Monolithic Integration of Redox-Stable Sn–Pb Halide Perovskite Single-Crystalline Films for Durable Near-Infrared Photodetection
Corresponding Author: Sangwook Lee
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 141
Abstract
Tin–lead (Sn–Pb) halide perovskite single crystals combine narrow bandgaps, long carrier diffusion lengths, and low trap densities, positioning them as ideal candidates for near-infrared (NIR) optoelectronics. However, conventional growth strategies rely on bulk crystallization at elevated temperatures, leading to uncontrolled nucleation, Sn2+ oxidation, and poor compatibility with planar integration. Here, we develop a coordination-engineered crystallization strategy that enables direct, low-temperature growth of micrometer-thick Sn–Pb single-crystal thin films on device-compatible substrates. By modulating metal–solvent coordination strength using a low-donor number cosolvent system, we delineate a narrow processing window that stabilizes precursor speciation, lowers the nucleation barrier, and guides directional crystal growth under mild thermal conditions (< 40 °C). The resulting crystal films exhibit smooth morphology, high crystallinity, compositional uniformity, and ultralow trap densities (~ 3.98 × 1012 cm−3). When integrated into NIR photodetectors, these films deliver high responsivity (0.51 A W−1 at 900 nm), specific detectivity up to 3.6 × 1012 Jones, fast response (~ 188 μs), and > 25,000 cycles of ambient operational stability. This approach establishes a scalable platform for redox-stable, low-temperature growth of Sn–Pb perovskite crystal films and expands the processing–structure–function landscape for next-generation infrared optoelectronics.
Highlights:
1 Cosolvent-coordinated crystallization at ≤40 °C enables planar integration of micrometer-thick Sn–Pb single-crystal films with high structural and composition integrity.
2 A tailored solvent matrix yields thickness-tunable single-crystal thin films with ultralow trap densities (~3.98 × 1012 cm−3) and robust ambient stability.
3 Integrated near-infrared photodetectors achieve 73.8% EQE, 0.51 A W−1 responsivity, 3.6 × 1012 Jones specific detectivity, and stable performance over 25,000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Li, P. Mahalingavelar, J.H. Vella, D.-S. Leem, J.D. Azoulay et al., Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. R. Rep. 146, 100643 (2021). https://doi.org/10.1016/j.mser.2021.100643
- R. Sharma, L.N. Henderson, P. Sankar, M.M. Tresa, O.P. Oyeku et al., Recent advancements in nanomaterials for near-infrared to long-wave infrared photodetectors. Adv. Opt. Mater. 12(35), 2401821 (2024). https://doi.org/10.1002/adom.202401821
- Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen et al., High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 30(8), 1704333 (2018). https://doi.org/10.1002/adma.201704333
- Y. Yun, H. Cho, J. Jung, S.W. Yang, D. Vidyasagar et al., High-performance self-powered color filter-free blue photodetector based on wide-bandgap halide perovskites. J. Mater. Sci. Technol. 152, 100–108 (2023). https://doi.org/10.1016/j.jmst.2022.12.041
- S.R. Wenham, M.A. Green, Silicon solar cells. Prog. Photovolt. Res. Appl. 4(1), 3–33 (1996). https://doi.org/10.1002/(SICI)1099-159X
- P.A. Basore, Defining terms for crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 2(2), 177–179 (1994). https://doi.org/10.1002/pip.4670020213
- A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
- G. Rajendra Kumar, A. Dennyson Savariraj, S.N. Karthick, S. Selvam, B. Balamuralitharan et al., Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 18(10), 7284–7292 (2016). https://doi.org/10.1039/C5CP06232B
- L. Mei, R. Huang, C. Shen, J. Hu, P. Wang et al., Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays. Adv. Opt. Mater. 10(9), 2102656 (2022). https://doi.org/10.1002/adom.202102656
- R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao et al., High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27(11), 1912–1918 (2015). https://doi.org/10.1002/adma.201405116
- H. Li, Y. Gao, X. Hong, K. Ke, Z. Ye et al., Rational composition engineering for high-quality Pb–Sn photodetector toward sensitive near-infrared digital imaging arrays. InfoMat 7(1), e12615 (2025). https://doi.org/10.1002/inf2.12615
- L. He, G. Hu, J. Jiang, W. Wei, X. Xue et al., Highly sensitive tin-lead perovskite photodetectors with over 450 days stability enabled by synergistic engineering for pulse oximetry system. Adv. Mater. 35(10), 2210016 (2023). https://doi.org/10.1002/adma.202210016
- E. Jokar, L. Cai, J. Han, E.J.C. Nacpil, I. Jeon, Emerging opportunities in lead-free and lead–tin perovskites for environmentally viable photodetector applications. Chem. Mater. 35(9), 3404–3426 (2023). https://doi.org/10.1021/acs.chemmater.3c00345
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- M. Hu, R. Nie, H. Kim, J. Wu, S. Chen et al., Regulating the surface passivation and residual strain in pure tin perovskite films. ACS Energy Lett. 6(10), 3555–3562 (2021). https://doi.org/10.1021/acsenergylett.1c01575
- B. Turedi, V. Yeddu, X. Zheng, D.Y. Kim, O.M. Bakr et al., Perovskite single-crystal solar cells: going forward. ACS Energy Lett. 6(2), 631–642 (2021). https://doi.org/10.1021/acsenergylett.0c02573
- R.K. Battula, C. Sudakar, P. Bhyrappa, G. Veerappan, E. Ramasamy, Single-crystal hybrid lead halide perovskites: growth, properties, and device integration for solar cell application. Cryst. Growth Des. 22(10), 6338–6362 (2022). https://doi.org/10.1021/acs.cgd.2c00789
- J. Wu, Y. Zhang, S. Yang, Z. Chen, W. Zhu, Thin MAPb0.5Sn0.5I3 perovskite single crystals for sensitive infrared light detection. Front. Chem. 9, 821699 (2022). https://doi.org/10.3389/fchem.2021.821699
- Z. Chang, Z. Lu, W. Deng, Y. Shi, Y. Sun et al., Narrow-bandgap Sn-Pb mixed perovskite single crystals for high-performance near-infrared photodetectors. Nanoscale 15(10), 5053–5062 (2023). https://doi.org/10.1039/d2nr05800f
- L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding et al., Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 12(1), 2853 (2021). https://doi.org/10.1038/s41467-021-22864-z
- S. Tian, G. Li, R.C. Turnell-Ritson, Z. Fei, A. Bornet et al., Controlling tin halide perovskite oxidation dynamics in solution for perovskite optoelectronic devices. Angew. Chem. Int. Ed. 63(32), e202407193 (2024). https://doi.org/10.1002/anie.202407193
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- M.T. Mbumba, D.M. Malouangou, J.M. Tsiba, M.W. Akram, L. Bai et al., Compositional engineering solutions for decreasing trap state density and improving thermal stability in perovskite solar cells. J. Mater. Chem. C 9(40), 14047–14064 (2021). https://doi.org/10.1039/D1TC02315B
- R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
- R.K. Gunasekaran, J. Jung, S.W. Yang, J. Yun, Y. Yun et al., High-throughput compositional mapping of triple-cation tin–lead perovskites for high-efficiency solar cells. InfoMat 5(4), e12393 (2023). https://doi.org/10.1002/inf2.12393
- V. Gutmann, Principles of coordination chemistry in non-aqueous solutions. In: Coordination Chemistry in Non-Aqueous Solutions, pp. 12–34. Springer Vienna (1968). https://doi.org/10.1007/978-3-7091-8194-2_2
- C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
- S. Rahimnejad, A. Kovalenko, S.M. Forés, C. Aranda, A. Guerrero, Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem 17(18), 2795–2798 (2016). https://doi.org/10.1002/cphc.201600575
- M.I. Saidaminov, A.L. Abdelhady, G. Maculan, O.M. Bakr, Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51(100), 17658–17661 (2015). https://doi.org/10.1039/C5CC06916E
- S. Chen, P. Gao, Challenges, myths, and opportunities of electron microscopy on halide perovskites. J. Appl. Phys. 128, 010901 (2020). https://doi.org/10.1063/5.0012310
- Y.-J. Chen, C. Hou, Y. Yang, Surface energy and surface stability of cesium tin halide perovskites: a theoretical investigation. Phys. Chem. Chem. Phys. 25(15), 10583–10590 (2023). https://doi.org/10.1039/d2cp04183a
- J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng et al., Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11(1), 582 (2020). https://doi.org/10.1038/s41467-019-13856-1
- J. Hidalgo, Y. An, D. Yehorova, R. Li, J. Breternitz et al., Solvent and A-site cation control preferred crystallographic orientation in bromine-based perovskite thin films. Chem. Mater. 35(11), 4181–4191 (2023). https://doi.org/10.1021/acs.chemmater.3c00075
- B. Murali, H.K. Kolli, J. Yin, R. Ketavath, O.M. Bakr et al., Single crystals: the next big wave of perovskite optoelectronics. ACS Mater. Lett. 2(2), 184–214 (2020). https://doi.org/10.1021/acsmaterialslett.9b00290
- J. Werner, G. Nogay, F. Sahli, T.C. Yang, M. Bräuninger et al., Complex refractive indices of cesium–formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3(3), 742–747 (2018). https://doi.org/10.1021/acsenergylett.8b00089
- C. Li, H. Sun, S. Gan, D. Dou, L. Li, Perovskite single crystals: physical properties and optoelectronic applications. Mater. Futur. 2(4), 042101 (2023). https://doi.org/10.1088/2752-5724/ace8aa
- R.K. Gunasekaran, J. Jung, S.W. Yang, D. Im, W.C. Choi et al., Regulating surface heterogeneity maximizes photovoltage and operational stability in tin–lead perovskite solar cells. ACS Energy Lett. 9(1), 102–109 (2024). https://doi.org/10.1021/acsenergylett.3c02402
- S. Kim, D. Im, Y. Yun, D. Vidyasagar, S.W. Yang et al., Stabilizing wide-bandgap perovskite with nanoscale inorganic halide barriers for next-generation tandem technology. Adv. Energy Mater. 15(12), 2404366 (2025). https://doi.org/10.1002/aenm.202404366
- F. Yang, R.W. MacQueen, D. Menzel, A. Musiienko, A. Al-Ashouri et al., Rubidium iodide reduces recombination losses in methylammonium-free tin-lead perovskite solar cells. Adv. Energy Mater. 13(19), 2204339 (2023). https://doi.org/10.1002/aenm.202204339
- G. Kapil, T. Bessho, T. Maekawa, A.K. Baranwal, Y. Zhang et al., Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11(25), 2101069 (2021). https://doi.org/10.1002/aenm.202101069
- Q. Chen, J. Luo, R. He, H. Lai, S. Ren et al., Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 11(29), 2101045 (2021). https://doi.org/10.1002/aenm.202101045
- C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin-lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
- G. Rajendra Kumar, H.-J. Kim, S. Karupannan, K. Prabakar, Interplay between iodide and tin vacancies in CsSnI3 perovskite solar cells. J. Phys. Chem. C 121(30), 16447–16453 (2017). https://doi.org/10.1021/acs.jpcc.7b06278
- Y. Ma, L. Shan, Y. Ying, L. Shen, Y. Fu et al., Day-night imaging without infrared cutfilter removal based on metal-gradient perovskite single crystal photodetector. Nat. Commun. 15(1), 7516 (2024). https://doi.org/10.1038/s41467-024-51762-3
- R. Ollearo, J. Wang, M.J. Dyson, C.H.L. Weijtens, M. Fattori et al., Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12(1), 7277 (2021). https://doi.org/10.1038/s41467-021-27565-1
- A.M. Najarian, M. Vafaie, A. Johnston, T. Zhu, M. Wei et al., Sub-millimetre light detection and ranging using perovskites. Nat. Electron. 5(8), 511–518 (2022). https://doi.org/10.1038/s41928-022-00799-7
- W. Wang, D. Zhao, F. Zhang, L. Li, M. Du et al., Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater. 27(42), 1703953 (2017). https://doi.org/10.1002/adfm.201703953
- W. Li, J. Chen, H. Lin, S. Zhou, G. Yan et al., The UV–vis-NIR broadband ultrafast flexible Sn-Pb perovskite photodetector for multispectral imaging to distinguish substance and foreign-body in biological tissues. Adv. Opt. Mater. 12(2), 2301373 (2024). https://doi.org/10.1002/adom.202301373
- J. Miao, F. Zhang, Y. Lin, W. Wang, M. Gao et al., Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias. Adv. Opt. Mater. 4(11), 1711–1717 (2016). https://doi.org/10.1002/adom.201600387
- J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9
- X. Xu, C.-C. Chueh, P. Jing, Z. Yang, X. Shi et al., High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 27(28), 1701053 (2017). https://doi.org/10.1002/adfm.201701053
- Y. Yun, G.S. Han, G.N. Park, J. Kim, J. Park et al., A wide bandgap halide perovskite based self-powered blue photodetector with 84.9% of external quantum efficiency. Adv. Mater. 34(51), 2206932 (2022). https://doi.org/10.1002/adma.202206932
- C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng et al., Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29(39), 1703209 (2017). https://doi.org/10.1002/adma.201703209
- J. Liu, Y. Chen, J. Zhou, J. Wang, Z. Chen et al., Filterless near-infrared narrowband photodetectors based on mixed metal perovskite single crystals. Adv. Opt. Mater. 12(32), 2401544 (2024). https://doi.org/10.1002/adom.202401544
References
N. Li, P. Mahalingavelar, J.H. Vella, D.-S. Leem, J.D. Azoulay et al., Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. R. Rep. 146, 100643 (2021). https://doi.org/10.1016/j.mser.2021.100643
R. Sharma, L.N. Henderson, P. Sankar, M.M. Tresa, O.P. Oyeku et al., Recent advancements in nanomaterials for near-infrared to long-wave infrared photodetectors. Adv. Opt. Mater. 12(35), 2401821 (2024). https://doi.org/10.1002/adom.202401821
Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen et al., High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 30(8), 1704333 (2018). https://doi.org/10.1002/adma.201704333
Y. Yun, H. Cho, J. Jung, S.W. Yang, D. Vidyasagar et al., High-performance self-powered color filter-free blue photodetector based on wide-bandgap halide perovskites. J. Mater. Sci. Technol. 152, 100–108 (2023). https://doi.org/10.1016/j.jmst.2022.12.041
S.R. Wenham, M.A. Green, Silicon solar cells. Prog. Photovolt. Res. Appl. 4(1), 3–33 (1996). https://doi.org/10.1002/(SICI)1099-159X
P.A. Basore, Defining terms for crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 2(2), 177–179 (1994). https://doi.org/10.1002/pip.4670020213
A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
G. Rajendra Kumar, A. Dennyson Savariraj, S.N. Karthick, S. Selvam, B. Balamuralitharan et al., Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 18(10), 7284–7292 (2016). https://doi.org/10.1039/C5CP06232B
L. Mei, R. Huang, C. Shen, J. Hu, P. Wang et al., Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays. Adv. Opt. Mater. 10(9), 2102656 (2022). https://doi.org/10.1002/adom.202102656
R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao et al., High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27(11), 1912–1918 (2015). https://doi.org/10.1002/adma.201405116
H. Li, Y. Gao, X. Hong, K. Ke, Z. Ye et al., Rational composition engineering for high-quality Pb–Sn photodetector toward sensitive near-infrared digital imaging arrays. InfoMat 7(1), e12615 (2025). https://doi.org/10.1002/inf2.12615
L. He, G. Hu, J. Jiang, W. Wei, X. Xue et al., Highly sensitive tin-lead perovskite photodetectors with over 450 days stability enabled by synergistic engineering for pulse oximetry system. Adv. Mater. 35(10), 2210016 (2023). https://doi.org/10.1002/adma.202210016
E. Jokar, L. Cai, J. Han, E.J.C. Nacpil, I. Jeon, Emerging opportunities in lead-free and lead–tin perovskites for environmentally viable photodetector applications. Chem. Mater. 35(9), 3404–3426 (2023). https://doi.org/10.1021/acs.chemmater.3c00345
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
M. Hu, R. Nie, H. Kim, J. Wu, S. Chen et al., Regulating the surface passivation and residual strain in pure tin perovskite films. ACS Energy Lett. 6(10), 3555–3562 (2021). https://doi.org/10.1021/acsenergylett.1c01575
B. Turedi, V. Yeddu, X. Zheng, D.Y. Kim, O.M. Bakr et al., Perovskite single-crystal solar cells: going forward. ACS Energy Lett. 6(2), 631–642 (2021). https://doi.org/10.1021/acsenergylett.0c02573
R.K. Battula, C. Sudakar, P. Bhyrappa, G. Veerappan, E. Ramasamy, Single-crystal hybrid lead halide perovskites: growth, properties, and device integration for solar cell application. Cryst. Growth Des. 22(10), 6338–6362 (2022). https://doi.org/10.1021/acs.cgd.2c00789
J. Wu, Y. Zhang, S. Yang, Z. Chen, W. Zhu, Thin MAPb0.5Sn0.5I3 perovskite single crystals for sensitive infrared light detection. Front. Chem. 9, 821699 (2022). https://doi.org/10.3389/fchem.2021.821699
Z. Chang, Z. Lu, W. Deng, Y. Shi, Y. Sun et al., Narrow-bandgap Sn-Pb mixed perovskite single crystals for high-performance near-infrared photodetectors. Nanoscale 15(10), 5053–5062 (2023). https://doi.org/10.1039/d2nr05800f
L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding et al., Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 12(1), 2853 (2021). https://doi.org/10.1038/s41467-021-22864-z
S. Tian, G. Li, R.C. Turnell-Ritson, Z. Fei, A. Bornet et al., Controlling tin halide perovskite oxidation dynamics in solution for perovskite optoelectronic devices. Angew. Chem. Int. Ed. 63(32), e202407193 (2024). https://doi.org/10.1002/anie.202407193
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
M.T. Mbumba, D.M. Malouangou, J.M. Tsiba, M.W. Akram, L. Bai et al., Compositional engineering solutions for decreasing trap state density and improving thermal stability in perovskite solar cells. J. Mater. Chem. C 9(40), 14047–14064 (2021). https://doi.org/10.1039/D1TC02315B
R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
R.K. Gunasekaran, J. Jung, S.W. Yang, J. Yun, Y. Yun et al., High-throughput compositional mapping of triple-cation tin–lead perovskites for high-efficiency solar cells. InfoMat 5(4), e12393 (2023). https://doi.org/10.1002/inf2.12393
V. Gutmann, Principles of coordination chemistry in non-aqueous solutions. In: Coordination Chemistry in Non-Aqueous Solutions, pp. 12–34. Springer Vienna (1968). https://doi.org/10.1007/978-3-7091-8194-2_2
C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
S. Rahimnejad, A. Kovalenko, S.M. Forés, C. Aranda, A. Guerrero, Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem 17(18), 2795–2798 (2016). https://doi.org/10.1002/cphc.201600575
M.I. Saidaminov, A.L. Abdelhady, G. Maculan, O.M. Bakr, Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51(100), 17658–17661 (2015). https://doi.org/10.1039/C5CC06916E
S. Chen, P. Gao, Challenges, myths, and opportunities of electron microscopy on halide perovskites. J. Appl. Phys. 128, 010901 (2020). https://doi.org/10.1063/5.0012310
Y.-J. Chen, C. Hou, Y. Yang, Surface energy and surface stability of cesium tin halide perovskites: a theoretical investigation. Phys. Chem. Chem. Phys. 25(15), 10583–10590 (2023). https://doi.org/10.1039/d2cp04183a
J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng et al., Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11(1), 582 (2020). https://doi.org/10.1038/s41467-019-13856-1
J. Hidalgo, Y. An, D. Yehorova, R. Li, J. Breternitz et al., Solvent and A-site cation control preferred crystallographic orientation in bromine-based perovskite thin films. Chem. Mater. 35(11), 4181–4191 (2023). https://doi.org/10.1021/acs.chemmater.3c00075
B. Murali, H.K. Kolli, J. Yin, R. Ketavath, O.M. Bakr et al., Single crystals: the next big wave of perovskite optoelectronics. ACS Mater. Lett. 2(2), 184–214 (2020). https://doi.org/10.1021/acsmaterialslett.9b00290
J. Werner, G. Nogay, F. Sahli, T.C. Yang, M. Bräuninger et al., Complex refractive indices of cesium–formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3(3), 742–747 (2018). https://doi.org/10.1021/acsenergylett.8b00089
C. Li, H. Sun, S. Gan, D. Dou, L. Li, Perovskite single crystals: physical properties and optoelectronic applications. Mater. Futur. 2(4), 042101 (2023). https://doi.org/10.1088/2752-5724/ace8aa
R.K. Gunasekaran, J. Jung, S.W. Yang, D. Im, W.C. Choi et al., Regulating surface heterogeneity maximizes photovoltage and operational stability in tin–lead perovskite solar cells. ACS Energy Lett. 9(1), 102–109 (2024). https://doi.org/10.1021/acsenergylett.3c02402
S. Kim, D. Im, Y. Yun, D. Vidyasagar, S.W. Yang et al., Stabilizing wide-bandgap perovskite with nanoscale inorganic halide barriers for next-generation tandem technology. Adv. Energy Mater. 15(12), 2404366 (2025). https://doi.org/10.1002/aenm.202404366
F. Yang, R.W. MacQueen, D. Menzel, A. Musiienko, A. Al-Ashouri et al., Rubidium iodide reduces recombination losses in methylammonium-free tin-lead perovskite solar cells. Adv. Energy Mater. 13(19), 2204339 (2023). https://doi.org/10.1002/aenm.202204339
G. Kapil, T. Bessho, T. Maekawa, A.K. Baranwal, Y. Zhang et al., Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11(25), 2101069 (2021). https://doi.org/10.1002/aenm.202101069
Q. Chen, J. Luo, R. He, H. Lai, S. Ren et al., Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 11(29), 2101045 (2021). https://doi.org/10.1002/aenm.202101045
C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin-lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
G. Rajendra Kumar, H.-J. Kim, S. Karupannan, K. Prabakar, Interplay between iodide and tin vacancies in CsSnI3 perovskite solar cells. J. Phys. Chem. C 121(30), 16447–16453 (2017). https://doi.org/10.1021/acs.jpcc.7b06278
Y. Ma, L. Shan, Y. Ying, L. Shen, Y. Fu et al., Day-night imaging without infrared cutfilter removal based on metal-gradient perovskite single crystal photodetector. Nat. Commun. 15(1), 7516 (2024). https://doi.org/10.1038/s41467-024-51762-3
R. Ollearo, J. Wang, M.J. Dyson, C.H.L. Weijtens, M. Fattori et al., Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12(1), 7277 (2021). https://doi.org/10.1038/s41467-021-27565-1
A.M. Najarian, M. Vafaie, A. Johnston, T. Zhu, M. Wei et al., Sub-millimetre light detection and ranging using perovskites. Nat. Electron. 5(8), 511–518 (2022). https://doi.org/10.1038/s41928-022-00799-7
W. Wang, D. Zhao, F. Zhang, L. Li, M. Du et al., Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater. 27(42), 1703953 (2017). https://doi.org/10.1002/adfm.201703953
W. Li, J. Chen, H. Lin, S. Zhou, G. Yan et al., The UV–vis-NIR broadband ultrafast flexible Sn-Pb perovskite photodetector for multispectral imaging to distinguish substance and foreign-body in biological tissues. Adv. Opt. Mater. 12(2), 2301373 (2024). https://doi.org/10.1002/adom.202301373
J. Miao, F. Zhang, Y. Lin, W. Wang, M. Gao et al., Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias. Adv. Opt. Mater. 4(11), 1711–1717 (2016). https://doi.org/10.1002/adom.201600387
J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9
X. Xu, C.-C. Chueh, P. Jing, Z. Yang, X. Shi et al., High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 27(28), 1701053 (2017). https://doi.org/10.1002/adfm.201701053
Y. Yun, G.S. Han, G.N. Park, J. Kim, J. Park et al., A wide bandgap halide perovskite based self-powered blue photodetector with 84.9% of external quantum efficiency. Adv. Mater. 34(51), 2206932 (2022). https://doi.org/10.1002/adma.202206932
C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng et al., Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29(39), 1703209 (2017). https://doi.org/10.1002/adma.201703209
J. Liu, Y. Chen, J. Zhou, J. Wang, Z. Chen et al., Filterless near-infrared narrowband photodetectors based on mixed metal perovskite single crystals. Adv. Opt. Mater. 12(32), 2401544 (2024). https://doi.org/10.1002/adom.202401544