
- Y. Men, Z. Qin, Z. Yang, P. Zhang, M. Li et al., Antibacterial defective-ZIF-8/PPY/BC-based flexible electronics as stress-strain and NO2 gas sensors. Adv. Funct. Mater. 34(27), 2316633 (2024). https://doi.org/10.1002/adfm.202316633
- G. Huangfu, J. Wang, H. Zhang, J. Chen, Z. Liu et al., Deciphering the effect of defect dipoles on the polarization and electrostrain behavior in perovskite ferroelectrics. Nano Lett. 24(39), 12148–12155 (2024). https://doi.org/10.1021/acs.nanolett.4c03042
- C. Liu, J. Rao, Z. Sun, W. Lu, J.P. Best et al., Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes. Nat. Commun. 15(1), 9283 (2024). https://doi.org/10.1038/s41467-024-53349-4
- L. Qiao, X. Gao, K. Ren, C. Qiu, J. Liu et al., Designing transparent piezoelectric metasurfaces for adaptive optics. Nat. Commun. 15(1), 805 (2024). https://doi.org/10.1038/s41467-024-45088-3
- N. Zheng, J. Li, H. Sun, Y. Zang, P. Jiao et al., Ferroelectric tunnel junctions integrated on semiconductors with enhanced fatigue resistance. Sci. Adv. 11(15), eads0724 (2025). https://doi.org/10.1126/sciadv.ads0724
- Z. Dong, M. Huo, J. Li, J. Li, P. Li et al., Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7-δ. Nature 630(8018), 847–852 (2024). https://doi.org/10.1038/s41586-024-07482-1
- Y. Deng, S. Liu, X. Ma, S. Guo, B. Zhai et al., Intrinsic defect-driven synergistic synaptic heterostructures for gate-free neuromorphic phototransistors. Adv. Mater. 36(19), e2309940 (2024). https://doi.org/10.1002/adma.202309940
- K. Chen, K. Pan, S. He, R. Liu, Z. Zhou et al., Mimicking bidirectional inhibitory synapse using a porous-confined ionic memristor with electrolyte/tris(4-aminophenyl)amine neurotransmitter. Adv. Sci. 11(19), 2400966 (2024). https://doi.org/10.1002/advs.202400966
- J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
- J. Qin, F. Pei, R. Wang, L. Wu, Y. Han et al., Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 wh kg−1 lithium metal batteries. Adv. Mater. 36(21), 2312773 (2024). https://doi.org/10.1002/adma.202312773
- X. Jiang, R. Wang, Y. Tang, W. Di, W. Wang et al., Sulfur vacancy-rich MoS2 flower-like microsphere with synchronously tunable electromagnetic and chemical effects for boosting semiconductor SERS. Adv. Funct. Mater. 35(15), 2418412 (2025). https://doi.org/10.1002/adfm.202418412
- R. Nie, Q. Jia, Y. Li, C. Yan, X. Liu et al., Implantable biophotonic device for wirelessly cancer real-time monitoring and modulable treatment. Adv. Sci. 12(26), 2503778 (2025). https://doi.org/10.1002/advs.202503778
- L. Zhang, F. Yuan, J. Xi, B. Jiao, H. Dong et al., Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy. Adv. Funct. Mater. 30(40), 2001834 (2020). https://doi.org/10.1002/adfm.202001834
- B. Zhang, Z. Hu, J. Su, Z. Gong, X. Guo et al., Inhibiting ion migration and stabilizing crystal-phase in halide perovskite via directly incorporated fluoride anion. Angew. Chem. Int. Ed. 64(1), e202413550 (2025). https://doi.org/10.1002/anie.202413550
- C. Ding, L. Yin, L. Zhang, R. Huang, S. Fan et al., Revealing the mechanism behind the catastrophic failure of n-i-p type perovskite solar cells under operating conditions and how to suppress it. Adv. Funct. Mater. 31(40), 2103820 (2021). https://doi.org/10.1002/adfm.202103820
- R.O. Nughays, K. Almasabi, S. Nematulloev, L. Wang, T. Bian et al., Mapping surface-defect and ions migration in mixed-cation perovskite crystals. Adv. Sci. 11(40), 2404468 (2024). https://doi.org/10.1002/advs.202404468
- T. Yang, M. Yang, Z. Huang, R. Wang, W. Ji et al., Twinning mediated intralayer frustration governs structural degradation in layered Li-rich oxide cathode. Nat. Commun. 16(1), 6589 (2025). https://doi.org/10.1038/s41467-025-61386-w
- W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367(6481), 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
- S. Liao, Y. Liu, L. Li, L. Ding, Y. Wei et al., Theoretical framework for confined ion transport in two-dimensional nanochannels. Nat. Commun. 16, 6675 (2025). https://doi.org/10.1038/s41467-025-61735-9
- H. Ye, B. Wu, S. Sun, P. Wu, A solid-liquid bicontinuous fiber with strain-insensitive ionic conduction. Adv. Mater. 36(25), e2402501 (2024). https://doi.org/10.1002/adma.202402501
- Q. Dong, X. Zhang, J. Qian, S. He, Y. Mao et al., A cellulose-derived supramolecule for fast ion transport. Sci. Adv. 8(49), eadd2031 (2022). https://doi.org/10.1126/sciadv.add2031
- H. Lee, A. Erwin, M.L. Buxton, M. Kim, A.V. Stryutsky et al., Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31(38), 2103083 (2021). https://doi.org/10.1002/adfm.202103083
- Y. Zhao, I. Yavuz, M. Wang, M.H. Weber, M. Xu et al., Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21(12), 1396–1402 (2022). https://doi.org/10.1038/s41563-022-01390-3
- Y. Wang, J. Su, G. Ouyang, S. Geng, M. Ren et al., Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34(26), 2316397 (2024). https://doi.org/10.1002/adfm.202316397
- X. Jiang, X. Zhang, Z. Deng, J. Deng, X. Wang et al., Dual-role ion dynamics in ferroionic CuInP2S6: revealing the transition from ferroelectric to ionic switching mechanisms. Nat. Commun. 15(1), 10822 (2024). https://doi.org/10.1038/s41467-024-55160-7
- M.A. Torre Cachafeiro, N.K. Kumawat, F. Gao et al., Pulsed operation of perovskite LEDs: a study on the role of mobile ions. Natl. Sci. Rev. 12(5), nwae128 (2025). https://doi.org/10.1093/nsr/nwae128
- T. Xiong, C. Li, X. He, B. Xie, J. Zong et al., Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379(6628), 156–161 (2023). https://doi.org/10.1126/science.adc9150
- W. Ci, P. Wang, W. Xue, H. Yuan, X. Xu, Engineering ferroelectric-/ ion-modulated conductance in 2D vdW CuInP2S6 for non-volatile digital memory and artificial synapse. Adv. Funct. Mater. 34(25), 2316360 (2024). https://doi.org/10.1002/adfm.202316360
- Y. Liang, F. Li, X. Cui, C. Stampfl, S.P. Ringer et al., Multiple B-site doping suppresses ion migration in halide perovskites. Sci. Adv. 11(11), eads7054 (2025). https://doi.org/10.1126/sciadv.ads7054
- M. Ghasemi, B. Guo, K. Darabi, T. Wang, K. Wang et al., A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites. Nat. Mater. 22(3), 329–337 (2023). https://doi.org/10.1038/s41563-023-01488-2
- Y. Li, S. Yu, J. Yang, K. Zhang, M. Hu et al., Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: the case of halide perovskites. InfoMat 6(1), e12506 (2024). https://doi.org/10.1002/inf2.12506
- Z. Wan, H. Mu, Z. Dong, S. Hu, W. Yu et al., Self-powered MoSe2/ZnO heterojunction photodetectors with current rectification effect and broadband detection. Mater. Des. 212, 110185 (2021). https://doi.org/10.1016/j.matdes.2021.110185
- R. Zhuang, S. Cai, Z. Mei, H. Liang, N. Zhao et al., Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection. Nat. Commun. 14, 1621 (2023). https://doi.org/10.1038/s41467-023-37297-z
- L. Guo, H. Sun, L. Min, M. Wang, F. Cao et al., Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 36(27), 2402253 (2024). https://doi.org/10.1002/adma.202402253
- X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
- Y. Liu, J. Zhong, E. Li, H. Yang, X. Wang et al., Self-powered artificial synapses actuated by triboelectric nanogenerator. Nano Energy 60, 377–384 (2019). https://doi.org/10.1016/j.nanoen.2019.03.079
- Y. Yin, T. Sun, L. Wang, L. Li, P. Guo et al., In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9(8), 4277–4285 (2024). https://doi.org/10.1021/acssensors.4c01423
- Y. Liu, D. Liu, C. Gao, X. Zhang, R. Yu et al., Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat. Commun. 13(1), 7917 (2022). https://doi.org/10.1038/s41467-022-35628-0
- S.J. Kim, I.H. Im, J.H. Baek, S. Choi, S.H. Park et al., Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 20(1), 83–92 (2025). https://doi.org/10.1038/s41565-024-01790-3
- Y. Sun, R. Zhang, C. Teng, J. Tan, Z. Zhang et al., Internal ion transport in ionic 2D CuInP2S6 enabling multi-state neuromorphic computing with low operation current. Mater. Today 66, 9–16 (2023). https://doi.org/10.1016/j.mattod.2023.04.013
- C. Yan, L. Xiang, Y. Xiao, X. Zhang, Z. Jiang et al., Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor. Nat. Commun. 15(1), 10118 (2024). https://doi.org/10.1038/s41467-024-54528-z
- G. Polizos, M. Goswami, J.K. Keum, L. He, C.J. Jafta et al., Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes. ACS Nano 18(4), 2750–2762 (2024). https://doi.org/10.1021/acsnano.3c03901
- W. Chen, L. Zhai, S. Zhang, Z. Zhao, Y. Hu et al., Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 382(6670), 559–565 (2023). https://doi.org/10.1126/science.adg0059
- J. Chen, C. Zhu, G. Cao, H. Liu, R. Bian et al., Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater. 34(25), 2104676 (2022). https://doi.org/10.1002/adma.202104676
- P. Liu, X.-Y. Kong, L. Jiang, L. Wen, Ion transport in nanofluidics under external fields. Chem. Soc. Rev. 53(6), 2972–3001 (2024). https://doi.org/10.1039/d3cs00367a
- Z. Lin, Z. Yang, J. Wang, J. Wang, H. Huang et al., Unlocking the potential of oxide-based catalysts for CO2 photo-hydrogenation: oxygen vacancies promoted C─O bond cleavage in key intermediates. Adv. Mater. 37(20), 2408906 (2025). https://doi.org/10.1002/adma.202408906
- K. Chen, X. Yuan, Z. Tian, M. Zou, Y. Yuan et al., A facile approach for generating ordered oxygen vacancies in metal oxides. Nat. Mater. 24(6), 835–842 (2025). https://doi.org/10.1038/s41563-025-02171-4
- S. Lu, Y. Chen, Y. Chen, P. Li, J. Sun et al., General lightweight framework for vision foundation model supporting multi-task and multi-center medical image analysis. Nat. Commun. 16, 2097 (2025). https://doi.org/10.1038/s41467-025-57427-z
- C. Wang, G.-Q. Mao, M. Huang, E. Huang, Z. Zhang et al., HfOx/AlOy superlattice-like memristive synapse. Adv. Sci. 9(21), 2201446 (2022). https://doi.org/10.1002/advs.202201446
- S. Chen, I. Valov, Design of materials configuration for optimizing redox-based resistive switching memories. Adv. Mater. 34(3), 2105022 (2022). https://doi.org/10.1002/adma.202105022
- G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa et al., Quantum conductance in memristive devices: fundamentals, developments, and applications. Adv. Mater. 34(32), 2201248 (2022). https://doi.org/10.1002/adma.202201248
- Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1(5), 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1
- W. Sun, B. Gao, M. Chi, Q. Xia, J.J. Yang et al., Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10(1), 3453 (2019). https://doi.org/10.1038/s41467-019-11411-6
- T. Zhang, L. Wang, W. Ding, Y. Zhu, H. Qian et al., Rationally designing high-performance versatile organic memristors through molecule-mediated ion movements. Adv. Mater. 35(40), e2302863 (2023). https://doi.org/10.1002/adma.202302863
- U. Jung, M. Kim, J. Jang, J.-H. Bae, I.M. Kang et al., Formation of cluster-structured metallic filaments in organic memristors for wearable neuromorphic systems with bio-mimetic synaptic weight distributions. Adv. Sci. 11(9), 2307494 (2024). https://doi.org/10.1002/advs.202307494
- X. Li, W. Yan, D. Wang, W. Huang, Y. Guo et al., Atomistic mechanisms of the crystallographic orientation-dependent Cu1.8S conductive channel formation in Cu2S-based memristors. Adv. Mater. 37(32), 2501300 (2025). https://doi.org/10.1002/adma.202501300
- Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12(1), 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
- K. Portner, M. Schmuck, P. Lehmann, C. Weilenmann, C. Haffner et al., Analog nanoscale electro-optical synapses for neuromorphic computing applications. ACS Nano 15(9), 14776–14785 (2021). https://doi.org/10.1021/acsnano.1c04654
- J. Han, Z. Yan, Y. Lin, Y. Tao, X. Shan et al., Humidity-mediated synaptic plasticity in Ag loaded porous SiOx based memristor for multimodal neuromorphic sensory system. Mater. Today Nano 25, 100461 (2024). https://doi.org/10.1016/j.mtnano.2024.100461
- J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34(24), 2200481 (2022). https://doi.org/10.1002/adma.202200481
- Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
- F. Sun, M. Tian, X. Sun, T. Xu, X. Liu et al., Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 19(9), 6592–6599 (2019). https://doi.org/10.1021/acs.nanolett.9b02862
- C. Ye, J. Wu, G. He, J. Zhang, T. Deng et al., Physical mechanism and performance factors of metal oxide based resistive switching memory: a review. J. Mater. Sci. Technol. 32(1), 1–11 (2016). https://doi.org/10.1016/j.jmst.2015.10.018
- Y. Li, Y. Xiong, X. Zhang, L. Yin, Y. Yu et al., Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode. Nat. Electron. 8(1), 36–45 (2025). https://doi.org/10.1038/s41928-024-01269-y
- W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor Based on Poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17(21), 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
- L. Li, G. Chen, H. Zheng, W. Meng, S. Jia et al., Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO. Nat. Commun. 12(1), 3863 (2021). https://doi.org/10.1038/s41467-021-24155-z
- X. Hu, M. Tian, T. Xu, X. Sun, B. Sun et al., Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14(1), 559–567 (2020). https://doi.org/10.1021/acsnano.9b06899
- H. Sun, J. Xu, R. Wu, J. Chen, Y. Liu et al., Synergistic entropy engineering with oxygen vacancy: modulating microstructure for extraordinary thermosensitive property in ReNbO4 materials. Small 21(8), 2408952 (2025). https://doi.org/10.1002/smll.202408952
- Z. Peng, F. Wu, L. Jiang, G. Cao, B. Jiang et al., HfO2-based memristor as an artificial synapse for neuromorphic computing with tri-layer HfO2/BiFeO3/HfO2 design. Adv. Funct. Mater. 31(48), 2107131 (2021). https://doi.org/10.1002/adfm.202107131
- Z. Zhao, S. Clima, D. Garbin, R. Degraeve, G. Pourtois et al., Chalcogenide ovonic threshold switching selector. Nano-Micro Lett. 16(1), 81 (2024). https://doi.org/10.1007/s40820-023-01289-x
- Y. Liu, F. Yin, T.-J. Wang, Y. Leng, R. Li et al., Stable, intense supercontinuum light generation at 1 kHz by electric field assisted femtosecond laser filamentation in air. Light. Sci. Appl. 13, 42 (2024). https://doi.org/10.1038/s41377-023-01364-3
- G. Tian, W. Yang, X. Song, D. Zheng, L. Zhang et al., Manipulation of conductive domain walls in confined ferroelectric nanoislands. Adv. Funct. Mater. 29(32), 1807276 (2019). https://doi.org/10.1002/adfm.201807276
- K. Zhang, H. Li, H. Mu, Y. Li, P. Wang et al., Spatially resolved light-induced ferroelectric polarization in α-In2Se3/Te heterojunctions. Adv. Mater. 36(38), 2405233 (2024). https://doi.org/10.1002/adma.202405233
- Y. Li, W. Lin, C. Wang, S. Zhang, Y. He et al., Domain dynamics response to polarization switching in relaxor ferroelectrics. Adv. Mater. 36(47), 2411467 (2024). https://doi.org/10.1002/adma.202411467
- E. Pan, Z. Li, F. Yang, K. Niu, R. Bian et al., Observation and manipulation of two-dimensional topological polar texture confined in moiré interface. Nat. Commun. 16(1), 3026 (2025). https://doi.org/10.1038/s41467-025-58105-w
- Y. Wu, T. Zhang, D. Guo, B. Li, K. Pei et al., Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices. Nat. Commun. 15(1), 10481 (2024). https://doi.org/10.1038/s41467-024-54841-7
- J. Koruza, Transparent crystals with ultrahigh piezoelectricity. Nature 577(7790), 325–326 (2020). https://doi.org/10.1038/d41586-020-00038-z
- X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380(6645), eadg0902 (2023). https://doi.org/10.1126/science.adg0902
- S. Wang, Y. Shen, X. Yang, P. Nan, Y. He et al., Unlocking the phase evolution of the hidden non-polar to ferroelectric transition in HfO2-based bulk crystals. Nat. Commun. 16, 3745 (2025). https://doi.org/10.1038/s41467-025-59018-4
- T. Li, S. Deng, H. Liu, J. Chen, Insights into strain engineering: from ferroelectrics to related functional materials and beyond. Chem. Rev. 124(11), 7045–7105 (2024). https://doi.org/10.1021/acs.chemrev.3c00767
- Q. Shi, E. Parsonnet, X. Cheng, N. Fedorova, R.-C. Peng et al., The role of lattice dynamics in ferroelectric switching. Nat. Commun. 13, 1110 (2022). https://doi.org/10.1038/s41467-022-28622-z
- Y. Yang, M. Wu, X. Zheng, C. Zheng, J. Xu et al., Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Sci. Adv. 7(48), eabh2716 (2021). https://doi.org/10.1126/sciadv.abh2716
- Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai et al., Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 13(1), 778 (2022). https://doi.org/10.1038/s41467-022-28443-0
- Y. Peng, Y. Chen, J. Zhou, C. Luo, W. Tang et al., Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells. Nat. Commun. 16(1), 1252 (2025). https://doi.org/10.1038/s41467-024-55653-5
- Y. Wen, Y. Cao, H. Ren, X. Du, J. Guo et al., Ferroelectric optical memristors enabled by non-volatile electro-optic effect. Adv. Mater. 37(8), e2417658 (2025). https://doi.org/10.1002/adma.202417658
- Z. Liu, H. Wang, M. Li, L. Tao, T.R. Paudel et al., In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature 613(7945), 656–661 (2023). https://doi.org/10.1038/s41586-022-05503-5
- S.-T. Yang, X.-Y. Li, T.-L. Yu, J. Wang, H. Fang et al., High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry. Adv. Funct. Mater. 32(35), 2202366 (2022). https://doi.org/10.1002/adfm.202202366
- J. Zeng, G. Feng, G. Wu, J. Liu, Q. Zhao et al., Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34(19), 2313010 (2024). https://doi.org/10.1002/adfm.202313010
- M.-K. Kim, J.-S. Lee, Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in Hafnia-based oxide-semiconductor transistors. Adv. Mater. 32(12), 1907826 (2020). https://doi.org/10.1002/adma.201907826
- P. Gao, J. Britson, C.T. Nelson, J.R. Jokisaari, C. Duan et al., Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5, 3801 (2014). https://doi.org/10.1038/ncomms4801
- X. Zeng, Y. Liu, W. Weng, L. Hua, L. Tang et al., A molecular pyroelectric enabling broadband photo-pyroelectric effect towards self-driven wide spectral photodetection. Nat. Commun. 14, 5821 (2023). https://doi.org/10.1038/s41467-023-41523-z
- Y. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi et al., Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 32(7), e1906513 (2020). https://doi.org/10.1002/adma.201906513
- Y. Li, J. Fu, X. Mao, C. Chen, H. Liu et al., Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021). https://doi.org/10.1038/s41467-021-26200-3
- H. Kim, S. Oh, H. Choo, D.-H. Kang, J.-H. Park, Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse. ACS Nano 17(17), 17332–17341 (2023). https://doi.org/10.1021/acsnano.3c05337
- J. Gong, Y. Wei, Y. Wang, Z. Feng, J. Yu et al., Brain-inspired multimodal synaptic memory via mechano-photonic plasticized asymmetric ferroelectric heterostructure. Adv. Funct. Mater. 34(48), 2408435 (2024). https://doi.org/10.1002/adfm.202408435
- F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17(4), 349–354 (2018). https://doi.org/10.1038/s41563-018-0034-4
- C. Zhao, Z. Gao, Z. Hong, H. Guo, Z. Cheng et al., Ferroelectric and optoelectronic coupling effects in layered ferroelectric semiconductor-based FETs for visual simulation. Adv. Sci. 12(11), 2413808 (2025). https://doi.org/10.1002/advs.202413808
- X. Yang, L. Han, H. Ning, S. Xu, B. Hao et al., Ultralow-pressure-driven polarization switching in ferroelectric membranes. Nat. Commun. 15, 9281 (2024). https://doi.org/10.1038/s41467-024-53436-6
- Z.-D. Luo, X. Xia, M.-M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
- Y. Park, J.-S. Lee, Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11(9), 8962–8969 (2017). https://doi.org/10.1021/acsnano.7b03347
- L. Wang, S.-R. Lu, J. Wen, Recent advances on neuromorphic systems using phase-change materials. Nanoscale Res. Lett. 12(1), 347 (2017). https://doi.org/10.1186/s11671-017-2114-9
- Q. Wan, F. Zeng, J. Yin, Y. Sun, Y. Hu et al., Phase-change nanoclusters embedded in a memristor for simulating synaptic learning. Nanoscale 11(12), 5684–5692 (2019). https://doi.org/10.1039/C8NR09765H
- H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
- W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4(3), 150–168 (2019). https://doi.org/10.1038/s41578-018-0076-x
- S. Raoux, W. Wełnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110(1), 240–267 (2010). https://doi.org/10.1021/cr900040x
- R. Bez, A. Pirovano, Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semicond. Process. 7(4–6), 349–355 (2004). https://doi.org/10.1016/j.mssp.2004.09.127
- S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39(8), 703–710 (2014). https://doi.org/10.1557/mrs.2014.139
- X. Zhang, L.L. Liu, Crystalline neutral aluminum selenide/telluride: isoelectronic aluminum analogues of carbonyls. J. Am. Chem. Soc. 145(29), 15729–15734 (2023). https://doi.org/10.1021/jacs.3c05954
- S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306–6325 (2015). https://doi.org/10.1002/adfm.201500825
- H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg et al., Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010). https://doi.org/10.1109/jproc.2010.2070050
- K. Ding, J. Wang, Y. Zhou, H. Tian, L. Lu et al., Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366(6462), 210–215 (2019). https://doi.org/10.1126/science.aay0291
- S. Wu, Z. Kou, Q. Lai, S. Lan, S.S. Katnagallu et al., Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries. Nat. Commun. 13(1), 5468 (2022). https://doi.org/10.1038/s41467-022-33257-1
- D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S. Philip Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2012). https://doi.org/10.1021/nl201040y
- N. Youngblood, C. Ríos, E. Gemo, J. Feldmann, Z. Cheng et al., Tunable volatility of Ge2Sb2Te5 in integrated photonics. Adv. Funct. Mater. 29(11), 1807571 (2019). https://doi.org/10.1002/adfm.201807571
- I. Boybat, M. Le Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
- Q. Wang, R. Luo, Y. Wang, W. Fang, L. Jiang et al., Set/reset bilaterally controllable resistance switching Ga-doped Ge2Sb2Te5 long-term electronic synapses for neuromorphic computing. Adv. Funct. Mater. 33(19), 2213296 (2023). https://doi.org/10.1002/adfm.202213296
- M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
- S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13(1), 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
- S. Zhang, X. Chen, K. Liu, H. Li, Y. Xu et al., Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 3(1), 7 (2022). https://doi.org/10.1186/s43074-022-00053-5
- A. Khanehzar, N. Zamani, A. Hatef, Tunable NIR nano-absorber based on photothermal response and thermoplasmonic modulation of Au@GSST core–shell nanop. Photonics Nanostruct. Fundam. Appl. 64, 101369 (2025). https://doi.org/10.1016/j.photonics.2025.101369
- G. Li, D. Xie, H. Zhong, Z. Zhang, X. Fu et al., Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13(1), 1729 (2022). https://doi.org/10.1038/s41467-022-29456-5
- F. Zergani, Z. Tavangar, Gas sensing behavior and adsorption mechanism on χ3 borophene surface. Chem. Eng. J. 431, 133947 (2022). https://doi.org/10.1016/j.cej.2021.133947
- S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16(1), 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
- Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550(7677), 487–491 (2017). https://doi.org/10.1038/nature24043
- P. Zhuang, W. Ma, J. Liu, W. Cai, W. Lin, Progressive RESET induced by Joule heating in hBN RRAMs. Appl. Phys. Lett. 118(14), 143101 (2021). https://doi.org/10.1063/5.0040902
- K.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
- Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
- F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
- H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12(3), 1247–1268 (2020). https://doi.org/10.1039/c9nr08313h
- N.K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia et al., Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4(4), 1800589 (2019). https://doi.org/10.1002/admt.201800589
- L. Zhang, T. Gong, H. Wang, Z. Guo, H. Zhang, Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11(26), 12413–12435 (2019). https://doi.org/10.1039/c9nr02886b
- P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16(1), 572–576 (2016). https://doi.org/10.1021/acs.nanolett.5b04260
- E. Lee, J. Kim, S. Bhoyate, K. Cho, W. Choi, Realizing scalable two-dimensional MoS2 Synaptic devices for neuromorphic computing. Chem. Mater. 32(24), 10447–10455 (2020). https://doi.org/10.1021/acs.chemmater.0c03112
- X. Yu, C. Cheng, J. Liang, M. Wang, B. Huang et al., Graphene-assisting nonvolatile vanadium dioxide phase transition for neuromorphic machine vision. Adv. Funct. Mater. 34(16), 2312481 (2024). https://doi.org/10.1002/adfm.202312481
- R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
- T. Danz, T. Domröse, C. Ropers, Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371(6527), 371–374 (2021). https://doi.org/10.1126/science.abd2774
- X. Liang, D. Su, Y. Tang, B. Xi, C. Yang et al., Lab-on-device investigation of phase transition in MoOx semiconductors. Nat. Commun. 16(1), 4784 (2025). https://doi.org/10.1038/s41467-025-60050-7
- D. Afanasiev, J.R. Hortensius, B.A. Ivanov, A. Sasani, E. Bousquet et al., Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20(5), 607–611 (2021). https://doi.org/10.1038/s41563-021-00922-7
- F. Pressacco, D. Sangalli, V. Uhlíř, D. Kutnyakhov, J.A. Arregi et al., Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics. Nat. Commun. 12(1), 5088 (2021). https://doi.org/10.1038/s41467-021-25347-3
- D.K. Lee, S. Lee, H. Sim, Y. Park, S.-Y. Choi et al., Piezo strain-controlled phase transition in single-crystalline Mott switches for threshold-manipulated leaky integrate-and-fire neurons. Sci. Adv. 10(14), eadk8836 (2024). https://doi.org/10.1126/sciadv.adk8836
- T. Shi, X. Gao, H. Liu, X. Wang, Multi-energy conversion and electromagnetic shielding enabled by carbonized polyimide/kevlar/graphene Oxide@ZIF-67 bidirectional complex aerogel-encapsulated phase-change materials. Nano-Micro Lett. 17(1), 236 (2025). https://doi.org/10.1007/s40820-025-01761-w
- S. Gao, Y. Yang, A.S. Falchevskaya, V.V. Vinogradov, B. Yuan et al., Phase transition liquid metal enabled emerging biomedical technologies and applications. Adv. Sci. 11(37), 2306692 (2024). https://doi.org/10.1002/advs.202306692
- J. Huang, G. Gao, X. Wen, M. Yuan, N. Hou et al., Nonreciprocal transmission of circularly polarized light via photothermal phase transition in cholesteric liquid crystals. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503365
- D. Kazenwadel, N. Neathery, P. Baum, Canalized light creates directional and switchable surface structures in vanadium dioxide. Nat. Commun. 16(1), 3960 (2025). https://doi.org/10.1038/s41467-025-58929-6
- J. Li, X. Yang, Z. Zhang, W. Yang, X. Duan et al., Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. Nat. Mater. 23(10), 1326–1338 (2024). https://doi.org/10.1038/s41563-024-01989-8
- B. Wang, X. He, J. Luo, Y. Chen, Z. Zhang et al., Ultralow-pressure mechanical-motion switching of ferroelectric polarization. Sci. Adv. 11(18), eadr5337 (2025). https://doi.org/10.1126/sciadv.adr5337
- C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi et al., Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12(1), 96 (2021). https://doi.org/10.1038/s41467-020-20365-z
- S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok et al., Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13(1), 1696 (2022). https://doi.org/10.1038/s41467-022-29374-6
- P. Tong, L. Zhou, K. Du, M. Zhang, Y. Sun et al., Thermal triggering for multi-state switching of polar topologies. Nat. Phys. 21(3), 464–470 (2025). https://doi.org/10.1038/s41567-024-02729-0
- S. Wu, T. Li, Z.-Y. Zhang, T. Li, R. Wang, Photoswitchable phase change materials for unconventional thermal energy storage and upgrade. Matter 4(11), 3385–3399 (2021). https://doi.org/10.1016/j.matt.2021.09.017
- Q. Wang, Y. Wang, Y. Wang, L. Jiang, J. Zhao et al., Long-term and short-term plasticity independently mimicked in highly reliable Ru-doped Ge2Sb2Te5 electronic synapses. InfoMat 6(8), e12543 (2024). https://doi.org/10.1002/inf2.12543
- C. Yang, Y. Huang, K. Pei, X. Long, L. Yang et al., Current-controllable and reversible multi-resistance-state based on domain wall number transition in 2D ferromagnet Fe3GeTe2. Adv. Mater. 36(18), 2311831 (2024). https://doi.org/10.1002/adma.202311831
- X. Liu, T. Ji, H. Guo, H. Wang, J. Li et al., Effects of crystallinity and defects of layered carbon materials on potassium storage: a review and prediction. Electrochem. Energy Rev. 5(2), 401–433 (2022). https://doi.org/10.1007/s41918-021-00114-6
- S.T. Keene, J.E.M. Laulainen, R. Pandya, M. Moser, C. Schnedermann et al., Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22(9), 1121–1127 (2023). https://doi.org/10.1038/s41563-023-01601-5
- S. Deng, H. Yu, T.J. Park, A.N.M.N. Islam, S. Manna et al., Selective area doping for Mott neuromorphic electronics. Sci. Adv. 9(11), eade4838 (2023). https://doi.org/10.1126/sciadv.ade4838
- Y. Li, Y. Xiong, B. Zhai, L. Yin, Y. Yu et al., Ag-doped non-imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci. Adv. 10(11), eadk9474 (2024). https://doi.org/10.1126/sciadv.adk9474
- L. Zou, Z. Peng, H. Sun, Y. Yi, C. Zhu et al., Bio-realistic synaptic-replicated “V” type oxygen vacancy memristor. Adv. Funct. Mater. 35(9), 2416325 (2025). https://doi.org/10.1002/adfm.202416325
- D. Yuan, E. Plunkett, P.H. Nguyen, D. Rawlings, M.L. Le et al., Double doping of semiconducting polymers using ion-exchange with a dianion. Adv. Funct. Mater. 33(29), 2300934 (2023). https://doi.org/10.1002/adfm.202300934
- L. Xiang, Z. He, C. Yan, Y. Zhao, Z. Li et al., Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation. Nat. Nanotechnol. 19(8), 1122–1129 (2024). https://doi.org/10.1038/s41565-024-01653-x
- J.J. Samuel, A. Garudapalli, C. Gangadharappa, S.R. Mahapatra, S. Patil et al., Charge polarity-dependent ion-insertion asymmetry during electrochemical doping of an ambipolar π-conjugated polymer. Nat. Commun. 13(1), 7788 (2022). https://doi.org/10.1038/s41467-022-35408-w
- J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
- S. Zhou, T. Liu, M. Strømme, C. Xu, Electrochemical doping and structural modulation of conductive metal–organic frameworks. Angew. Chem. Int. Ed. 63(14), e202318387 (2024). https://doi.org/10.1002/anie.202318387
- D. Lee, M. Kim, S. Park, S. Lee, J. Sung et al., Inter-ion mutual repulsion control for nonvolatile artificial synapse. Adv. Funct. Mater. 35(11), 2412012 (2025). https://doi.org/10.1002/adfm.202412012
- J. Sung, M. Kim, S. Chung, Y. Jang, S. Kim et al., Modulating alkyl groups in copolymer to control ion transport in electrolyte-gated organic transistors for neuromorphic computing. Small Struct. 6(1), 2400319 (2025). https://doi.org/10.1002/sstr.202400319
- K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17(7), 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
- Y. Wang, W. Shan, H. Li, Y. Zhong, S. Wustoni et al., An optoelectrochemical synapse based on a single-component n-type mixed conductor. Nat. Commun. 16, 1615 (2025). https://doi.org/10.1038/s41467-025-56814-w
- M.-K. Song, H. Lee, J.H. Yoon, Y.-W. Song, S.D. Namgung et al., Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing. J. Mater. Sci. Technol. 119, 150–155 (2022). https://doi.org/10.1016/j.jmst.2021.12.016
- G. Liu, Q. Li, W. Shi, Y. Liu, K. Liu et al., Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 32(27), 2200959 (2022). https://doi.org/10.1002/adfm.202200959
- P.C. Harikesh, D. Tu, S. Fabiano, Organic electrochemical neurons for neuromorphic perception. Nat. Electron. 7(7), 525–536 (2024). https://doi.org/10.1038/s41928-024-01200-5
- H. Zhang, S. Wang, L. Wang, S. Li, H. Liu et al., Bio-inspired retina by regulating ion-confined transport in hydrogels. Adv. Mater. 37(18), e2500809 (2025). https://doi.org/10.1002/adma.202500809
- C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
- X. Liu, S. Wang, Z. Di, H. Wu, C. Liu et al., An optoelectronic synapse based on two-dimensional violet phosphorus heterostructure. Adv. Sci. 10(22), 2301851 (2023). https://doi.org/10.1002/advs.202301851
- F. Vasile, L. Petreanu, The perfect timing for multimodal integration is not the same in all L5 neurons. Neuron 110(22), 3648–3650 (2022). https://doi.org/10.1016/j.neuron.2022.09.034
- S. Pazos, K. Zhu, M.A. Villena, O. Alharbi, W. Zheng et al., Synaptic and neural behaviours in a standard silicon transistor. Nature 640(8057), 69–76 (2025). https://doi.org/10.1038/s41586-025-08742-4
- L. Shan, Q. Chen, R. Yu, C. Gao, L. Liu et al., A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 14(1), 2648 (2023). https://doi.org/10.1038/s41467-023-38396-7
- H. Bian, X. Qin, Y. Wu, Z. Yi, S. Liu et al., Multimodal tuning of synaptic plasticity using persistent luminescent memitters. Adv. Mater. 34(25), e2101895 (2022). https://doi.org/10.1002/adma.202101895
- X. Wang, S. Yang, Z. Qin, B. Hu, L. Bu et al., Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 35(40), 2303699 (2023). https://doi.org/10.1002/adma.202303699
- Y. Jo, Y. Lee, J. Kwon, S. Kim, G. Ryu et al., 3D active-matrix multimodal sensor arrays for independent detection of pressure and temperature. Sci. Adv. 11(3), eads4516 (2025). https://doi.org/10.1126/sciadv.ads4516
- Z. Yu, N. Fan, Z. Fu, B. He, S. Yan et al., Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat. Commun. 15, 3438 (2024). https://doi.org/10.1038/s41467-024-47776-6
- B. Yang, Y. Liu, R.-J. Jiang, S. Lan, S.-Z. Liu et al., Enhanced energy storage in antiferroelectrics via antipolar frustration. Nature 637(8048), 1104–1110 (2025). https://doi.org/10.1038/s41586-024-08505-7
- R. Bian, R. He, E. Pan, Z. Li, G. Cao et al., Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385(6704), 57–62 (2024). https://doi.org/10.1126/science.ado1744
- S. Jia, J. Liao, Q. Yang, R. Peng, J. Wang et al., Developing HZO-based superlattices to enhance fatigue-resistance by charge injection suppression. Adv. Funct. Mater. 35(34), 2501470 (2025). https://doi.org/10.1002/adfm.202501470
- J. Lv, X. Luo, J. Liu, B. Zhao, Y. Cheng et al., Interfacial charge transfer and defect engineering in the MoTe2/graphene heterostructure for tailored carrier kinetics and nonlinear absorption. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505740
- C. Liu, Y. Si, H. Zhang, C. Wu, S. Deng et al., Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 382(6676), 1265–1269 (2023). https://doi.org/10.1126/science.adj9669
- Maryada, S. Soldado-Magraner, M. Sorbaro, R. Laje, D.V. Buonomano et al., Stable recurrent dynamics in heterogeneous neuromorphic computing systems using excitatory and inhibitory plasticity. Nat. Commun. 16(1), 5522 (2025). https://doi.org/10.1038/s41467-025-60697-2
- H. Hou, Q. Zheng, Y. Zhao, A. Pouget, Y. Gu, Neural correlates of optimal multisensory decision making under time-varying reliabilities with an invariant linear probabilistic population code. Neuron 104(5), 1010-1021.e10 (2019). https://doi.org/10.1016/j.neuron.2019.08.038
- G. Milano, F. Michieletti, D. Pilati, C. Ricciardi, E. Miranda, Self-organizing neuromorphic nanowire networks as stochastic dynamical systems. Nat. Commun. 16(1), 3509 (2025). https://doi.org/10.1038/s41467-025-58741-2
- M. Wei, N. Wu, B. Li, J. Liu, F. Pan et al., From MXene to multimodal-responsive smart, durable electromagnetic interference shielding textiles. Adv. Funct. Mater. 35(28), 2424312 (2025). https://doi.org/10.1002/adfm.202424312
- X. Zhu, Y. Wang, E. Cambria, I. Rida, J.S. López et al., RMER-DT: robust multimodal emotion recognition in conversational contexts based on diffusion and transformers. Inf. Fusion 123, 103268 (2025). https://doi.org/10.1016/j.inffus.2025.103268
- D. Wang, J. Liu, R. Liu, X. Fan, An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection. Inf. Fusion 98, 101828 (2023). https://doi.org/10.1016/j.inffus.2023.101828
- M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. N
References
S. Wang, Y. Wang, X. Cai, B. Wang, C. Zhao et al., A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors. Nat. Electron. 8(3), 254–266 (2025). https://doi.org/10.1038/s41928-025-01357-7
Y. Peng, Y. Wu, J. Bian, J. Xu, Hybrid federated learning for multimodal IoT systems. IEEE Internet Things J. 11(21), 34055–34064 (2024). https://doi.org/10.1109/JIOT.2024.3443267
R. Khan, N. Ilyas, M.Z.M. Shamim, M.I. Khan, M. Sohail et al., Oxide-based resistive switching-based devices: fabrication, influence parameters and applications. J. Mater. Chem. C 9(44), 15755–15788 (2021). https://doi.org/10.1039/d1tc03420k
G. Gong, Y. Zhou, Q. Li, W. Zhao, S. Geng et al., Bioinspired adaptive sensors: a review on current developments in theory and application. Adv. Mater. (2025). https://doi.org/10.1002/adma.202505420
Z. Zhong, Y. Zhuang, X. Cheng, J. Zheng, Q. Yang et al., Ionic-electronic photodetector for vision assistance with in-sensor image processing. Nat. Commun. 16(1), 7096 (2025). https://doi.org/10.1038/s41467-025-62563-7
J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
I. Krauhausen, S. Griggs, I. McCulloch, J.M.J. den Toonder, P. Gkoupidenis et al., Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics. Nat. Commun. 15(1), 4765 (2024). https://doi.org/10.1038/s41467-024-48881-2
H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34(31), 2202622 (2022). https://doi.org/10.1002/adma.202202622
Y. Guo, H. Li, Y. Li, X. Wei, S. Gao et al., Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 32(44), 2203585 (2022). https://doi.org/10.1002/adfm.202203585
G. Zhou, J. Li, Q. Song, L. Wang, Z. Ren et al., Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Nat. Commun. 14(1), 8489 (2023). https://doi.org/10.1038/s41467-023-43944-2
D. Kudithipudi, C. Schuman, C.M. Vineyard, T. Pandit, C. Merkel et al., Neuromorphic computing at scale. Nature 637(8047), 801–812 (2025). https://doi.org/10.1038/s41586-024-08253-8
Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11(39), 2402582 (2024). https://doi.org/10.1002/advs.202402582
P. Li, M. Zhang, Q. Zhou, Q. Zhang, D. Xie et al., Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15, 3257 (2024). https://doi.org/10.1038/s41467-024-47580-2
S. Wang, S. Gao, C. Tang, E. Occhipinti, C. Li et al., Memristor-based adaptive neuromorphic perception in unstructured environments. Nat. Commun. 15(1), 4671 (2024). https://doi.org/10.1038/s41467-024-48908-8
Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
F.L. Hoch, Q. Wang, K.-G. Lim, D.K. Loke, Multifunctional organic materials, devices, and mechanisms for neuroscience, neuromorphic computing, and bioelectronics. Nano-Micro Lett. 17(1), 251 (2025). https://doi.org/10.1007/s40820-025-01756-7
B. Li, F. Bao, Y. Hou, F. Li, H. Li et al., Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat. Commun. 15(1), 6541 (2024). https://doi.org/10.1038/s41467-024-50837-5
N. Fei, Z. Lu, Y. Gao, G. Yang, Y. Huo et al., Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13(1), 3094 (2022). https://doi.org/10.1038/s41467-022-30761-2
X. Tang, J. Zhang, Y. He, X. Zhang, Z. Lin et al., Explainable multi-task learning for multi-modality biological data analysis. Nat. Commun. 14, 2546 (2023). https://doi.org/10.1038/s41467-023-37477-x
H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12, 1120 (2021). https://doi.org/10.1038/s41467-021-21404-z
Y. Liang, H. Li, H. Tang, C. Zhang, D. Men et al., Bioinspired electrolyte-gated organic synaptic transistors: from fundamental requirements to applications. Nano-Micro Lett. 17(1), 198 (2025). https://doi.org/10.1007/s40820-025-01708-1
I. Rabinowitch, D.A. Colón-Ramos, M. Krieg, Understanding neural circuit function through synaptic engineering. Nat. Rev. Neurosci. 25(2), 131–139 (2024). https://doi.org/10.1038/s41583-023-00777-8
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
H.L. Atwood, S. Karunanithi, Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3(7), 497–516 (2002). https://doi.org/10.1038/nrn876
F. Zenke, E.J. Agnes, W. Gerstner, Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015). https://doi.org/10.1038/ncomms7922
C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11(1), 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
I. Krauhausen, D.A. Koutsouras, A. Melianas, S.T. Keene, K. Lieberth et al., Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Sci. Adv. 7(50), eabl5068 (2021). https://doi.org/10.1126/sciadv.abl5068
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
G. Zhang, Y. Chen, Z. Zheng, R. Shao, J. Zhou et al., Thin film ferroelectric photonic-electronic memory. Light Sci. Appl. 13, 206 (2024). https://doi.org/10.1038/s41377-024-01555-6
Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
G. Ding, S.-T. Han, Y. Zhou, A reconfigurable single-gate transistor. Nat. Electron. 6(11), 797–798 (2023). https://doi.org/10.1038/s41928-023-01077-w
P. Wang, J. Li, W. Xue, W. Ci, F. Jiang et al., Integrated in-memory sensor and computing of artificial vision based on full-vdW optoelectronic ferroelectric field-effect transistor. Adv. Sci. 11(3), 2305679 (2024). https://doi.org/10.1002/advs.202305679
S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
T. Wang, M. Wang, L. Yang, Z. Li, X.J. Loh et al., Cyber–physiochemical interfaces. Adv. Mater. 32(8), 1905522 (2020). https://doi.org/10.1002/adma.201905522
D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
X. Liu, C. Sun, X. Ye, X. Zhu, C. Hu et al., Neuromorphic nanoionics for human-machine interaction: from materials to applications. Adv. Mater. 36(37), e2311472 (2024). https://doi.org/10.1002/adma.202311472
L. Chen, S. Karilanova, S. Chaki, C. Wen, L. Wang et al., Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 384(6696), 660–665 (2024). https://doi.org/10.1126/science.adf3708
X. Liu, K. Xing, C.S. Tang, S. Sun, P. Chen et al., Contact resistance and interfacial engineering: advances in high-performance 2D-TMD based devices. Prog. Mater. Sci. 148, 101390 (2025). https://doi.org/10.1016/j.pmatsci.2024.101390
F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
Z. Li, Z. Li, W. Tang, J. Yao, Z. Dou et al., Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15(1), 7275 (2024). https://doi.org/10.1038/s41467-024-51609-x
J. Shi, Y. Lin, Z. Wang, X. Shan, Y. Tao et al., Adaptive processing enabled by sodium alginate based complementary memristor for neuromorphic sensory system. Adv. Mater. 36(32), 2314156 (2024). https://doi.org/10.1002/adma.202314156
X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
S. DeWeerdt, How to map the brain. Nature 571(7766), S6–S8 (2019). https://doi.org/10.1038/d41586-019-02208-0
Y. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu et al., Two-dimensional metal-organic framework film for realizing optoelectronic synaptic plasticity. Angew. Chem. Int. Ed. 60(32), 17440–17445 (2021). https://doi.org/10.1002/anie.202106519
H. Kasai, N.E. Ziv, H. Okazaki, S. Yagishita, T. Toyoizumi, Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22(7), 407–422 (2021). https://doi.org/10.1038/s41583-021-00467-3
S. Pidathala, S. Liao, Y. Dai, X. Li, C. Long et al., Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2. Nature 623(7989), 1086–1092 (2023). https://doi.org/10.1038/s41586-023-06727-9
D.J. Weingarten, A. Shrestha, K. Juda-Nelson, S.A. Kissiwaa, E. Spruston et al., Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 611(7935), 320–325 (2022). https://doi.org/10.1038/s41586-022-05337-1
G. Dellaferrera, S. Woźniak, G. Indiveri, A. Pantazi, E. Eleftheriou, Introducing principles of synaptic integration in the optimization of deep neural networks. Nat. Commun. 13(1), 1885 (2022). https://doi.org/10.1038/s41467-022-29491-2
X. Zheng, M. Dong, Q. Li, L. Wang, Y. Liu et al., Retina-inspired artificial synapses with UV modulated and immediate switchable plasticity. Adv. Funct. Mater. 35(30), 2420612 (2025). https://doi.org/10.1002/adfm.202420612
V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15(7), 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z
Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), 2004659 (2020). https://doi.org/10.1002/adma.202004659
W. Huh, D. Lee, C.-H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32(51), 2002092 (2020). https://doi.org/10.1002/adma.202002092
M. Xu, X. Chen, Y. Guo, Y. Wang, D. Qiu et al., Reconfigurable neuromorphic computing: materials, devices, and integration. Adv. Mater. 35(51), 2301063 (2023). https://doi.org/10.1002/adma.202301063
L. Li, R. Long, T. Bertolini, O.V. Prezhdo, Sulfur adatom and vacancy accelerate charge recombination in MoS2 but by different mechanisms: time-domain ab initio analysis. Nano Lett. 17(12), 7962–7967 (2017). https://doi.org/10.1021/acs.nanolett.7b04374
X. Zhao, X. Bai, R. Zhai, Y. Gao, M. Gu et al., Trap engineering in violet antimony phosphorus: modulating photoelectron transfer pathways for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. Energy 370, 125166 (2025). https://doi.org/10.1016/j.apcatb.2025.125166
K. Kobbekaduwa, S. Shrestha, P. Adhikari, E. Liu, L. Coleman et al., In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nat. Commun. 12, 1636 (2021). https://doi.org/10.1038/s41467-021-21946-2
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
A. Block, A. Principi, N.C.H. Hesp, A.W. Cummings, M. Liebel et al., Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16(11), 1195–1200 (2021). https://doi.org/10.1038/s41565-021-00957-6
T. Yamamoto, A. Chikamatsu, S. Kitagawa, N. Izumo, S. Yamashita et al., Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides. Nat. Commun. 11(1), 5923 (2020). https://doi.org/10.1038/s41467-020-19217-7
M. Li, S. Wang, A. Wood, J.D. Yeager, S.P. Stepanoff et al., Defect repairing in lead bromide perovskite single crystals with biasing and bromine for X-ray photon-counting detectors. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02310-x
T. Wei, H. Jiang, Y. Hu, Q. Zhang, L. Zeng et al., Photodetection-photosynapse multimodal integrated device for synergistic applications in encrypted optical communication and image processing. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512960
H. Rao, S. Ye, T. Salim, R. Mayengbam, Y. Guo et al., Selective templating growth of chemically inert low-dimensional interfaces for perovskite solar cells. Nat. Energy 10(8), 991–1000 (2025). https://doi.org/10.1038/s41560-025-01815-8
J. Deng, Y. Liu, M. Li, S. Xu, Y. Lun et al., Thickness-dependent in-plane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6. Small 16(1), 1904529 (2020). https://doi.org/10.1002/smll.201904529
H. Zhang, Z. Li, Y. Wang, A.D. Fortes, T.G. Saunders et al., Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain. Nat. Commun. 16(1), 1720 (2025). https://doi.org/10.1038/s41467-025-56920-9
Z. Xu, L. Zeng, J. Hu, Z. Wang, P. Zhang et al., Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022). https://doi.org/10.1016/j.nanoen.2021.106658
Y. Yan, X. Liang, L. Wang, Y. Zhang, J. Zhou et al., Flexoelectric manipulation of ferroelectric polarization in self-strained tellurium. Sci. Adv. 11(31), eadu1716 (2025). https://doi.org/10.1126/sciadv.adu1716
Y. Liu, Y. Zhou, H. Qin, T. Yang, X. Chen et al., Electro-thermal actuation in percolative ferroelectric polymer nanocomposites. Nat. Mater. 22(7), 873–879 (2023). https://doi.org/10.1038/s41563-023-01564-7
S.M. Park, B. Wang, S. Das, S.C. Chae, J.-S. Chung et al., Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 13(5), 366–370 (2018). https://doi.org/10.1038/s41565-018-0083-5
P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang et al., Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat. Commun. 15(1), 1012 (2024). https://doi.org/10.1038/s41467-024-45320-0
R. Guo, Q. Feng, K. Ma, G.-H. Lee, M. Jamal et al., Memsensing by surface ion migration within Debye length. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02312-9
Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai et al., Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572(7771), 634–638 (2019). https://doi.org/10.1038/s41586-019-1504-9
H. Tan, Z. Ni, W. Peng, S. Du, X. Liu et al., Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy 52, 422–430 (2018). https://doi.org/10.1016/j.nanoen.2018.08.018
D. Li, C. Li, N. Ilyas, X. Jiang, F. Liu et al., Color-recognizing Si-based photonic synapse for artificial visual system. Adv. Intell. Syst. 2(11), 2000107 (2020). https://doi.org/10.1002/aisy.202000107
Y. Li, S. Cai, W.K. Lai, C. Wang, L. Rogée et al., Impurity-induced robust trionic effect in layered violet phosphorus. Adv. Opt. Mater. 10(1), 2101538 (2022). https://doi.org/10.1002/adom.202101538
P. Wang, H. Mu, T. Yun, D. Ji, B. Wei et al., High rectification and gate-tunable photoresponse in 1D–2D lateral van der Waals heterojunctions. Innov. Mater. 3(1), 100113 (2025). https://doi.org/10.59717/j.xinn-mater.2024.100113
H.-N. Wang, F. An, C.Y. Wong, K. Yin, J. Liu et al., Solution-processable ordered defect compound semiconductors for high-performance electronics. Sci. Adv. 10(41), eadr8636 (2024). https://doi.org/10.1126/sciadv.adr8636
M. Kan, C. Yang, Q. Wang, Q. Zhang, Y. Yan et al., Defect-assisted electron tunneling for photoelectrochemical CO2 reduction to ethanol at low overpotentials. Adv. Energy Mater. 12(26), 2201134 (2022). https://doi.org/10.1002/aenm.202201134
D. Wu, J. Guo, C. Wang, X. Ren, Y. Chen et al., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15(6), 10119–10129 (2021). https://doi.org/10.1021/acsnano.1c02007
U.Y. Won, Q. An Vu, S.B. Park, M.H. Park, V. Dam Do et al., Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat. Commun. 14(1), 3070 (2023). https://doi.org/10.1038/s41467-023-38667-3
L. Danial, E. Pikhay, E. Herbelin, N. Wainstein, V. Gupta et al., Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2(12), 596–605 (2019). https://doi.org/10.1038/s41928-019-0331-1
W. Wang, L. Danial, Y. Li, E. Herbelin, E. Pikhay et al., A memristive deep belief neural network based on silicon synapses. Nat. Electron. 5(12), 870–880 (2022). https://doi.org/10.1038/s41928-022-00878-9
C. Gao, M.-P. Lee, M. Li, K.-C. Lee, F.-S. Yang et al., Mimic drug dosage modulation for neuroplasticity based on charge-trap layered electronics. Adv. Funct. Mater. 31(5), 2005182 (2021). https://doi.org/10.1002/adfm.202005182
L. Qian, Y. Sun, M. Wu, C. Li, D. Xie et al., A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10(15), 6837–6843 (2018). https://doi.org/10.1039/C8NR00914G
J. Hao, Y.-H. Kim, S.N. Habisreutinger, S.P. Harvey, E.M. Miller et al., Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 7(18), eabf1959 (2021). https://doi.org/10.1126/sciadv.abf1959
Y. Li, M. Zhao, X. Ma, L. Zhang, S. Zhao et al., Reconfigurable, nonvolatile, optoelectronic synaptic memtransistor based on MoS2/Te van der Waals heterostructures. Adv. Funct. Mater. 35(34), 2423333 (2025). https://doi.org/10.1002/adfm.202423333
Y. Liu, L. Wu, Q. Liu, L. Liu, S. Ke et al., Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 32(14), 2110900 (2022). https://doi.org/10.1002/adfm.202110900
H.-C. Chang, C.-L. Liu, W.-C. Chen, Flexible nonvolatile transistor memory devices based on one-dimensional electrospun P3HT: Au hybrid nanofibers. Adv. Funct. Mater. 23(39), 4960–4968 (2013). https://doi.org/10.1002/adfm.201300283
J. Zhang, M. Xie, Y. Xin, C. Han, L. Xie et al., Organophosphine-sandwiched copper iodide cluster enables charge trapping. Angew. Chem. Int. Ed. 60(47), 24894–24900 (2021). https://doi.org/10.1002/anie.202111320
B. Cai, H. Song, A. Brnovic, M.V. Pavliuk, L. Hammarström et al., Promoted charge separation and long-lived charge-separated state in porphyrin-viologen dyad nanops. J. Am. Chem. Soc. 145(34), 18687–18692 (2023). https://doi.org/10.1021/jacs.3c04372
H. Chen, L. Shan, C. Gao, C. Chen, D. Liu et al., Artificial multisensory system with optical feedback for multimodal perceptual imaging. Chem. Eng. J. 487, 150542 (2024). https://doi.org/10.1016/j.cej.2024.150542
C. Qian, Y. Choi, S. Kim, S. Kim, Y.J. Choi et al., Risk-perceptional and feedback-controlled response system based on NO2-detecting artificial sensory synapse. Adv. Funct. Mater. 32(18), 2112490 (2022). https://doi.org/10.1002/adfm.202112490
H. Fang, S. Ma, J. Wang, L. Zhao, F. Nie et al., Multimodal in-sensor computing implemented by easily-fabricated oxide-heterojunction optoelectronic synapses. Adv. Funct. Mater. 34(49), 2409045 (2024). https://doi.org/10.1002/adfm.202409045
S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9(1), 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
Y. Zheng, S. Ghosh, S. Das, A butterfly-inspired multisensory neuromorphic platform for integration of visual and chemical cues. Adv. Mater. 36(13), 2307380 (2024). https://doi.org/10.1002/adma.202307380
H. Wan, J. Zhao, L.-W. Lo, Y. Cao, N. Sepúlveda et al., Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 15(9), 14587–14597 (2021). https://doi.org/10.1021/acsnano.1c04298
P. Wang, W. Xue, J. Zeng, W. Ci, Q. Chen et al., Wavelength-selective photodetector and neuromorphic visual sensor utilizing intrinsic defect semiconductor. Adv. Funct. Mater. 34(46), 2407746 (2024). https://doi.org/10.1002/adfm.202407746
M. Dong, Y. Zhang, J. Zhu, X. Zhu, J. Zhao et al., All-in-one 2D molecular crystal optoelectronic synapse for polarization-sensitive neuromorphic visual system. Adv. Mater. 36(40), 2409550 (2024). https://doi.org/10.1002/adma.202409550
V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(7693), 500–504 (2018). https://doi.org/10.1038/nature25747
J.H. Nam, S. Oh, H.Y. Jang, O. Kwon, H. Park et al., Low power MoS2/Nb2O5 memtransistor device with highly reliable heterosynaptic plasticity. Adv. Funct. Mater. 31(40), 2170294 (2021). https://doi.org/10.1002/adfm.202170294
F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
F. Bi, Q. Meng, Y. Zhang, H. Chen, B. Jiang et al., Engineering triple O-Ti-O vacancy associates for efficient water-activation catalysis. Nat. Commun. 16(1), 851 (2025). https://doi.org/10.1038/s41467-025-56190-5
Y. Men, Z. Qin, Z. Yang, P. Zhang, M. Li et al., Antibacterial defective-ZIF-8/PPY/BC-based flexible electronics as stress-strain and NO2 gas sensors. Adv. Funct. Mater. 34(27), 2316633 (2024). https://doi.org/10.1002/adfm.202316633
G. Huangfu, J. Wang, H. Zhang, J. Chen, Z. Liu et al., Deciphering the effect of defect dipoles on the polarization and electrostrain behavior in perovskite ferroelectrics. Nano Lett. 24(39), 12148–12155 (2024). https://doi.org/10.1021/acs.nanolett.4c03042
C. Liu, J. Rao, Z. Sun, W. Lu, J.P. Best et al., Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes. Nat. Commun. 15(1), 9283 (2024). https://doi.org/10.1038/s41467-024-53349-4
L. Qiao, X. Gao, K. Ren, C. Qiu, J. Liu et al., Designing transparent piezoelectric metasurfaces for adaptive optics. Nat. Commun. 15(1), 805 (2024). https://doi.org/10.1038/s41467-024-45088-3
N. Zheng, J. Li, H. Sun, Y. Zang, P. Jiao et al., Ferroelectric tunnel junctions integrated on semiconductors with enhanced fatigue resistance. Sci. Adv. 11(15), eads0724 (2025). https://doi.org/10.1126/sciadv.ads0724
Z. Dong, M. Huo, J. Li, J. Li, P. Li et al., Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7-δ. Nature 630(8018), 847–852 (2024). https://doi.org/10.1038/s41586-024-07482-1
Y. Deng, S. Liu, X. Ma, S. Guo, B. Zhai et al., Intrinsic defect-driven synergistic synaptic heterostructures for gate-free neuromorphic phototransistors. Adv. Mater. 36(19), e2309940 (2024). https://doi.org/10.1002/adma.202309940
K. Chen, K. Pan, S. He, R. Liu, Z. Zhou et al., Mimicking bidirectional inhibitory synapse using a porous-confined ionic memristor with electrolyte/tris(4-aminophenyl)amine neurotransmitter. Adv. Sci. 11(19), 2400966 (2024). https://doi.org/10.1002/advs.202400966
J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
J. Qin, F. Pei, R. Wang, L. Wu, Y. Han et al., Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 wh kg−1 lithium metal batteries. Adv. Mater. 36(21), 2312773 (2024). https://doi.org/10.1002/adma.202312773
X. Jiang, R. Wang, Y. Tang, W. Di, W. Wang et al., Sulfur vacancy-rich MoS2 flower-like microsphere with synchronously tunable electromagnetic and chemical effects for boosting semiconductor SERS. Adv. Funct. Mater. 35(15), 2418412 (2025). https://doi.org/10.1002/adfm.202418412
R. Nie, Q. Jia, Y. Li, C. Yan, X. Liu et al., Implantable biophotonic device for wirelessly cancer real-time monitoring and modulable treatment. Adv. Sci. 12(26), 2503778 (2025). https://doi.org/10.1002/advs.202503778
L. Zhang, F. Yuan, J. Xi, B. Jiao, H. Dong et al., Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy. Adv. Funct. Mater. 30(40), 2001834 (2020). https://doi.org/10.1002/adfm.202001834
B. Zhang, Z. Hu, J. Su, Z. Gong, X. Guo et al., Inhibiting ion migration and stabilizing crystal-phase in halide perovskite via directly incorporated fluoride anion. Angew. Chem. Int. Ed. 64(1), e202413550 (2025). https://doi.org/10.1002/anie.202413550
C. Ding, L. Yin, L. Zhang, R. Huang, S. Fan et al., Revealing the mechanism behind the catastrophic failure of n-i-p type perovskite solar cells under operating conditions and how to suppress it. Adv. Funct. Mater. 31(40), 2103820 (2021). https://doi.org/10.1002/adfm.202103820
R.O. Nughays, K. Almasabi, S. Nematulloev, L. Wang, T. Bian et al., Mapping surface-defect and ions migration in mixed-cation perovskite crystals. Adv. Sci. 11(40), 2404468 (2024). https://doi.org/10.1002/advs.202404468
T. Yang, M. Yang, Z. Huang, R. Wang, W. Ji et al., Twinning mediated intralayer frustration governs structural degradation in layered Li-rich oxide cathode. Nat. Commun. 16(1), 6589 (2025). https://doi.org/10.1038/s41467-025-61386-w
W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367(6481), 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
S. Liao, Y. Liu, L. Li, L. Ding, Y. Wei et al., Theoretical framework for confined ion transport in two-dimensional nanochannels. Nat. Commun. 16, 6675 (2025). https://doi.org/10.1038/s41467-025-61735-9
H. Ye, B. Wu, S. Sun, P. Wu, A solid-liquid bicontinuous fiber with strain-insensitive ionic conduction. Adv. Mater. 36(25), e2402501 (2024). https://doi.org/10.1002/adma.202402501
Q. Dong, X. Zhang, J. Qian, S. He, Y. Mao et al., A cellulose-derived supramolecule for fast ion transport. Sci. Adv. 8(49), eadd2031 (2022). https://doi.org/10.1126/sciadv.add2031
H. Lee, A. Erwin, M.L. Buxton, M. Kim, A.V. Stryutsky et al., Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31(38), 2103083 (2021). https://doi.org/10.1002/adfm.202103083
Y. Zhao, I. Yavuz, M. Wang, M.H. Weber, M. Xu et al., Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21(12), 1396–1402 (2022). https://doi.org/10.1038/s41563-022-01390-3
Y. Wang, J. Su, G. Ouyang, S. Geng, M. Ren et al., Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34(26), 2316397 (2024). https://doi.org/10.1002/adfm.202316397
X. Jiang, X. Zhang, Z. Deng, J. Deng, X. Wang et al., Dual-role ion dynamics in ferroionic CuInP2S6: revealing the transition from ferroelectric to ionic switching mechanisms. Nat. Commun. 15(1), 10822 (2024). https://doi.org/10.1038/s41467-024-55160-7
M.A. Torre Cachafeiro, N.K. Kumawat, F. Gao et al., Pulsed operation of perovskite LEDs: a study on the role of mobile ions. Natl. Sci. Rev. 12(5), nwae128 (2025). https://doi.org/10.1093/nsr/nwae128
T. Xiong, C. Li, X. He, B. Xie, J. Zong et al., Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379(6628), 156–161 (2023). https://doi.org/10.1126/science.adc9150
W. Ci, P. Wang, W. Xue, H. Yuan, X. Xu, Engineering ferroelectric-/ ion-modulated conductance in 2D vdW CuInP2S6 for non-volatile digital memory and artificial synapse. Adv. Funct. Mater. 34(25), 2316360 (2024). https://doi.org/10.1002/adfm.202316360
Y. Liang, F. Li, X. Cui, C. Stampfl, S.P. Ringer et al., Multiple B-site doping suppresses ion migration in halide perovskites. Sci. Adv. 11(11), eads7054 (2025). https://doi.org/10.1126/sciadv.ads7054
M. Ghasemi, B. Guo, K. Darabi, T. Wang, K. Wang et al., A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites. Nat. Mater. 22(3), 329–337 (2023). https://doi.org/10.1038/s41563-023-01488-2
Y. Li, S. Yu, J. Yang, K. Zhang, M. Hu et al., Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: the case of halide perovskites. InfoMat 6(1), e12506 (2024). https://doi.org/10.1002/inf2.12506
Z. Wan, H. Mu, Z. Dong, S. Hu, W. Yu et al., Self-powered MoSe2/ZnO heterojunction photodetectors with current rectification effect and broadband detection. Mater. Des. 212, 110185 (2021). https://doi.org/10.1016/j.matdes.2021.110185
R. Zhuang, S. Cai, Z. Mei, H. Liang, N. Zhao et al., Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection. Nat. Commun. 14, 1621 (2023). https://doi.org/10.1038/s41467-023-37297-z
L. Guo, H. Sun, L. Min, M. Wang, F. Cao et al., Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 36(27), 2402253 (2024). https://doi.org/10.1002/adma.202402253
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
Y. Liu, J. Zhong, E. Li, H. Yang, X. Wang et al., Self-powered artificial synapses actuated by triboelectric nanogenerator. Nano Energy 60, 377–384 (2019). https://doi.org/10.1016/j.nanoen.2019.03.079
Y. Yin, T. Sun, L. Wang, L. Li, P. Guo et al., In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9(8), 4277–4285 (2024). https://doi.org/10.1021/acssensors.4c01423
Y. Liu, D. Liu, C. Gao, X. Zhang, R. Yu et al., Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat. Commun. 13(1), 7917 (2022). https://doi.org/10.1038/s41467-022-35628-0
S.J. Kim, I.H. Im, J.H. Baek, S. Choi, S.H. Park et al., Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 20(1), 83–92 (2025). https://doi.org/10.1038/s41565-024-01790-3
Y. Sun, R. Zhang, C. Teng, J. Tan, Z. Zhang et al., Internal ion transport in ionic 2D CuInP2S6 enabling multi-state neuromorphic computing with low operation current. Mater. Today 66, 9–16 (2023). https://doi.org/10.1016/j.mattod.2023.04.013
C. Yan, L. Xiang, Y. Xiao, X. Zhang, Z. Jiang et al., Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor. Nat. Commun. 15(1), 10118 (2024). https://doi.org/10.1038/s41467-024-54528-z
G. Polizos, M. Goswami, J.K. Keum, L. He, C.J. Jafta et al., Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes. ACS Nano 18(4), 2750–2762 (2024). https://doi.org/10.1021/acsnano.3c03901
W. Chen, L. Zhai, S. Zhang, Z. Zhao, Y. Hu et al., Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 382(6670), 559–565 (2023). https://doi.org/10.1126/science.adg0059
J. Chen, C. Zhu, G. Cao, H. Liu, R. Bian et al., Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater. 34(25), 2104676 (2022). https://doi.org/10.1002/adma.202104676
P. Liu, X.-Y. Kong, L. Jiang, L. Wen, Ion transport in nanofluidics under external fields. Chem. Soc. Rev. 53(6), 2972–3001 (2024). https://doi.org/10.1039/d3cs00367a
Z. Lin, Z. Yang, J. Wang, J. Wang, H. Huang et al., Unlocking the potential of oxide-based catalysts for CO2 photo-hydrogenation: oxygen vacancies promoted C─O bond cleavage in key intermediates. Adv. Mater. 37(20), 2408906 (2025). https://doi.org/10.1002/adma.202408906
K. Chen, X. Yuan, Z. Tian, M. Zou, Y. Yuan et al., A facile approach for generating ordered oxygen vacancies in metal oxides. Nat. Mater. 24(6), 835–842 (2025). https://doi.org/10.1038/s41563-025-02171-4
S. Lu, Y. Chen, Y. Chen, P. Li, J. Sun et al., General lightweight framework for vision foundation model supporting multi-task and multi-center medical image analysis. Nat. Commun. 16, 2097 (2025). https://doi.org/10.1038/s41467-025-57427-z
C. Wang, G.-Q. Mao, M. Huang, E. Huang, Z. Zhang et al., HfOx/AlOy superlattice-like memristive synapse. Adv. Sci. 9(21), 2201446 (2022). https://doi.org/10.1002/advs.202201446
S. Chen, I. Valov, Design of materials configuration for optimizing redox-based resistive switching memories. Adv. Mater. 34(3), 2105022 (2022). https://doi.org/10.1002/adma.202105022
G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa et al., Quantum conductance in memristive devices: fundamentals, developments, and applications. Adv. Mater. 34(32), 2201248 (2022). https://doi.org/10.1002/adma.202201248
Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1(5), 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1
W. Sun, B. Gao, M. Chi, Q. Xia, J.J. Yang et al., Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10(1), 3453 (2019). https://doi.org/10.1038/s41467-019-11411-6
T. Zhang, L. Wang, W. Ding, Y. Zhu, H. Qian et al., Rationally designing high-performance versatile organic memristors through molecule-mediated ion movements. Adv. Mater. 35(40), e2302863 (2023). https://doi.org/10.1002/adma.202302863
U. Jung, M. Kim, J. Jang, J.-H. Bae, I.M. Kang et al., Formation of cluster-structured metallic filaments in organic memristors for wearable neuromorphic systems with bio-mimetic synaptic weight distributions. Adv. Sci. 11(9), 2307494 (2024). https://doi.org/10.1002/advs.202307494
X. Li, W. Yan, D. Wang, W. Huang, Y. Guo et al., Atomistic mechanisms of the crystallographic orientation-dependent Cu1.8S conductive channel formation in Cu2S-based memristors. Adv. Mater. 37(32), 2501300 (2025). https://doi.org/10.1002/adma.202501300
Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12(1), 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
K. Portner, M. Schmuck, P. Lehmann, C. Weilenmann, C. Haffner et al., Analog nanoscale electro-optical synapses for neuromorphic computing applications. ACS Nano 15(9), 14776–14785 (2021). https://doi.org/10.1021/acsnano.1c04654
J. Han, Z. Yan, Y. Lin, Y. Tao, X. Shan et al., Humidity-mediated synaptic plasticity in Ag loaded porous SiOx based memristor for multimodal neuromorphic sensory system. Mater. Today Nano 25, 100461 (2024). https://doi.org/10.1016/j.mtnano.2024.100461
J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34(24), 2200481 (2022). https://doi.org/10.1002/adma.202200481
Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
F. Sun, M. Tian, X. Sun, T. Xu, X. Liu et al., Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 19(9), 6592–6599 (2019). https://doi.org/10.1021/acs.nanolett.9b02862
C. Ye, J. Wu, G. He, J. Zhang, T. Deng et al., Physical mechanism and performance factors of metal oxide based resistive switching memory: a review. J. Mater. Sci. Technol. 32(1), 1–11 (2016). https://doi.org/10.1016/j.jmst.2015.10.018
Y. Li, Y. Xiong, X. Zhang, L. Yin, Y. Yu et al., Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode. Nat. Electron. 8(1), 36–45 (2025). https://doi.org/10.1038/s41928-024-01269-y
W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor Based on Poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17(21), 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
L. Li, G. Chen, H. Zheng, W. Meng, S. Jia et al., Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO. Nat. Commun. 12(1), 3863 (2021). https://doi.org/10.1038/s41467-021-24155-z
X. Hu, M. Tian, T. Xu, X. Sun, B. Sun et al., Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14(1), 559–567 (2020). https://doi.org/10.1021/acsnano.9b06899
H. Sun, J. Xu, R. Wu, J. Chen, Y. Liu et al., Synergistic entropy engineering with oxygen vacancy: modulating microstructure for extraordinary thermosensitive property in ReNbO4 materials. Small 21(8), 2408952 (2025). https://doi.org/10.1002/smll.202408952
Z. Peng, F. Wu, L. Jiang, G. Cao, B. Jiang et al., HfO2-based memristor as an artificial synapse for neuromorphic computing with tri-layer HfO2/BiFeO3/HfO2 design. Adv. Funct. Mater. 31(48), 2107131 (2021). https://doi.org/10.1002/adfm.202107131
Z. Zhao, S. Clima, D. Garbin, R. Degraeve, G. Pourtois et al., Chalcogenide ovonic threshold switching selector. Nano-Micro Lett. 16(1), 81 (2024). https://doi.org/10.1007/s40820-023-01289-x
Y. Liu, F. Yin, T.-J. Wang, Y. Leng, R. Li et al., Stable, intense supercontinuum light generation at 1 kHz by electric field assisted femtosecond laser filamentation in air. Light. Sci. Appl. 13, 42 (2024). https://doi.org/10.1038/s41377-023-01364-3
G. Tian, W. Yang, X. Song, D. Zheng, L. Zhang et al., Manipulation of conductive domain walls in confined ferroelectric nanoislands. Adv. Funct. Mater. 29(32), 1807276 (2019). https://doi.org/10.1002/adfm.201807276
K. Zhang, H. Li, H. Mu, Y. Li, P. Wang et al., Spatially resolved light-induced ferroelectric polarization in α-In2Se3/Te heterojunctions. Adv. Mater. 36(38), 2405233 (2024). https://doi.org/10.1002/adma.202405233
Y. Li, W. Lin, C. Wang, S. Zhang, Y. He et al., Domain dynamics response to polarization switching in relaxor ferroelectrics. Adv. Mater. 36(47), 2411467 (2024). https://doi.org/10.1002/adma.202411467
E. Pan, Z. Li, F. Yang, K. Niu, R. Bian et al., Observation and manipulation of two-dimensional topological polar texture confined in moiré interface. Nat. Commun. 16(1), 3026 (2025). https://doi.org/10.1038/s41467-025-58105-w
Y. Wu, T. Zhang, D. Guo, B. Li, K. Pei et al., Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices. Nat. Commun. 15(1), 10481 (2024). https://doi.org/10.1038/s41467-024-54841-7
J. Koruza, Transparent crystals with ultrahigh piezoelectricity. Nature 577(7790), 325–326 (2020). https://doi.org/10.1038/d41586-020-00038-z
X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380(6645), eadg0902 (2023). https://doi.org/10.1126/science.adg0902
S. Wang, Y. Shen, X. Yang, P. Nan, Y. He et al., Unlocking the phase evolution of the hidden non-polar to ferroelectric transition in HfO2-based bulk crystals. Nat. Commun. 16, 3745 (2025). https://doi.org/10.1038/s41467-025-59018-4
T. Li, S. Deng, H. Liu, J. Chen, Insights into strain engineering: from ferroelectrics to related functional materials and beyond. Chem. Rev. 124(11), 7045–7105 (2024). https://doi.org/10.1021/acs.chemrev.3c00767
Q. Shi, E. Parsonnet, X. Cheng, N. Fedorova, R.-C. Peng et al., The role of lattice dynamics in ferroelectric switching. Nat. Commun. 13, 1110 (2022). https://doi.org/10.1038/s41467-022-28622-z
Y. Yang, M. Wu, X. Zheng, C. Zheng, J. Xu et al., Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Sci. Adv. 7(48), eabh2716 (2021). https://doi.org/10.1126/sciadv.abh2716
Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai et al., Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 13(1), 778 (2022). https://doi.org/10.1038/s41467-022-28443-0
Y. Peng, Y. Chen, J. Zhou, C. Luo, W. Tang et al., Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells. Nat. Commun. 16(1), 1252 (2025). https://doi.org/10.1038/s41467-024-55653-5
Y. Wen, Y. Cao, H. Ren, X. Du, J. Guo et al., Ferroelectric optical memristors enabled by non-volatile electro-optic effect. Adv. Mater. 37(8), e2417658 (2025). https://doi.org/10.1002/adma.202417658
Z. Liu, H. Wang, M. Li, L. Tao, T.R. Paudel et al., In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature 613(7945), 656–661 (2023). https://doi.org/10.1038/s41586-022-05503-5
S.-T. Yang, X.-Y. Li, T.-L. Yu, J. Wang, H. Fang et al., High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry. Adv. Funct. Mater. 32(35), 2202366 (2022). https://doi.org/10.1002/adfm.202202366
J. Zeng, G. Feng, G. Wu, J. Liu, Q. Zhao et al., Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34(19), 2313010 (2024). https://doi.org/10.1002/adfm.202313010
M.-K. Kim, J.-S. Lee, Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in Hafnia-based oxide-semiconductor transistors. Adv. Mater. 32(12), 1907826 (2020). https://doi.org/10.1002/adma.201907826
P. Gao, J. Britson, C.T. Nelson, J.R. Jokisaari, C. Duan et al., Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5, 3801 (2014). https://doi.org/10.1038/ncomms4801
X. Zeng, Y. Liu, W. Weng, L. Hua, L. Tang et al., A molecular pyroelectric enabling broadband photo-pyroelectric effect towards self-driven wide spectral photodetection. Nat. Commun. 14, 5821 (2023). https://doi.org/10.1038/s41467-023-41523-z
Y. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi et al., Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 32(7), e1906513 (2020). https://doi.org/10.1002/adma.201906513
Y. Li, J. Fu, X. Mao, C. Chen, H. Liu et al., Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021). https://doi.org/10.1038/s41467-021-26200-3
H. Kim, S. Oh, H. Choo, D.-H. Kang, J.-H. Park, Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse. ACS Nano 17(17), 17332–17341 (2023). https://doi.org/10.1021/acsnano.3c05337
J. Gong, Y. Wei, Y. Wang, Z. Feng, J. Yu et al., Brain-inspired multimodal synaptic memory via mechano-photonic plasticized asymmetric ferroelectric heterostructure. Adv. Funct. Mater. 34(48), 2408435 (2024). https://doi.org/10.1002/adfm.202408435
F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17(4), 349–354 (2018). https://doi.org/10.1038/s41563-018-0034-4
C. Zhao, Z. Gao, Z. Hong, H. Guo, Z. Cheng et al., Ferroelectric and optoelectronic coupling effects in layered ferroelectric semiconductor-based FETs for visual simulation. Adv. Sci. 12(11), 2413808 (2025). https://doi.org/10.1002/advs.202413808
X. Yang, L. Han, H. Ning, S. Xu, B. Hao et al., Ultralow-pressure-driven polarization switching in ferroelectric membranes. Nat. Commun. 15, 9281 (2024). https://doi.org/10.1038/s41467-024-53436-6
Z.-D. Luo, X. Xia, M.-M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
Y. Park, J.-S. Lee, Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11(9), 8962–8969 (2017). https://doi.org/10.1021/acsnano.7b03347
L. Wang, S.-R. Lu, J. Wen, Recent advances on neuromorphic systems using phase-change materials. Nanoscale Res. Lett. 12(1), 347 (2017). https://doi.org/10.1186/s11671-017-2114-9
Q. Wan, F. Zeng, J. Yin, Y. Sun, Y. Hu et al., Phase-change nanoclusters embedded in a memristor for simulating synaptic learning. Nanoscale 11(12), 5684–5692 (2019). https://doi.org/10.1039/C8NR09765H
H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4(3), 150–168 (2019). https://doi.org/10.1038/s41578-018-0076-x
S. Raoux, W. Wełnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110(1), 240–267 (2010). https://doi.org/10.1021/cr900040x
R. Bez, A. Pirovano, Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semicond. Process. 7(4–6), 349–355 (2004). https://doi.org/10.1016/j.mssp.2004.09.127
S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39(8), 703–710 (2014). https://doi.org/10.1557/mrs.2014.139
X. Zhang, L.L. Liu, Crystalline neutral aluminum selenide/telluride: isoelectronic aluminum analogues of carbonyls. J. Am. Chem. Soc. 145(29), 15729–15734 (2023). https://doi.org/10.1021/jacs.3c05954
S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306–6325 (2015). https://doi.org/10.1002/adfm.201500825
H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg et al., Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010). https://doi.org/10.1109/jproc.2010.2070050
K. Ding, J. Wang, Y. Zhou, H. Tian, L. Lu et al., Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366(6462), 210–215 (2019). https://doi.org/10.1126/science.aay0291
S. Wu, Z. Kou, Q. Lai, S. Lan, S.S. Katnagallu et al., Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries. Nat. Commun. 13(1), 5468 (2022). https://doi.org/10.1038/s41467-022-33257-1
D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S. Philip Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2012). https://doi.org/10.1021/nl201040y
N. Youngblood, C. Ríos, E. Gemo, J. Feldmann, Z. Cheng et al., Tunable volatility of Ge2Sb2Te5 in integrated photonics. Adv. Funct. Mater. 29(11), 1807571 (2019). https://doi.org/10.1002/adfm.201807571
I. Boybat, M. Le Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
Q. Wang, R. Luo, Y. Wang, W. Fang, L. Jiang et al., Set/reset bilaterally controllable resistance switching Ga-doped Ge2Sb2Te5 long-term electronic synapses for neuromorphic computing. Adv. Funct. Mater. 33(19), 2213296 (2023). https://doi.org/10.1002/adfm.202213296
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13(1), 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
S. Zhang, X. Chen, K. Liu, H. Li, Y. Xu et al., Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 3(1), 7 (2022). https://doi.org/10.1186/s43074-022-00053-5
A. Khanehzar, N. Zamani, A. Hatef, Tunable NIR nano-absorber based on photothermal response and thermoplasmonic modulation of Au@GSST core–shell nanop. Photonics Nanostruct. Fundam. Appl. 64, 101369 (2025). https://doi.org/10.1016/j.photonics.2025.101369
G. Li, D. Xie, H. Zhong, Z. Zhang, X. Fu et al., Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13(1), 1729 (2022). https://doi.org/10.1038/s41467-022-29456-5
F. Zergani, Z. Tavangar, Gas sensing behavior and adsorption mechanism on χ3 borophene surface. Chem. Eng. J. 431, 133947 (2022). https://doi.org/10.1016/j.cej.2021.133947
S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16(1), 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550(7677), 487–491 (2017). https://doi.org/10.1038/nature24043
P. Zhuang, W. Ma, J. Liu, W. Cai, W. Lin, Progressive RESET induced by Joule heating in hBN RRAMs. Appl. Phys. Lett. 118(14), 143101 (2021). https://doi.org/10.1063/5.0040902
K.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12(3), 1247–1268 (2020). https://doi.org/10.1039/c9nr08313h
N.K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia et al., Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4(4), 1800589 (2019). https://doi.org/10.1002/admt.201800589
L. Zhang, T. Gong, H. Wang, Z. Guo, H. Zhang, Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11(26), 12413–12435 (2019). https://doi.org/10.1039/c9nr02886b
P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16(1), 572–576 (2016). https://doi.org/10.1021/acs.nanolett.5b04260
E. Lee, J. Kim, S. Bhoyate, K. Cho, W. Choi, Realizing scalable two-dimensional MoS2 Synaptic devices for neuromorphic computing. Chem. Mater. 32(24), 10447–10455 (2020). https://doi.org/10.1021/acs.chemmater.0c03112
X. Yu, C. Cheng, J. Liang, M. Wang, B. Huang et al., Graphene-assisting nonvolatile vanadium dioxide phase transition for neuromorphic machine vision. Adv. Funct. Mater. 34(16), 2312481 (2024). https://doi.org/10.1002/adfm.202312481
R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
T. Danz, T. Domröse, C. Ropers, Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371(6527), 371–374 (2021). https://doi.org/10.1126/science.abd2774
X. Liang, D. Su, Y. Tang, B. Xi, C. Yang et al., Lab-on-device investigation of phase transition in MoOx semiconductors. Nat. Commun. 16(1), 4784 (2025). https://doi.org/10.1038/s41467-025-60050-7
D. Afanasiev, J.R. Hortensius, B.A. Ivanov, A. Sasani, E. Bousquet et al., Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20(5), 607–611 (2021). https://doi.org/10.1038/s41563-021-00922-7
F. Pressacco, D. Sangalli, V. Uhlíř, D. Kutnyakhov, J.A. Arregi et al., Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics. Nat. Commun. 12(1), 5088 (2021). https://doi.org/10.1038/s41467-021-25347-3
D.K. Lee, S. Lee, H. Sim, Y. Park, S.-Y. Choi et al., Piezo strain-controlled phase transition in single-crystalline Mott switches for threshold-manipulated leaky integrate-and-fire neurons. Sci. Adv. 10(14), eadk8836 (2024). https://doi.org/10.1126/sciadv.adk8836
T. Shi, X. Gao, H. Liu, X. Wang, Multi-energy conversion and electromagnetic shielding enabled by carbonized polyimide/kevlar/graphene Oxide@ZIF-67 bidirectional complex aerogel-encapsulated phase-change materials. Nano-Micro Lett. 17(1), 236 (2025). https://doi.org/10.1007/s40820-025-01761-w
S. Gao, Y. Yang, A.S. Falchevskaya, V.V. Vinogradov, B. Yuan et al., Phase transition liquid metal enabled emerging biomedical technologies and applications. Adv. Sci. 11(37), 2306692 (2024). https://doi.org/10.1002/advs.202306692
J. Huang, G. Gao, X. Wen, M. Yuan, N. Hou et al., Nonreciprocal transmission of circularly polarized light via photothermal phase transition in cholesteric liquid crystals. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503365
D. Kazenwadel, N. Neathery, P. Baum, Canalized light creates directional and switchable surface structures in vanadium dioxide. Nat. Commun. 16(1), 3960 (2025). https://doi.org/10.1038/s41467-025-58929-6
J. Li, X. Yang, Z. Zhang, W. Yang, X. Duan et al., Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. Nat. Mater. 23(10), 1326–1338 (2024). https://doi.org/10.1038/s41563-024-01989-8
B. Wang, X. He, J. Luo, Y. Chen, Z. Zhang et al., Ultralow-pressure mechanical-motion switching of ferroelectric polarization. Sci. Adv. 11(18), eadr5337 (2025). https://doi.org/10.1126/sciadv.adr5337
C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi et al., Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12(1), 96 (2021). https://doi.org/10.1038/s41467-020-20365-z
S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok et al., Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13(1), 1696 (2022). https://doi.org/10.1038/s41467-022-29374-6
P. Tong, L. Zhou, K. Du, M. Zhang, Y. Sun et al., Thermal triggering for multi-state switching of polar topologies. Nat. Phys. 21(3), 464–470 (2025). https://doi.org/10.1038/s41567-024-02729-0
S. Wu, T. Li, Z.-Y. Zhang, T. Li, R. Wang, Photoswitchable phase change materials for unconventional thermal energy storage and upgrade. Matter 4(11), 3385–3399 (2021). https://doi.org/10.1016/j.matt.2021.09.017
Q. Wang, Y. Wang, Y. Wang, L. Jiang, J. Zhao et al., Long-term and short-term plasticity independently mimicked in highly reliable Ru-doped Ge2Sb2Te5 electronic synapses. InfoMat 6(8), e12543 (2024). https://doi.org/10.1002/inf2.12543
C. Yang, Y. Huang, K. Pei, X. Long, L. Yang et al., Current-controllable and reversible multi-resistance-state based on domain wall number transition in 2D ferromagnet Fe3GeTe2. Adv. Mater. 36(18), 2311831 (2024). https://doi.org/10.1002/adma.202311831
X. Liu, T. Ji, H. Guo, H. Wang, J. Li et al., Effects of crystallinity and defects of layered carbon materials on potassium storage: a review and prediction. Electrochem. Energy Rev. 5(2), 401–433 (2022). https://doi.org/10.1007/s41918-021-00114-6
S.T. Keene, J.E.M. Laulainen, R. Pandya, M. Moser, C. Schnedermann et al., Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22(9), 1121–1127 (2023). https://doi.org/10.1038/s41563-023-01601-5
S. Deng, H. Yu, T.J. Park, A.N.M.N. Islam, S. Manna et al., Selective area doping for Mott neuromorphic electronics. Sci. Adv. 9(11), eade4838 (2023). https://doi.org/10.1126/sciadv.ade4838
Y. Li, Y. Xiong, B. Zhai, L. Yin, Y. Yu et al., Ag-doped non-imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Sci. Adv. 10(11), eadk9474 (2024). https://doi.org/10.1126/sciadv.adk9474
L. Zou, Z. Peng, H. Sun, Y. Yi, C. Zhu et al., Bio-realistic synaptic-replicated “V” type oxygen vacancy memristor. Adv. Funct. Mater. 35(9), 2416325 (2025). https://doi.org/10.1002/adfm.202416325
D. Yuan, E. Plunkett, P.H. Nguyen, D. Rawlings, M.L. Le et al., Double doping of semiconducting polymers using ion-exchange with a dianion. Adv. Funct. Mater. 33(29), 2300934 (2023). https://doi.org/10.1002/adfm.202300934
L. Xiang, Z. He, C. Yan, Y. Zhao, Z. Li et al., Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation. Nat. Nanotechnol. 19(8), 1122–1129 (2024). https://doi.org/10.1038/s41565-024-01653-x
J.J. Samuel, A. Garudapalli, C. Gangadharappa, S.R. Mahapatra, S. Patil et al., Charge polarity-dependent ion-insertion asymmetry during electrochemical doping of an ambipolar π-conjugated polymer. Nat. Commun. 13(1), 7788 (2022). https://doi.org/10.1038/s41467-022-35408-w
J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
S. Zhou, T. Liu, M. Strømme, C. Xu, Electrochemical doping and structural modulation of conductive metal–organic frameworks. Angew. Chem. Int. Ed. 63(14), e202318387 (2024). https://doi.org/10.1002/anie.202318387
D. Lee, M. Kim, S. Park, S. Lee, J. Sung et al., Inter-ion mutual repulsion control for nonvolatile artificial synapse. Adv. Funct. Mater. 35(11), 2412012 (2025). https://doi.org/10.1002/adfm.202412012
J. Sung, M. Kim, S. Chung, Y. Jang, S. Kim et al., Modulating alkyl groups in copolymer to control ion transport in electrolyte-gated organic transistors for neuromorphic computing. Small Struct. 6(1), 2400319 (2025). https://doi.org/10.1002/sstr.202400319
K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17(7), 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
Y. Wang, W. Shan, H. Li, Y. Zhong, S. Wustoni et al., An optoelectrochemical synapse based on a single-component n-type mixed conductor. Nat. Commun. 16, 1615 (2025). https://doi.org/10.1038/s41467-025-56814-w
M.-K. Song, H. Lee, J.H. Yoon, Y.-W. Song, S.D. Namgung et al., Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing. J. Mater. Sci. Technol. 119, 150–155 (2022). https://doi.org/10.1016/j.jmst.2021.12.016
G. Liu, Q. Li, W. Shi, Y. Liu, K. Liu et al., Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 32(27), 2200959 (2022). https://doi.org/10.1002/adfm.202200959
P.C. Harikesh, D. Tu, S. Fabiano, Organic electrochemical neurons for neuromorphic perception. Nat. Electron. 7(7), 525–536 (2024). https://doi.org/10.1038/s41928-024-01200-5
H. Zhang, S. Wang, L. Wang, S. Li, H. Liu et al., Bio-inspired retina by regulating ion-confined transport in hydrogels. Adv. Mater. 37(18), e2500809 (2025). https://doi.org/10.1002/adma.202500809
C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
X. Liu, S. Wang, Z. Di, H. Wu, C. Liu et al., An optoelectronic synapse based on two-dimensional violet phosphorus heterostructure. Adv. Sci. 10(22), 2301851 (2023). https://doi.org/10.1002/advs.202301851
F. Vasile, L. Petreanu, The perfect timing for multimodal integration is not the same in all L5 neurons. Neuron 110(22), 3648–3650 (2022). https://doi.org/10.1016/j.neuron.2022.09.034
S. Pazos, K. Zhu, M.A. Villena, O. Alharbi, W. Zheng et al., Synaptic and neural behaviours in a standard silicon transistor. Nature 640(8057), 69–76 (2025). https://doi.org/10.1038/s41586-025-08742-4
L. Shan, Q. Chen, R. Yu, C. Gao, L. Liu et al., A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 14(1), 2648 (2023). https://doi.org/10.1038/s41467-023-38396-7
H. Bian, X. Qin, Y. Wu, Z. Yi, S. Liu et al., Multimodal tuning of synaptic plasticity using persistent luminescent memitters. Adv. Mater. 34(25), e2101895 (2022). https://doi.org/10.1002/adma.202101895
X. Wang, S. Yang, Z. Qin, B. Hu, L. Bu et al., Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 35(40), 2303699 (2023). https://doi.org/10.1002/adma.202303699
Y. Jo, Y. Lee, J. Kwon, S. Kim, G. Ryu et al., 3D active-matrix multimodal sensor arrays for independent detection of pressure and temperature. Sci. Adv. 11(3), eads4516 (2025). https://doi.org/10.1126/sciadv.ads4516
Z. Yu, N. Fan, Z. Fu, B. He, S. Yan et al., Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat. Commun. 15, 3438 (2024). https://doi.org/10.1038/s41467-024-47776-6
B. Yang, Y. Liu, R.-J. Jiang, S. Lan, S.-Z. Liu et al., Enhanced energy storage in antiferroelectrics via antipolar frustration. Nature 637(8048), 1104–1110 (2025). https://doi.org/10.1038/s41586-024-08505-7
R. Bian, R. He, E. Pan, Z. Li, G. Cao et al., Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385(6704), 57–62 (2024). https://doi.org/10.1126/science.ado1744
S. Jia, J. Liao, Q. Yang, R. Peng, J. Wang et al., Developing HZO-based superlattices to enhance fatigue-resistance by charge injection suppression. Adv. Funct. Mater. 35(34), 2501470 (2025). https://doi.org/10.1002/adfm.202501470
J. Lv, X. Luo, J. Liu, B. Zhao, Y. Cheng et al., Interfacial charge transfer and defect engineering in the MoTe2/graphene heterostructure for tailored carrier kinetics and nonlinear absorption. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505740
C. Liu, Y. Si, H. Zhang, C. Wu, S. Deng et al., Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 382(6676), 1265–1269 (2023). https://doi.org/10.1126/science.adj9669
Maryada, S. Soldado-Magraner, M. Sorbaro, R. Laje, D.V. Buonomano et al., Stable recurrent dynamics in heterogeneous neuromorphic computing systems using excitatory and inhibitory plasticity. Nat. Commun. 16(1), 5522 (2025). https://doi.org/10.1038/s41467-025-60697-2
H. Hou, Q. Zheng, Y. Zhao, A. Pouget, Y. Gu, Neural correlates of optimal multisensory decision making under time-varying reliabilities with an invariant linear probabilistic population code. Neuron 104(5), 1010-1021.e10 (2019). https://doi.org/10.1016/j.neuron.2019.08.038
G. Milano, F. Michieletti, D. Pilati, C. Ricciardi, E. Miranda, Self-organizing neuromorphic nanowire networks as stochastic dynamical systems. Nat. Commun. 16(1), 3509 (2025). https://doi.org/10.1038/s41467-025-58741-2
M. Wei, N. Wu, B. Li, J. Liu, F. Pan et al., From MXene to multimodal-responsive smart, durable electromagnetic interference shielding textiles. Adv. Funct. Mater. 35(28), 2424312 (2025). https://doi.org/10.1002/adfm.202424312
X. Zhu, Y. Wang, E. Cambria, I. Rida, J.S. López et al., RMER-DT: robust multimodal emotion recognition in conversational contexts based on diffusion and transformers. Inf. Fusion 123, 103268 (2025). https://doi.org/10.1016/j.inffus.2025.103268
D. Wang, J. Liu, R. Liu, X. Fan, An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection. Inf. Fusion 98, 101828 (2023). https://doi.org/10.1016/j.inffus.2023.101828
M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. N