Rational Design and Functionalization of Melt Electrowritten 4D Scaffolds for Biomedical Applications
Corresponding Author: Menglin Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 144
Abstract
Melt electrowriting (MEW) enables the precise deposition of polymeric fibers at micro-/nanoscale, allowing for the fabrication of 3D biomimetic scaffolds. By incorporating stimuli-responsive polymers and/or functional fillers, MEW-based 4D printing creates scaffolds capable of undergoing controlled, reversible shape transformations in response to external stimuli over time. These dynamic 4D scaffolds can be tailored for minimally invasive delivery, remote actuation, and real-time responsiveness to physiological environments, making them highly relevant for biomedical applications. This review systematically elucidates the principles of MEW-based 4D printing, including material considerations, actuation methods, and structure design strategies, along with shape programming and morphing mechanisms. The versatility of MEW for rational fabrication of biomimetic scaffolds is firstly introduced. Subsequently, the critical elements underpinning MEW-based 4D printing process are overviewed, including an analysis of stimuli-responsive materials compatible with MEW, an evaluation of applicable external stimuli, and a discussion on the advancements in design strategies for 4D scaffolds. Recent progress of MEW 4D scaffolds for applications in tissue engineering, biomedical implants, and drug delivery systems are highlighted. Finally, key challenges and perspectives toward material innovation, fabrication optimization, and actuation control are discussed. This review aims to provide valuable insights for design and creation of multifunctional biomimetic dynamic scaffolds by MEW-based 4D printing.
Highlights:
1 This review categorically analyzes the state of the art of the structural complexity of melt electrowriting (MEW) scaffolds, ranging from 1D, 2D to 3D architectures, and presents advanced strategies to enhance scaffold quality.
2 This review systematically elucidates the principles of MEW-based 4D printing, including material considerations, actuation methods, and structure design strategies, along with shape programming and morphing mechanisms.
3 This review highlights the advances of MEW 4D scaffolds in tissue engineering, personalized biomedical implants, and drug delivery systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra et al., Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5(1), 61–81 (2020). https://doi.org/10.1038/s41578-019-0150-z
- W. Wu, J. Wang, G. Li, 3D/4D printing of stimuli-responsive polymers in biomedical engineering: materials, stimulations, and applications. Mater. Sci. Eng. R. Rep. 166, 101071 (2025). https://doi.org/10.1016/j.mser.2025.101071
- P.D. Dalton, Melt electrowriting with additive manufacturing principles. Curr. Opin. Biomed. Eng. 2, 49–57 (2017). https://doi.org/10.1016/j.cobme.2017.05.007
- T.D. Brown, P.D. Dalton, D.W. Hutmacher, Direct writing by way of melt electrospinning. Adv. Mater. 23(47), 5651–5657 (2011). https://doi.org/10.1002/adma.201103482
- N.K. Karamanos, A.D. Theocharis, Z. Piperigkou, D. Manou, A. Passi et al., A guide to the composition and functions of the extracellular matrix. FEBS J. 288(24), 6850–6912 (2021). https://doi.org/10.1111/febs.15776
- K.M.A. Mueller, A. Hangleiter, S. Burkhardt, D.M. Rojas-González, C. Kwade et al., Filament-based melt electrowriting enables dual-mode additive manufacturing for multiscale constructs. Small Sci. 3(8), 2300021 (2023). https://doi.org/10.1002/smsc.202300021
- A. Reizabal, T. Kangur, P.G. Saiz, S. Menke, C. Moser et al., MEWron: an open-source melt electrowriting platform. Additive Manuf. 71, 103604 (2023). https://doi.org/10.1016/j.addma.2023.103604
- X. Feng, L. Wang, Z. Xue, C. Xie, J. Han et al., Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. Sci. Adv. 10(10), eadk3854 (2024). https://doi.org/10.1126/sciadv.adk3854
- S.O. Mathew, R. Qi, B.G. Amsden, Thermally stable, photocrossinkable and biocompatible copolymers for melt electrowriting. Biofabrication 17(4), 045001 (2025). https://doi.org/10.1088/1758-5090/adef81
- E. Yarali, M.J. Mirzaali, A. Ghalayaniesfahani, A. Accardo, P.J. Diaz-Payno et al., 4D printing for biomedical applications. Adv. Mater. 36(31), 2402301 (2024). https://doi.org/10.1002/adma.202402301
- A. Ding, F. Tang, E. Alsberg, 4D printing: a comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem. Rev. 125(7), 3663–3771 (2025). https://doi.org/10.1021/acs.chemrev.4c00070
- A. Ding, F. Tang, E. Alsberg, The emerging 4D printing of shape-memory thermomorphs for self-adaptative biomedical implants. Adv. Funct. Mater. 35(28), 2418348 (2025). https://doi.org/10.1002/adfm.202418348
- X. Wan, Z. Xiao, Y. Tian, M. Chen, F. Liu et al., Recent advances in 4D printing of advanced materials and structures for functional applications. Adv. Mater. 36(34), 2312263 (2024). https://doi.org/10.1002/adma.202312263
- B. Liu, H. Li, F. Meng, Z. Xu, L. Hao et al., 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 15(1), 1587 (2024). https://doi.org/10.1038/s41467-024-45938-0
- J. Shi, F. Xia, Q. Tu, C. Wang, Z. Wang et al., Damage-resistant and body-temperature shape memory skin-mimic elastomer for biomedical applications. Sci. Adv. 11(24), eadv4646 (2025). https://doi.org/10.1126/sciadv.adv4646
- M. von Witzleben, A. Gasiūnaitė, M. Ihle, A.R. Akkineni, K. Schütz et al., Uniting 4D printing and melt electrowriting for the enhancement of regenerative small diameter vascular grafts. Adv. Healthc. Mater. e02380 (2025). https://doi.org/10.1002/adhm.202502380
- J. Wang, J. Zhou, Z. Xie, Y. Zhang, M. He et al., Multifunctional 4D printed shape memory composite scaffolds with photothermal and magnetothermal effects for multimodal tumor therapy and bone repair. Biofabrication 17(2), 025032 (2025). https://doi.org/10.1088/1758-5090/adc29e
- K. Mirasadi, M.A. Yousefi, L. Jin, D. Rahmatabadi, M. Baniassadi et al., 4D printing of magnetically responsive shape memory polymers: toward sustainable solutions in soft robotics, wearables, and biomedical devices. Adv. Sci., e13091 (2025). https://doi.org/10.1002/advs.202513091
- A. Roy, Z. Zhang, M.K. Eiken, A. Shi, A. Pena-Francesch et al., Programmable tissue folding patterns in structured hydrogels. Adv. Mater. 36(43), 2300017 (2024). https://doi.org/10.1002/adma.202300017
- Y. Xie, Q. Fang, H. Zhao, Y. Li, Z. Lin et al., Effects of six processing parameters on the size of PCL fibers prepared by melt electrospinning writing. Micromachines 14(7), 1437 (2023). https://doi.org/10.3390/mi14071437
- A. Hrynevich, B.Ş Elçi, J.N. Haigh, R. McMaster, A. Youssef et al., Dimension-based design of melt electrowritten scaffolds. Small 14(22), e1800232 (2018). https://doi.org/10.1002/smll.201800232
- G. Hochleitner, T. Jüngst, T.D. Brown, K. Hahn, C. Moseke et al., Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3), 035002 (2015). https://doi.org/10.1088/1758-5090/7/3/035002
- C. Großhaus, E. Bakirci, M. Berthel, A. Hrynevich, J.C. Kade et al., Melt electrospinning of nanofibers from medical-grade poly(ε-caprolactone) with a modified nozzle. Small 16(44), e2003471 (2020). https://doi.org/10.1002/smll.202003471
- C. Blum, J. Weichhold, G. Hochleitner, V. Stepanenko, F. Würthner et al., Controlling topography and crystallinity of melt electrowritten poly(ɛ-caprolactone) fibers. 3D Print. Addit. Manuf. 8(5), 315–321 (2021). https://doi.org/10.1089/3dp.2020.0290
- C.B. Dayan, F. Afghah, B.S. Okan, M. Yıldız, Y. Menceloglu et al., Modeling 3D melt electrospinning writing by response surface methodology. Mater. Des. 148, 87–95 (2018). https://doi.org/10.1016/j.matdes.2018.03.053
- Y. Xie, J. Chen, H. Zhao, F. Huang, Prediction of the fiber diameter of melt electrospinning writing by Kriging model. J. Appl. Polym. Sci. 139(21), 52212 (2022). https://doi.org/10.1002/app.52212
- H. Xu, I. Liashenko, A. Lucchetti, L. Du, Y. Dong et al., Designing with circular arc toolpaths to increase the complexity of melt electrowriting. Adv. Mater. Technol. 7(10), 2101676 (2022). https://doi.org/10.1002/admt.202101676
- I. Liashenko, A. Hrynevich, P.D. Dalton, Designing outside the box: unlocking the geometric freedom of melt electrowriting using microscale layer shifting. Adv. Mater. 32(28), 2001874 (2020). https://doi.org/10.1002/adma.202001874
- Y. Wang, Y. Su, Y. Zhang, M. Chen, High-voltage wave induced a unique structured percolation network with a negative gauge factor. ACS Appl. Mater. Interfaces 14(4), 5661–5672 (2022). https://doi.org/10.1021/acsami.1c23741
- H. Wang, W. Ou, H. Zhong, J. He, Z. Wang et al., Exploring precise deposition and influence mechanism for micro-scale serpentine structure fiber. Adv. Nano Res. 12, 151–165 (2022). https://doi.org/10.12989/anr.2022.12.2.151
- B. Tandon, A.B. Züge, S. Luposchainsky, P.D. Dalton, Effects of electrode design on the melt electrowriting of sinusoidal structures. Adv. Eng. Mater. 25(17), 2300335 (2023). https://doi.org/10.1002/adem.202300335
- C.-V. Nicolae, E. Olăreț, A.-E. Bratu, A. Lungu, I.-C. Stancu et al., Reinforcing melt electrowritten elements with entangled multifibrillar strands for thin hydrogels with potential in bone resurfacing. Mater. Des. 237, 112545 (2024). https://doi.org/10.1016/j.matdes.2023.112545
- F. Eberle, A.-K. Gruska, B. Filippi, P. Stahlhut, G.G. Wallace et al., Hollow-fiber melt electrowriting using a 3D-printed coaxial nozzle. Adv. Eng. Mater. 24, 2100750 (2022). https://doi.org/10.1002/adem.202100750
- Y. Su, Y. Zhang, Y. Chen, S.S. Majidi, M. Dong et al., Surface recrystallization on melt electrowritten scaffolds for acceleration of osteogenic differentiation. Mater. Today Phys. 41, 101344 (2024). https://doi.org/10.1016/j.mtphys.2024.101344
- M. Ryma, T. Tylek, J. Liebscher, C. Blum, R. Fernandez et al., Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation. Adv. Mater. 33(33), 2101228 (2021). https://doi.org/10.1002/adma.202101228
- J.C. Kade, P.F. Otto, R. Luxenhofer, P.D. Dalton, Melt electrowriting of poly(vinylidene difluoride) using a heated collector. Polym. Adv. Technol. 32(12), 4951–4955 (2021). https://doi.org/10.1002/pat.5463
- H. Haag, D. Sonnleitner, G. Lang, P.D. Dalton, Melt electrowriting to produce microfiber fragments. Polym. Adv. Technol. 33(6), 1989–1992 (2022). https://doi.org/10.1002/pat.5641
- R.S. Diaz, E.M. De-Juan-Pardo, P.D. Dalton, T.R. Dargaville, Semi-woven structures via dual nozzle melt electrowriting. Macromol. Mater. Eng. 308(4), 2200526 (2023). https://doi.org/10.1002/mame.202200526
- P.B. Warren, Z.G. Davis, M.B. Fisher, Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering. J. Mech. Behav. Biomed. Mater. 99, 153–160 (2019). https://doi.org/10.1016/j.jmbbm.2019.07.013
- J. Kim, E. Bakirci, K.L. O’Neill, A. Hrynevich, P.D. Dalton, Fiber bridging during melt electrowriting of poly(ε-caprolactone) and the influence of fiber diameter and wall height. Macromol. Mater. Eng. 306(3), 2000685 (2021). https://doi.org/10.1002/mame.202000685
- L.D. Brenna, P. Edmund, C.A. Mark, C.P. Naomi, A.W. Maria, Advancing scaffold biomimicry: engineering mechanics in microfiber scaffolds with independently controlled architecture using melt electrowriting. bioRxiv (2023). https://doi.org/10.1101/2023.05.28.542676
- B.L. Devlin, S. Kuba, P.C. Hall, A.B. McCosker, E. Pickering et al., A melt electrowriting toolbox for automated G-code generation and toolpath correction of flat and tubular constructs. Adv. Mater. Technol. 9(22), 2400419 (2024). https://doi.org/10.1002/admt.202400419
- E. Bakirci, N. Schaefer, O. Dahri, A. Hrynevich, P. Strissel et al., Melt electrowritten in vitro radial device to study cell growth and migration. Adv. Biosyst. 4(10), e2000077 (2020). https://doi.org/10.1002/adbi.202000077
- B.N. Jensen, Y. Wang, A. Le Friec, S. Nabavi, M. Dong et al., Wireless electromagnetic neural stimulation patch with anisotropic guidance. NPJ Flex. Electron. 7, 34 (2023). https://doi.org/10.1038/s41528-023-00270-3
- F.M. Wunner, M.-L. Wille, T.G. Noonan, O. Bas, P.D. Dalton et al., Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 30(20), e1706570 (2018). https://doi.org/10.1002/adma.201706570
- G. Zheng, G. Fu, J. Jiang, X. Wang, W. Li et al., Melt electrowriting stacked architectures with high aspect ratio. Appl. Phys. A 127(6), 410 (2021). https://doi.org/10.1007/s00339-021-04582-x
- C.D. Lamb, B. Maitland, M.S. Hepburn, T.R. Dargaville, B.F. Kennedy et al., Understanding the significance of layer bonding in melt electrowriting. Adv. Sci. 11(47), 2407514 (2024). https://doi.org/10.1002/advs.202407514
- Y. Su, Z. Zhang, Y. Wan, Y. Zhang, Z. Wang et al., A hierarchically ordered compacted coil scaffold for tissue regeneration. NPG Asia Mater. 12, 55 (2020). https://doi.org/10.1038/s41427-020-0234-7
- A. Hrynevich, P. Achenbach, T. Jungst, G.A. Brook, P.D. Dalton, Design of suspended melt electrowritten fiber arrays for schwann cell migration and neurite outgrowth. Macromol. Biosci. 21(7), 2000439 (2021). https://doi.org/10.1002/mabi.202000439
- C. Xie, Q. Gao, P. Wang, L. Shao, H. Yuan et al., Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater. Des. 181, 108092 (2019). https://doi.org/10.1016/j.matdes.2019.108092
- N. Abbasi, S. Ivanovski, K. Gulati, R.M. Love, S. Hamlet, Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 24, 2 (2020). https://doi.org/10.1186/s40824-019-0180-z
- N. Abbasi, A. Abdal-hay, S. Hamlet, E. Graham, S. Ivanovski, Effects of gradient and offset architectures on the mechanical and biological properties of 3-D melt electrowritten (MEW) scaffolds. ACS Biomater. Sci. Eng. 5(7), 3448–3461 (2019). https://doi.org/10.1021/acsbiomaterials.8b01456
- M.K. Włodarczyk-Biegun, M. Villiou, M. Koch, C. Muth, P. Wang et al., Melt electrowriting of graded porous scaffolds to mimic the matrix structure of the human trabecular meshwork. ACS Biomater. Sci. Eng. 8(9), 3899–3911 (2022). https://doi.org/10.1021/acsbiomaterials.2c00623
- M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo et al., Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci. Rep. 12(1), 19935 (2022). https://doi.org/10.1038/s41598-022-24275-6
- M.J. Vernon, J. Lu, B. Padman, C. Lamb, R. Kent et al., Engineering heart valve interfaces using melt electrowriting: biomimetic design strategies from multi-modal imaging. Adv. Healthc. Mater. 11(24), 2201028 (2022). https://doi.org/10.1002/adhm.202201028
- C.D. O’Connell, O. Bridges, C. Everett, N. Antill-O’Brien, C. Onofrillo et al., Electrostatic distortion of melt-electrowritten patterns by 3D objects: quantification, modeling, and toolpath correction. Adv. Mater. Technol. 6(11), 2100345 (2021). https://doi.org/10.1002/admt.202100345
- U. Saha, R. Nairn, O. Keenan, M.G. Monaghan, A deeper insight into the influence of the electric field strength when melt-electrowriting on non-planar surfaces. Macromol. Mater. Eng. 306(12), 2100496 (2021). https://doi.org/10.1002/mame.202100496
- Q.C. Peiffer, M. de Ruijter, J. van Duijn, D. Crottet, E. Dominic et al., Melt electrowriting onto anatomically relevant biodegradable substrates: resurfacing a diarthrodial joint. Mater. Des. 195, 109025 (2020). https://doi.org/10.1016/j.matdes.2020.109025
- A. Zaeri, K. Cao, F. Zhang, R. Zgeib, R.C. Chang, Design and fabrication of fibrous spindle-like constructs using a melt electrohydrodynamic writing process. Macromol. Mater. Eng. 309(11), 2400080 (2024). https://doi.org/10.1002/mame.202400080
- M. von Witzleben, T. Stoppe, A. Zeinalova, Z. Chen, T. Ahlfeld et al., Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties. Acta Biomater. 170, 124–141 (2023). https://doi.org/10.1016/j.actbio.2023.09.005
- P. Terranova, K.M.A. Mueller, D. Biebl, A. D’Amore, P. Mela, A versatile 5-axis melt electrowriting platform for unprecedented design freedom of 3D fibrous scaffolds. Addit. Manuf. 93, 104431 (2024). https://doi.org/10.1016/j.addma.2024.104431
- F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, The design and fabrication of engineered tubular tissue constructs enabled by electrohydrodynamic fabrication techniques: a review. Macromol. Mater. Eng. 309(9), 2400095 (2024). https://doi.org/10.1002/mame.202400095
- A.M. van Genderen, K. Jansen, M. Kristen, J. van Duijn, Y. Li et al., Topographic guidance in melt-electrowritten tubular scaffolds enhances engineered kidney tubule performance. Front. Bioeng. Biotechnol. 8, 617364 (2021). https://doi.org/10.3389/fbioe.2020.617364
- E. McColl, J. Groll, T. Jungst, P.D. Dalton, Design and fabrication of melt electrowritten tubes using intuitive software. Mater. Des. 155, 46–58 (2018). https://doi.org/10.1016/j.matdes.2018.05.036
- F. Zhang, K. Cao, A. Zaeri, R. Zgeib, C. Buckley et al., Design, fabrication, and characterization of tubular scaffolds by way of a melt electrowriting process. Addit. Manuf. 62, 103383 (2023). https://doi.org/10.1016/j.addma.2022.103383
- N.C. Paxton, R. Daley, D.P. Forrestal, M.C. Allenby, M.A. Woodruff, Auxetic tubular scaffolds via melt electrowriting. Mater. Des. 193, 108787 (2020). https://doi.org/10.1016/j.matdes.2020.108787
- A.B. McCosker, M.E. Snowdon, R. Lamont, M.A. Woodruff, N.C. Paxton, Exploiting nonlinear fiber patterning to control tubular scaffold mechanical behavior. Adv. Mater. Technol. 7(11), 2200259 (2022). https://doi.org/10.1002/admt.202200259
- E. Pickering, N.C. Paxton, A. Bo, B. O’Connell, M. King et al., 3D printed tubular scaffolds with massively tailorable mechanical behavior. Adv. Eng. Mater. 24(11), 2200479 (2022). https://doi.org/10.1002/adem.202200479
- N.C. Paxton, M. Lanaro, A. Bo, N. Crooks, M.T. Ross et al., Design tools for patient specific and highly controlled melt electrowritten scaffolds. J. Mech. Behav. Biomed. Mater. 105, 103695 (2020). https://doi.org/10.1016/j.jmbbm.2020.103695
- P. Mieszczanek, T.M. Robinson, P.D. Dalton, D.W. Hutmacher, Convergence of machine vision and melt electrowriting. Adv. Mater. 33(29), 2100519 (2021). https://doi.org/10.1002/adma.202100519
- Z. Peng, M. Wang, H. Lv, J. Zhang, Y. Li et al., Electric field-driven microscale 3D printing of flexible thin-walled tubular mesh structures of molten polymers. Mater. Des. 225, 111433 (2023). https://doi.org/10.1016/j.matdes.2022.111433
- Q.S. Thorsnes, P.R. Turner, M.A. Ali, J.D. Cabral, Integrating fused deposition modeling and melt electrowriting for engineering branched vasculature. Biomedicines 11(12), 3139 (2023). https://doi.org/10.3390/biomedicines11123139
- N.T. Saidy, T. Shabab, O. Bas, D.M. Rojas-González, M. Menne et al., Melt electrowriting of complex 3D anatomically relevant scaffolds. Front. Bioeng. Biotechnol. 8, 793 (2020). https://doi.org/10.3389/fbioe.2020.00793
- T.L. Brooks-Richards, N.C. Paxton, M.C. Allenby, M.A. Woodruff, Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Mater. Des. 215, 110466 (2022). https://doi.org/10.1016/j.matdes.2022.110466
- S. Loewner, S. Heene, T. Baroth, H. Heymann, F. Cholewa et al., Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 10, 896719 (2022). https://doi.org/10.3389/fbioe.2022.896719
- S. Ashour, H. Xu, Melt electrowriting: a study of jet diameters and jet speeds along the spinline. Polym. Adv. Technol. 33(9), 3013–3016 (2022). https://doi.org/10.1002/pat.5755
- K. Cao, F. Zhang, A. Zaeri, Y. Zhang, R. Zgeib et al., Advances in design and quality of melt electrowritten scaffolds. Mater. Des. 226, 111618 (2023). https://doi.org/10.1016/j.matdes.2023.111618
- F. Tourlomousis, H. Ding, D.M. Kalyon, R.C. Chang, Melt electrospinning writing process guided by a “printability number.” J. Manuf. Sci. Eng. 139(8), 081004 (2017). https://doi.org/10.1115/1.4036348
- K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, Advancing a real-time image-based jet lag tracking methodology for optimizing print parameters and assessing melt electrowritten fiber quality. Addit. Manuf. 54, 102764 (2022). https://doi.org/10.1016/j.addma.2022.102764
- H. Ding, K. Cao, F. Zhang, W. Boettcher, R.C. Chang, A fundamental study of charge effects on melt electrowritten polymer fibers. Mater. Des. 178, 107857 (2019). https://doi.org/10.1016/j.matdes.2019.107857
- L. Du, L. Nie, L. Zhang, H. Lu, L. Yang et al., Enhancing the printing accuracy of melt electrowritten fibers deposited on aluminum foils. Mater. Lett. 321, 132397 (2022). https://doi.org/10.1016/j.matlet.2022.132397
- H. Lu, Y. Sun, Y. Chen, L. Nie, L. Yang et al., The effects of voltage configurations on print accuracy in melt electrowriting. Mater. Lett. 334, 133738 (2023). https://doi.org/10.1016/j.matlet.2022.133738
- F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, Effects of scaffold design parameters on the printing accuracy for melt electrowriting. J. Manuf. Process. 81, 177–190 (2022). https://doi.org/10.1016/j.jmapro.2022.06.070
- F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, Effects of printing sequence on the printing accuracy of melt electrowriting scaffolds. Macromol. Mater. Eng. 307(9), 2200222 (2022). https://doi.org/10.1002/mame.202200222
- A. Hrynevich, I. Liashenko, P.D. Dalton, Accurate prediction of melt electrowritten laydown patterns from simple geometrical considerations. Adv. Mater. Technol. 5(12), 2000772 (2020). https://doi.org/10.1002/admt.202000772
- K. Cao, F. Zhang, B. Wang, Y. Sun, A. Zaeri et al., Analytical interpretation of microscale fiber deviation in designing for polymer melt electrohydrodynamic-based additive manufacturing. Addit. Manuf. 58, 103035 (2022). https://doi.org/10.1016/j.addma.2022.103035
- Y. Jin, Q. Gao, C. Xie, G. Li, J. Du et al., Fabrication of heterogeneous scaffolds using melt electrospinning writing: design and optimization. Mater. Des. 185, 108274 (2020). https://doi.org/10.1016/j.matdes.2019.108274
- K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, Quantitative investigation into the design and process parametric effects on the fiber-entrapped residual charge for a polymer melt electrohydrodynamic printing process. Macromol. Mater. Eng. 307(3), 2100766 (2022). https://doi.org/10.1002/mame.202100766
- K. Cao, F. Zhang, R.C. Chang, A charge-based mechanistic study into the effects of process parameters on fiber accumulating geometry for a melt electrohydrodynamic process. Processes 8(11), 1440 (2020). https://doi.org/10.3390/pr8111440
- K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, A charge‐based mechanistic study into the effect of collector temperature on melt electrohydrodynamic printing outcomes. Adv. Mater. Technol. 6(7), 2100251 (2021). https://doi.org/10.1002/admt.202100251
- K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, A holistic model for melt electrowritten three-dimensional structured materials based on residual charge. Int. J. Bioprinting 9, 656 (2022). https://doi.org/10.18063/ijb.v9i2.656
- L. Du, L. Yang, H. Lu, L. Nie, Y. Sun et al., Additive manufacturing of ultrahigh-resolution poly(ε-caprolactone) scaffolds using melt electrowriting. Polymer 301, 127028 (2024). https://doi.org/10.1016/j.polymer.2024.127028
- Z. Zou, Y. Wang, Z. Shen, N. Luo, Study on suppression strategy of jet lag effect in melt electrowriting. J. Mech. Sci. Technol. 37(9), 4801–4808 (2023). https://doi.org/10.1007/s12206-023-0832-8
- X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding et al., Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29(2), 1805290 (2019). https://doi.org/10.1002/adfm.201805290
- H. Xu, L. Du, Sustainable medical materials printed by melt electrowriting: a mini-review. Curr. Opin. Biomed. Eng. 27, 100464 (2023). https://doi.org/10.1016/j.cobme.2023.100464
- J.C. Kade, P.D. Dalton, Polymers for melt electrowriting. Adv. Healthc. Mater. 10, 2001232 (2021). https://doi.org/10.1002/adhm.202001232
- N.C. Paxton, S.W.K. Ho, B.T. Tuten, J. Lipton-Duffin, M.A. Woodruff, Degradation of melt electrowritten PCL scaffolds following melt processing and plasma surface treatment. Macromol. Rapid Commun. 42(23), e2100433 (2021). https://doi.org/10.1002/marc.202100433
- C. Böhm, P. Stahlhut, J. Weichhold, A. Hrynevich, J. Teßmar et al., The multiweek thermal stability of medical-grade poly(ε-caprolactone) during melt electrowriting. Small 18(3), 2104193 (2022). https://doi.org/10.1002/smll.202104193
- J. Delaey, P. Dubruel, S. Van Vlierberghe, Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 30(44), 1909047 (2020). https://doi.org/10.1002/adfm.201909047
- P. Feng, F. Yang, J. Jia, J. Zhang, W. Tan et al., Mechanism and manufacturing of 4D printing: derived and beyond the combination of 3D printing and shape memory material. Int. J. Extrem. Manuf. 6(6), 062011 (2024). https://doi.org/10.1088/2631-7990/ad7e5f
- W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao et al., Shape memory materials. Mater. Today 13(7–8), 54–61 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0
- S. Yang, Y. He, Z. Song, Y. Li, Research status and potential direction for thermoplastic shape memory polymers and composites: a review. Polymers 17(10), 1360 (2025). https://doi.org/10.3390/polym17101360
- A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002). https://doi.org/10.1126/science.1066102
- A. Lendlein, P. Neuenschwander, U.W. Suter, Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol. Chem. Phys. 199, 2785–2796 (1998). https://doi.org/10.1002/(SICI)1521-3935(19981201)199:12%3c2785::AID-MACP2785%3e3.3.CO;2-O
- M. Balk, M. Behl, C. Wischke, J. Zotzmann, A. Lendlein, Recent advances in degradable lactide-based shape-memory polymers. Adv. Drug Deliv. Rev. 107, 136–152 (2016). https://doi.org/10.1016/j.addr.2016.05.012
- W. Zhao, C. Yue, L. Liu, Y. Liu, J. Leng, Research progress of shape memory polymer and 4D printing in biomedical application. Adv. Healthc. Mater. 12(16), 2201975 (2023). https://doi.org/10.1002/adhm.202201975
- B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh et al., Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8(16), 10070–10087 (2016). https://doi.org/10.1021/acsami.6b01295
- F. Zhang, N. Wen, L. Wang, Y. Bai, J. Leng, Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int. J. Smart Nano Mater. 12(4), 375–389 (2021). https://doi.org/10.1080/19475411.2021.1974972
- C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers–the role of morphology, processing effects, and matrix degradation. Expert Opin. Drug Deliv. 10(9), 1193–1205 (2013). https://doi.org/10.1517/17425247.2013.797406
- A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002). https://doi.org/10.1002/1521-3773
- A. Lendlein, O.E.C. Gould, Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4(2), 116–133 (2019). https://doi.org/10.1038/s41578-018-0078-8
- M. Bodaghi, A.R. Damanpack, W.H. Liao, Adaptive metamaterials by functionally graded 4D printing. Mater. Des. 135, 26–36 (2017). https://doi.org/10.1016/j.matdes.2017.08.069
- T. Xie, Recent advances in polymer shape memory. Polymer 52(22), 4985–5000 (2011). https://doi.org/10.1016/j.polymer.2011.08.003
- Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33(6), 2000713 (2021). https://doi.org/10.1002/adma.202000713
- Z. Shao, H. Chen, Q. Wang, G. Kang, J. Jiang et al., Melt electrowriting ordered TPU microfibrous mesh for on-demand colorimetric wearable sweat detection. IEEE Sens. J. 22(19), 18560–18566 (2022). https://doi.org/10.1109/JSEN.2022.3199406
- C. Pasini, Z.V. Soreño, D. Schönfeld, T. Pretsch, G. Constante et al., 4D fabrication of two-way shape memory polymeric composites by electrospinning and melt electrowriting. Macromol. Rapid Commun. 45(11), 2400010 (2024). https://doi.org/10.1002/marc.202400010
- M. Xue, W. Zhang, H. Jin, H. Wu, B. Qiu et al., Composite additive manufacturing for suspended microelectrode arrays: advancing oriented myocardial tissue culturing and electrophysiological sensing. Biosens. Bioelectron. 287, 117686 (2025). https://doi.org/10.1016/j.bios.2025.117686
- L. Nie, Y. Sun, X. Ming, Z. Xu, X. Ye et al., High-resolution 3D printed strain sensor with superb stretchability and sensitivity: unveiling the potential of melt electrowriting. Mater. Today 84, 39–47 (2025). https://doi.org/10.1016/j.mattod.2025.01.017
- D.C.S. Costa, P.D.C. Costa, M.C. Gomes, A. Chandrakar, P.A. Wieringa et al., Universal strategy for designing shape memory hydrogels. ACS Mater. Lett. 4(4), 701–706 (2022). https://doi.org/10.1021/acsmaterialslett.2c00107
- G. Constante, I. Apsite, P. Auerbach, S. Aland, D. Schönfeld et al., Smart mechanically tunable surfaces with shape memory behavior and wetting-programmable topography. ACS Appl. Mater. Interfaces 14(17), 20208–20219 (2022). https://doi.org/10.1021/acsami.2c01078
- G. Constante, I. Apsite, D. Schönfeld, T. Pretsch, L. Ionov, Reversibly photoswitchable high-aspect ratio surfaces. Small Struct. 4(10), 2300040 (2023). https://doi.org/10.1002/sstr.202300040
- H. Ramaraju, R.E. Akman, D.L. Safranski, S.J. Hollister, Designing biodegradable shape memory polymers for tissue repair. Adv. Funct. Mater. 30(44), 2002014 (2020). https://doi.org/10.1002/adfm.202002014
- N. Roudbarian, M. Baniasadi, P. Nayyeri, M. Ansari, R. Hedayati et al., Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Mater. Struct. 30(10), 105006 (2021). https://doi.org/10.1088/1361-665X/ac1b3b
- M. Ramezani, D. Getya, I. Gitsov, M.B.B. Monroe, Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications. J. Mater. Chem. B 12(5), 1217–1231 (2024). https://doi.org/10.1039/D3TB02472E
- T. Sun, H. Lu, S. Luposchainsky, L. Yang, X. Zhang et al., Challenges of high-temperature melt electrowriting: a study of EVOH printing. Polymer 331, 128518 (2025). https://doi.org/10.1016/j.polymer.2025.128518
- D.J. Roach, X. Kuang, C. Yuan, K. Chen, H.J. Qi, Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct. 27(12), 125011 (2018). https://doi.org/10.1088/1361-665x/aae96f
- T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14(11), 1087–1098 (2015). https://doi.org/10.1038/nmat4433
- T. Guin, M.J. Settle, B.A. Kowalski, A.D. Auguste, R.V. Beblo et al., Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018). https://doi.org/10.1038/s41467-018-04911-4
- M. Chen, M. Gao, L. Bai, H. Zheng, H.J. Qi et al., Recent advances in 4D printing of liquid crystal elastomers. Adv. Mater. 35(23), e2209566 (2023). https://doi.org/10.1002/adma.202209566
- K.M. Herbert, H.E. Fowler, J.M. McCracken, K.R. Schlafmann, J.A. Koch et al., Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7(1), 23–38 (2022). https://doi.org/10.1038/s41578-021-00359-z
- M. Javadzadeh, J. del Barrio, C. Sánchez-Somolinos, Melt electrowriting of liquid crystal elastomer scaffolds with programmed mechanical response. Adv. Mater. 35(14), 2209244 (2023). https://doi.org/10.1002/adma.202209244
- D. Roach, C. Yuan, X. Kuang, V.C. Li, P. Blake et al., Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 11(21), 19514–19521 (2019). https://doi.org/10.1021/acsami.9b04401
- C. Zhang, X. Lu, G. Fei, Z. Wang, H. Xia et al., 4D printing of a liquid crystal elastomer with a controllable orientation gradient. ACS Appl. Mater. Interfaces 11(47), 44774–44782 (2019). https://doi.org/10.1021/acsami.9b18037
- C.P. Ambulo, J.J. Burroughs, J.M. Boothby, H. Kim, M.R. Shankar et al., Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9(42), 37332–37339 (2017). https://doi.org/10.1021/acsami.7b11851
- A. Kotikian, R.L. Truby, J.W. Boley, T.J. White, J.A. Lewis, 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018). https://doi.org/10.1002/adma.201706164
- X. Yin, L. Li, Y.-X. Zhao, Z.-Y. Xu, L.-Y. Shi et al., Adaptive structural regulation of disulfide contained liquid crystal elastomers for mild temperature-induced two-way shape memory effects. Macromolecules 58(12), 6005–6016 (2025). https://doi.org/10.1021/acs.macromol.5c01057
- A. Ding, O. Jeon, R. Tang, Y.B. Lee, S.J. Lee et al., Cell-laden multiple-step and reversible 4d hydrogel actuators to mimic dynamic tissue morphogenesis. Adv. Sci. 8(9), 2004616 (2021). https://doi.org/10.1002/advs.202004616
- P.J. Díaz-Payno, M. Kalogeropoulou, I. Muntz, E. Kingma, N. Kops et al., Swelling-dependent shape-based transformation of a human mesenchymal stromal cells-laden 4d bioprinted construct for cartilage tissue engineering. Adv. Healthc. Mater. 12(2), 2201891 (2023). https://doi.org/10.1002/adhm.202201891
- M. Hippler, K. Weißenbruch, K. Richler, E.D. Lemma, M. Nakahata et al., Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Sci. Adv. 6(39), eabc2648 (2020). https://doi.org/10.1126/sciadv.abc2648
- D.J. Wu, N.H. Vonk, B.A.G. Lamers, M. Castilho, J. Malda et al., Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. Eur. Polym. J. 141, 110099 (2020). https://doi.org/10.1016/j.eurpolymj.2020.110099
- D. Nahm, F. Weigl, N. Schaefer, A. Sancho, A. Frank et al., A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels. Mater. Horiz. 7(3), 928–933 (2020). https://doi.org/10.1039/C9MH01654F
- Z. Kroneková, T. Lorson, J. Kronek, R. Luxenhofer, Cytotoxicity of 2-oxazines and poly(2-oxazine)s in mouse fibroblast. ChemRxiv (2018). https://doi.org/10.26434/chemrxiv.5793990.v1
- C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromol 12(3), 824–830 (2011). https://doi.org/10.1021/bm101446k
- A. Cortés, A. Cosola, M. Sangermano, M. Campo, S. González Prolongo et al., DLP 4D-printing of remotely, modularly, and selectively controllable shape memory polymer nanocomposites embedding carbon nanotubes. Adv. Funct. Mater. 31(50), 2106774 (2021). https://doi.org/10.1002/adfm.202106774
- C. Zeng, L. Liu, W. Bian, Y. Liu, J. Leng, 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance. Compos. Part B Eng. 194, 108034 (2020). https://doi.org/10.1016/j.compositesb.2020.108034
- Z. Meng, J. He, Z. Xia, D. Li, Fabrication of microfibrous PCL/MWCNTs scaffolds via melt-based electrohydrodynamic printing. Mater. Lett. 278, 128440 (2020). https://doi.org/10.1016/j.matlet.2020.128440
- Y. Zhang, A. Le Friec, Z. Zhang, C.A. Müller, T. Du et al., Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring. Mater. Today 70, 237–272 (2023). https://doi.org/10.1016/j.mattod.2023.09.005
- C. Zhang, X. Li, L. Jiang, D. Tang, H. Xu et al., 3D printing of functional magnetic materials: from design to applications. Adv. Funct. Mater. 31(34), 2102777 (2021). https://doi.org/10.1002/adfm.202102777
- E. Yarali, M. Baniasadi, A. Zolfagharian, M. Chavoshi, F. Arefi et al., Magneto-/ electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 26, 101306 (2022). https://doi.org/10.1016/j.apmt.2021.101306
- V.Q. Nguyen, A.S. Ahmed, R.V. Ramanujan, Morphing soft magnetic composites. Adv. Mater. 24(30), 4041–4054 (2012). https://doi.org/10.1002/adma.201104994
- V. Frantellizzi, M. Conte, M. Pontico, A. Pani, R. Pani et al., New frontiers in molecular imaging with superparamagnetic iron oxide nanops (SPIONs): efficacy, toxicity, and future applications. Nucl. Med. Mol. Imaging 54(2), 65–80 (2020). https://doi.org/10.1007/s13139-020-00635-w
- K.M.A. Mueller, G.J. Topping, S.P. Schwaminger, Y. Zou, D.M. Rojas-González et al., Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. Biomater. Sci. 9(13), 4607–4612 (2021). https://doi.org/10.1039/d1bm00461a
- I. Unalan, I. Occhipinti, M. Miola, E. Vernè, A.R. Boccaccini, Development of super-paramagnetic iron oxide nanop-coated melt electrowritten scaffolds for biomedical applications. Macromol. Biosci. 24(3), e2300397 (2024). https://doi.org/10.1002/mabi.202300397
- S. Mansi, S.V. Dummert, G.J. Topping, M.Z. Hussain, C. Rickert et al., Introducing metal–organic frameworks to melt electrowriting: multifunctional scaffolds with controlled microarchitecture for tissue engineering applications. Adv. Funct. Mater. 34(2), 2304907 (2024). https://doi.org/10.1002/adfm.202304907
- J.C. Kade, E. Bakirci, B. Tandon, D. Gorgol, M. Mrlik et al., The impact of including carbonyl iron ps on the melt electrowriting process. Macromol. Mater. Eng. 307(12), 2200478 (2022). https://doi.org/10.1002/mame.202200478
- P.G. Saiz, A. Reizabal, S. Luposchainsky, J.L. Vilas-Vilela, S. Lanceros-Mendez et al., Magnetically responsive melt electrowritten structures. Adv. Mater. Technol. 8(13), 2202063 (2023). https://doi.org/10.1002/admt.202202063
- G. Cedillo-Servin, O. Dahri, J. Meneses, J. van Duijn, H. Moon et al., 3D printed magneto-active microfiber scaffolds for remote stimulation and guided organization of 3D in vitro skeletal muscle models. Small 20(12), 2307178 (2024). https://doi.org/10.1002/smll.202307178
- M. Tang, S. Mahri, Y.-P. Shiau, T. Mukarrama, R. Villa et al., Multifunctional and scalable nanops for bimodal image-guided phototherapy in bladder cancer treatment. Nano-Micro Lett. 17(1), 222 (2025). https://doi.org/10.1007/s40820-025-01717-0
- D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42(17), 7244 (2013). https://doi.org/10.1039/c3cs35489j
- X. Wu, T. Vedelaar, R. Li, R. Schirhagl, M. Kamperman et al., Melt electrowritten scaffolds containing fluorescent nanodiamonds for improved mechanical properties and degradation monitoring. Bioprinting 32, e00288 (2023). https://doi.org/10.1016/j.bprint.2023.e00288
- P.G. Saiz, A. Reizabal, J.L. Vilas-Vilela, S. Lanceros-Mendez, P.D. Dalton, Thermochromic responses on melt electrowritten poly(ϵ-caprolactone) microstructures. ACS Appl. Polym. Mater. 5(6), 3883–3887 (2023). https://doi.org/10.1021/acsapm.3c00427
- W. Peng, J. Yin, X. Zhang, Y. Shi, G. Che et al., 4D printed shape memory anastomosis ring with controllable shape transformation and degradation. Adv. Funct. Mater. 33(20), 2214505 (2023). https://doi.org/10.1002/adfm.202214505
- Z.-W. Ren, Z.-Y. Wang, Y.-W. Ding, J.-W. Dao, H.-R. Li et al., Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater. Sci. 11(18), 6013–6034 (2023). https://doi.org/10.1039/d3bm01043k
- Y.-W. Ding, Y. Li, Z.-W. Zhang, J.-W. Dao, D.-X. Wei, Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanops for mini-invasive androgenetic alopecia treatment. Bioact. Mater. 38, 95–108 (2024). https://doi.org/10.1016/j.bioactmat.2024.04.020
- M.Z. Gładysz, D. Ubels, M. Koch, A. Amirsadeghi, F. Alleblas et al., Melt electrowriting of polyhydroxyalkanoates for enzymatically degradable scaffolds. Adv. Healthc. Mater. 14(6), 2401504 (2025). https://doi.org/10.1002/adhm.202401504
- D. Sang, X. Luo, J. Liu, Biological interaction and imaging of ultrasmall gold nanops. Nano-Micro Lett. 16(1), 44 (2023). https://doi.org/10.1007/s40820-023-01266-4
- E. Navarro-Palomares, P. González-Saiz, C. Renero-Lecuna, R. Martín-Rodríguez, F. Aguado et al., Dye-doped biodegradable nanop SiO2 coating on zinc- and iron-oxide nanops to improve biocompatibility and for in vivo imaging studies. Nanoscale 12(10), 6164–6175 (2020). https://doi.org/10.1039/C9NR08743E
- D. Rahmatabadi, M.A. Yousefi, S. Shamsolhodaei, M. Baniassadi, K. Abrinia et al., 4D printing of polyethylene glycol-grafted carbon nanotube-reinforced polyvinyl chloride–polycaprolactone composites for enhanced shape recovery and thermomechanical performance. Adv. Intell. Syst. (2025). https://doi.org/10.1002/aisy.202500113
- G. Constante, I. Apsite, H. Alkhamis, M. Dulle, M. Schwarzer et al., 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers. ACS Appl. Mater. Interfaces 13(11), 12767–12776 (2021). https://doi.org/10.1021/acsami.0c18608
- J. Uribe-Gomez, A. Posada-Murcia, A. Shukla, M. Ergin, G. Constante et al., Shape-morphing fibrous hydrogel/elastomer bilayers fabricated by a combination of 3D printing and melt electrowriting for muscle tissue regeneration. ACS Appl. Bio Mater. 4(2), 1720–1730 (2021). https://doi.org/10.1021/acsabm.0c01495
- X. Wang, Y. He, Y. Liu, J. Leng, Advances in shape memory polymers: remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R. Rep. 151, 100702 (2022). https://doi.org/10.1016/j.mser.2022.100702
- D. Chen, Q. Liu, Z. Han, J. Zhang, H. Song et al., 4D printing strain self-sensing and temperature self-sensing integrated sensor-actuator with bioinspired gradient gaps. Adv. Sci. 7(13), 2000584 (2020). https://doi.org/10.1002/advs.202000584
- M.N.I. Shiblee, K. Ahmed, M. Kawakami, H. Furukawa, 4D printing of shape-memory hydrogels for soft-robotic functions. Adv. Mater. Technol. 4(8), 1900071 (2019). https://doi.org/10.1002/admt.201900071
- R. Qu, D. Zhou, T. Guo, W. He, C. Cui et al., 4D printing of shape memory inferior vena cava filters based on copolymer of poly(glycerol sebacate) acrylate-co-hydroxyethyl methacrylate (PGSA-HEMA). Mater. Des. 225, 111556 (2023). https://doi.org/10.1016/j.matdes.2022.111556
- X. Peng, S. Wu, X. Sun, L. Yue, S.M. Montgomery et al., 4D printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. Adv. Mater. 34(39), e2204890 (2022). https://doi.org/10.1002/adma.202204890
- H. Lu, M. Lei, C. Zhao, Y. Yao, J. Gou et al., Controlling Au electrode patterns for simultaneously monitoring electrical actuation and shape recovery in shape memory polymer. Compos. B Eng. 80, 37–42 (2015). https://doi.org/10.1016/j.compositesb.2015.05.039
- A. Servant, V. Leon, D. Jasim, L. Methven, P. Limousin et al., Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv. Healthc. Mater. 3(8), 1334–1343 (2014). https://doi.org/10.1002/adhm.201400016
- S. Anand, C.A. Müller, BNørrehvedde. Jensen, M. Chen, Embracing remote fields as the fourth dimension of tissue biofabrication. Adv. Funct. Mater. 34(32), 2401654 (2024). https://doi.org/10.1002/adfm.202401654
- C. Neudorfer, C.T. Chow, A. Boutet, A. Loh, J. Germann et al., Kilohertz-frequency stimulation of the nervous system: a review of underlying mechanisms. Brain Stimul. 14(3), 513–530 (2021). https://doi.org/10.1016/j.brs.2021.03.008
- Y.S. Lui, W.T. Sow, L.P. Tan, Y. Wu, Y. Lai et al., 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 92, 19–36 (2019). https://doi.org/10.1016/j.actbio.2019.05.005
- J. Liu, Y. Gao, H. Wang, R. Poling-Skutvik, C.O. Osuji et al., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2(6), 1900163 (2020). https://doi.org/10.1002/aisy.201900163
- L. Ceamanos, Z. Kahveci, M. López-Valdeolivas, D. Liu, D.J. Broer et al., Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions. ACS Appl. Mater. Interfaces 12(39), 44195–44204 (2020). https://doi.org/10.1021/acsami.0c13341
- Y. Deng, F. Zhang, M. Jiang, Y. Liu, H. Yuan et al., Programmable 4d printing of photoactive shape memory composite structures. ACS Appl. Mater. Interfaces 14(37), 42568–42577 (2022). https://doi.org/10.1021/acsami.2c13982
- S. Tasmim, Z. Yousuf, F.S. Rahman, E. Seelig, A.J. Clevenger et al., Liquid crystal elastomer based dynamic device for urethral support: potential treatment for stress urinary incontinence. Biomaterials 292, 121912 (2023). https://doi.org/10.1016/j.biomaterials.2022.121912
- J. Wang, Y. Xu, D. Zhang, W. Liu, Z. Li et al., Multifunctional, NIR light-responsive, 4D printable polyurethane/polydopamine nanocomposite. Polymer 324, 128214 (2025). https://doi.org/10.1016/j.polymer.2025.128214
- A. Zolfagharian, A. Kaynak, S.Y. Khoo, A. Kouzani, Pattern-driven 4d printing. Sens. Actuators, A Phys. 274, 231–243 (2018). https://doi.org/10.1016/j.sna.2018.03.034
- H. Cui, S. Miao, T. Esworthy, S.-J. Lee, X. Zhou et al., A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res. 12, 1381–1388 (2019). https://doi.org/10.1007/s12274-019-2340-9
- S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2(10), 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- S. Johannsmeier, P. Heeger, M. Terakawa, S. Kalies, A. Heisterkamp et al., Gold nanop-mediated laser stimulation induces a complex stress response in neuronal cells. Sci. Rep. 8, 6533 (2018). https://doi.org/10.1038/s41598-018-24908-9
- H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23(7), 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
- Y. Kim, X. Zhao, Magnetic soft materials and robots. Chem. Rev. 122(5), 5317–5364 (2022). https://doi.org/10.1021/acs.chemrev.1c00481
- F. Zhang, L. Wang, Z. Zheng, Y. Liu, J. Leng, Magnetic programming of 4D printed shape memory composite structures. Compos. Part A Appl. Sci. Manuf. 125, 105571 (2019). https://doi.org/10.1016/j.compositesa.2019.105571
- H. Liu, F. Wang, W. Wu, X. Dong, L. Sang, 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures. Compos. Part B Eng. 248, 110382 (2023). https://doi.org/10.1016/j.compositesb.2022.110382
- V. Walsh, A. Cowey, Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1(1), 73–80 (2000). https://doi.org/10.1038/35036239
- A.T. Sack, D.E.J. Linden, Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res. Brain Res. Rev. 43(1), 41–56 (2003). https://doi.org/10.1016/s0165-0173(03)00191-7
- N.G. Horton, K. Wang, D. Kobat, C.G. Clark, F.W. Wise et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013). https://doi.org/10.1038/nphoton.2012.336
- M. Hallett, Transcranial magnetic stimulation: a primer. Neuron 55(2), 187–199 (2007). https://doi.org/10.1016/j.neuron.2007.06.026
- J.H. Young, M.-T. Wang, I.A. Brezovich, Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. Electron. Lett. 16(10), 358–359 (1980). https://doi.org/10.1049/el:19800255
- S. Das Barman, A.W. Reza, N. Kumar, M.E. Karim, A.B. Munir, Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 51, 1525–1552 (2015). https://doi.org/10.1016/j.rser.2015.07.031
- S. Parimita, A. Kumar, H. Krishnaswamy, P. Ghosh, Solvent triggered shape morphism of 4D printed hydrogels. J. Manuf. Process. 85, 875–884 (2023). https://doi.org/10.1016/j.jmapro.2022.11.065
- M. Jamal, S.S. Kadam, R. Xiao, F. Jivan, T.-M. Onn et al., Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv. Healthc. Mater. 2(8), 1142–1150 (2013). https://doi.org/10.1002/adhm.201200458
- P. Imrie, J. Jin, Polymer 4D printing: advanced shape-change and beyond. J. Polym. Sci. 60(2), 149–174 (2022). https://doi.org/10.1002/pol.20210718
- Y. Hu, Z. Wang, D. Jin, C. Zhang, R. Sun et al., Botanical-inspired 4d printing of hydrogel at the microscale. Adv. Funct. Mater. 30(4), 1907377 (2020). https://doi.org/10.1002/adfm.201907377
- D. Kim, K.-H. Kim, Y.-S. Yang, K.-S. Jang, S. Jeon et al., 4D printing and simulation of body temperature-responsive shape-memory polymers for advanced biomedical applications. Int. J. Bioprinting (2024). https://doi.org/10.36922/ijb.3035
- S. Choudhury, A. Joshi, V.S. Baghel, G.K. Ananthasuresh, S. Asthana et al., Design-encoded dual shape-morphing and shape-memory in 4d printed polymer parts toward cellularized vascular grafts. J. Mater. Chem. B 12(23), 5678–5689 (2024). https://doi.org/10.1039/D4TB00437J
- F. Tang, A. Ding, Y. Xu, Y. Ye, L. Li et al., Gene and photothermal combination therapy: principle, materials, and amplified anticancer intervention. Small 20(6), 2307078 (2024). https://doi.org/10.1002/smll.202307078
- S.H. Beachy, E.A. Repasky, Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int. J. Hyperthermia 27(4), 344–352 (2011). https://doi.org/10.3109/02656736.2011.562873
- O. Feuerstein, K. Zeichner, C. Imbari, Z. Ormianer, N. Samet et al., Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin. Oral Implants Res. 19(6), 629–633 (2008). https://doi.org/10.1111/j.1600-0501.2007.01502.x
- Y. Zhu, K. Deng, J. Zhou, C. Lai, Z. Ma et al., Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 15(1), 1123 (2024). https://doi.org/10.1038/s41467-024-45437-2
- J. Wang, Z. Wang, Z. Song, L. Ren, Q. Liu, Programming multistage shape memory and variable recovery force with 4D printing parameters. Adv. Mater. Technol. 4(11), 1900535 (2019). https://doi.org/10.1002/admt.201900535
- S. Nam, E. Pei, The influence of shape changing behaviors from 4D printing through material extrusion print patterns and infill densities. Materials 13(17), 3754 (2020). https://doi.org/10.3390/ma13173754
- A.R. Rajkumar, K. Shanmugam, Additive manufacturing-enabled shape transformations via FFF 4d printing. J. Mater. Res. 33(24), 4362–4376 (2018). https://doi.org/10.1557/jmr.2018.397
- L. Huang, R. Jiang, J. Wu, J. Song, H. Bai et al., Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29(7), 1605390 (2017). https://doi.org/10.1002/adma.201605390
- Y. Wu, G. Guo, Z. Wei, J. Qian, Programming soft shape-morphing systems by harnessing strain mismatch and snap-through bistability: a review. Materials 15(7), 2397 (2022). https://doi.org/10.3390/ma15072397
- D.J. Roach, X. Sun, X. Peng, F. Demoly, K. Zhou et al., 4D printed multifunctional composites with cooling-rate mediated tunable shape morphing. Adv. Funct. Mater. 32(36), 2203236 (2022). https://doi.org/10.1002/adfm.202203236
- Z.J. Wang, C.N. Zhu, W. Hong, Z.L. Wu, Q. Zheng, Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures. J. Mater. Chem. B 4(44), 7075–7079 (2016). https://doi.org/10.1039/C6TB02178F
- H. Wang, J. Guo, Recent advances in 4d printing hydrogel for biological interfaces. Int. J. Mater. Form. 16(5), 55 (2023). https://doi.org/10.1007/s12289-023-01778-9
- M.R. Vinciguerra, D.K. Patel, W. Zu, M. Tavakoli, C. Majidi et al., Multimaterial printing of liquid crystal elastomers with integrated stretchable electronics. ACS Appl. Mater. Interfaces 15(20), 24777–24787 (2023). https://doi.org/10.1021/acsami.2c23028
- J.W. Boley, W.M. van Rees, C. Lissandrello, M.N. Horenstein, R.L. Truby et al., Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl. Acad. Sci. U. S. A. 116(42), 20856–20862 (2019). https://doi.org/10.1073/pnas.1908806116
- O. Bas, B. Gorissen, S. Luposchainsky, T. Shabab, K. Bertoldi et al., Ultrafast, miniature soft actuators. Multifunct. Mater. 4(4), 045001 (2021). https://doi.org/10.1088/2399-7532/ac2faf
- Y. Wang, X. Li, An accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling. Mech. Mater. 151, 103628 (2020). https://doi.org/10.1016/j.mechmat.2020.103628
- S. Timoshenko, Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11(3), 233 (1925). https://doi.org/10.1364/josa.11.000233
- Y. Wu, X. Hao, R. Xiao, J. Lin, Z.L. Wu et al., Controllable bending of bi-hydrogel strips with differential swelling. Acta Mech. Solida Sin. 32(5), 652–662 (2019). https://doi.org/10.1007/s10338-019-00106-6
- L. Li, P. Wang, H. Liang, J. Jin, Y. Zhang et al., Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J. Adv. Res. 54, 89–104 (2023). https://doi.org/10.1016/j.jare.2023.01.004
- C.-Y. Cheng, H. Xie, Z.-Y. Xu, L. Li, M.-N. Jiang et al., 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem. Eng. J. 396, 125242 (2020). https://doi.org/10.1016/j.cej.2020.125242
- Z. Li, P. Yan, H. Wang, Y. Zhang, J. Kong et al., Dynamic bonds reinforced polyamide elastomer for biomedical orthosis. Adv. Sci. 12(30), e04395 (2025). https://doi.org/10.1002/advs.202504395
- M. Ramezani, Z. Mohd Ripin, 4D printing in biomedical engineering: advancements, challenges, and future directions. J. Funct. Biomater. 14(7), 347 (2023). https://doi.org/10.3390/jfb14070347
- A. Mandal, K. Chatterjee, 4D printing for biomedical applications. J. Mater. Chem. B 12(12), 2985–3005 (2024). https://doi.org/10.1039/d4tb00006d
- X. Chen, S. Han, W. Wu, Z. Wu, Y. Yuan et al., Harnessing 4D printing bioscaffolds for advanced orthopedics. Small 18(36), e2106824 (2022). https://doi.org/10.1002/smll.202106824
- N. Wang, Review of cellular mechanotransduction. J. Phys. D Appl. Phys. 50(23), 233002 (2017). https://doi.org/10.1088/1361-6463/aa6e18
- A. Melocchi, M. Uboldi, M. Cerea, A. Foppoli, A. Maroni et al., Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 173, 216–237 (2021). https://doi.org/10.1016/j.addr.2021.03.013
- U. Aizarna-Lopetegui, S.C. Bittinger, N. Álvarez, M. Henriksen-Lacey, D. de Jimenez Aberasturi, Stimuli-responsive hybrid materials for 4D in vitro tissue models. Mater. Today Bio. 33, 102035 (2025). https://doi.org/10.1016/j.mtbio.2025.102035
- W.J. Hendrikson, J. Rouwkema, F. Clementi, C.A. van Blitterswijk, S. Farè et al., Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 9(3), 031001 (2017). https://doi.org/10.1088/1758-5090/aa8114
- Y. Wang, H. Cui, Y. Wang, C. Xu, T.J. Esworthy et al., 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl. Mater. Interfaces 13(11), 12746–12758 (2021). https://doi.org/10.1021/acsami.0c17610
- H. Cui, C. Liu, T. Esworthy, Y. Huang, Z.-X. Yu et al., 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6(26), eabb5067 (2020). https://doi.org/10.1126/sciadv.abb5067
- M. Montgomery, S. Ahadian, L. Davenport Huyer, M. Lo Rito, R.A. Civitarese et al., Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16(10), 1038–1046 (2017). https://doi.org/10.1038/nmat4956
- Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
- X. Han, Q. Saiding, X. Cai, Y. Xiao, P. Wang et al., Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nano-Micro Lett. 15(1), 239 (2023). https://doi.org/10.1007/s40820-023-01187-2
- C. Cui, D.-O. Kim, M.Y. Pack, B. Han, L. Han et al., 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication 12(4), 045018 (2020). https://doi.org/10.1088/1758-5090/aba502
- A. Weekes, J.M. Wasielewska, N. Pinto, J. Jenkins, J. Patel et al., Harnessing the regenerative potential of fetal mesenchymal stem cells and endothelial colony-forming cells in the biofabrication of tissue-engineered vascular grafts (TEVGs). J. Tissue Eng. Regen. Med. 2024(1), 8707377 (2024). https://doi.org/10.1155/2024/8707377
- G. Größbacher, M. Bartolf-Kopp, C. Gergely, P.N. Bernal, S. Florczak et al., Volumetric printing across melt electrowritten scaffolds fabricates multi-material living constructs with tunable architecture and mechanics. Adv. Mater. 35(32), 2300756 (2023). https://doi.org/10.1002/adma.202300756
- C. Shen, A. Shen, 4D printing: innovative solutions and technological advances in orthopedic repair and reconstruction, personalized treatment and drug delivery. Biomed. Eng. Online 24(1), 5 (2025). https://doi.org/10.1186/s12938-025-01334-3
- D. You, G. Chen, C. Liu, X. Ye, S. Wang et al., 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 31(40), 2103920 (2021). https://doi.org/10.1002/adfm.202103920
- B. Hermenegildo, C. Ribeiro, L. Pérez-Álvarez, J.L. Vilas, D.A. Learmonth et al., Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf. B Biointerfaces 181, 1041–1047 (2019). https://doi.org/10.1016/j.colsurfb.2019.06.023
- A. Ding, S.J. Lee, R. Tang, K.L. Gasvoda, F. He et al., 4d cell-condensate bioprinting. Small 18(36), 2202196 (2022). https://doi.org/10.1002/smll.202202196
- C. Lin, L. Zhang, Y. Liu, L. Liu, J. Leng, 4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: a preliminary study. Sci. China Technol. Sci. 63(4), 578–588 (2020). https://doi.org/10.1007/s11431-019-1468-2
- Y. Deng, B. Yang, F. Zhang, Y. Liu, J. Sun et al., 4D printed orbital stent for the treatment of enophthalmic invagination. Biomaterials 291, 121886 (2022). https://doi.org/10.1016/j.biomaterials.2022.121886
- C. Lin, Z. Huang, Q. Wang, Z. Zou, W. Wang et al., Mass-producible near-body temperature-triggered 4D printed shape memory biocomposites and their application in biomimetic intestinal stents. Compos. B Eng. 256, 110623 (2023). https://doi.org/10.1016/j.compositesb.2023.110623
- C. Lin, L. Liu, Y. Liu, J. Leng, 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl. Mater. Interfaces 13(11), 12668–12678 (2021). https://doi.org/10.1021/acsami.0c17192
- C. Zhang, D. Cai, P. Liao, J.-W. Su, H. Deng et al., 4D printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 122, 101–110 (2021). https://doi.org/10.1016/j.actbio.2020.12.042
- H. Pandey, S.S. Mohol, R. Kandi, 4D printing of tracheal scaffold using shape-memory polymer composite. Mater. Lett. 329, 133238 (2022). https://doi.org/10.1016/j.matlet.2022.133238
- C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen et al., Shape memory polymer with programmable recovery onset. Nature 622(7984), 748–753 (2023). https://doi.org/10.1038/s41586-023-06520-8
- D. Mukherjee, J. Li, D. Spinosa, Aortic aneurysm management results through one year with a conformable neck sealing endograft and preemptive sac embolization with shape memory polymer devices. J. Vasc. Surg. Cases Innov. Tech. 11(1), 101656 (2025). https://doi.org/10.1016/j.jvscit.2024.101656
- Y. Woon, K. Hyun, W. Lee, K. Hwan, Comparative analysis of temperature-responsive hydrogel (PF 72) for postoperative pain after bimaxillary surgery: a retro-spective study. Aesthet. Plast. Surg. 48(7), 1271–1275 (2024). https://doi.org/10.1007/s00266-023-03846-6
- M. Zhang, W. Jiang, Z.-X. Wang, Z.-M. Zhou, Using shape-memory alloy staples to treat comminuted manubrium sterni fractures: a case report. World J. Clin. Cases 11(30), 7386–7392 (2023). https://doi.org/10.12998/wjcc.v11.i30.7386
- K. Somszor, O. Bas, F. Karimi, T. Shabab, N.T. Saidy et al., Personalized, mechanically strong, and biodegradable coronary artery stents via melt electrowriting. ACS Macro Lett. 9(12), 1732–1739 (2020). https://doi.org/10.1021/acsmacrolett.0c00644
- C. Wischke, A.T. Neffe, S. Steuer, A. Lendlein, Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J. Control. Release 138(3), 243–250 (2009). https://doi.org/10.1016/j.jconrel.2009.05.027
- M. Jahangiri, A.E. Kalajahi, M. Rezaei, M. Bagheri, Shape memory hydroxypropyl cellulose-g-poly (ε-caprolactone) networks with controlled drug release capabilities. J. Polym. Res. 26(6), 136 (2019). https://doi.org/10.1007/s10965-019-1798-1
- X. Wang, J. Zeng, D. Gan, K. Ling, M. He et al., Recent strategies and advances in hydrogel-based delivery platforms for bone regeneration. Nano-Micro Lett. 17(1), 73 (2024). https://doi.org/10.1007/s40820-024-01557-4
- Y. Wang, Y. Miao, J. Zhang, J.P. Wu, T.B. Kirk et al., Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater. Sci. Eng., C 84, 44–51 (2018). https://doi.org/10.1016/j.msec.2017.11.025
- A. Sadraei, S.M. Naghib, 4D printing of physical stimuli-responsive hydrogels for localized drug delivery and tissue engineering. Polym. Rev. 65(1), 104–168 (2025). https://doi.org/10.1080/15583724.2024.2427184
- A. Gazzaniga, A. Foppoli, M. Cerea, L. Palugan, M. Cirilli et al., Towards 4D printing in pharmaceutics. International Journal of Pharmaceutics: X 5, 100171 (2023). https://doi.org/10.1016/j.ijpx.2023.100171
- L. Keßler, Z. Mirzaei, J.C. Kade, R. Luxenhofer, Highly porous and drug-loaded amorphous solid dispersion microfiber scaffolds of indomethacin prepared by melt electrowriting. ACS Appl. Polym. Mater. 5(1), 913–922 (2023). https://doi.org/10.1021/acsapm.2c01845
- J. Ren, R. Murray, C.S. Wong, J. Qin, M. Chen et al., Development of 3D printed biodegradable mesh with antimicrobial properties for pelvic organ prolapse. Polymers 14(4), 763 (2022). https://doi.org/10.3390/polym14040763
- A. Mathew, B.L. Devlin, D. Singh, N.C. Paxton, M.A. Woodruff, Improving infection resistance in tissue engineered scaffolds for tensile applications using vancomycin-embedded melt electrowritten scaffolds. Macromol. Mater. Eng. 308(10), 2300168 (2023). https://doi.org/10.1002/mame.202300168
- J.P. Martins, E.T. da Silva, A.A. Fernandes, S. Costa de Oliveira, Three-dimensional melted electrowriting drug coating fibers for the prevention of device-associated infections: a pilot study. Bioengineering 11(7), 636 (2024). https://doi.org/10.3390/bioengineering11070636
- E. Hewitt, S. Mros, M. McConnell, J.D. Cabral, A. Ali, Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomed. Mater. 14(5), 055013 (2019). https://doi.org/10.1088/1748-605X/ab3344
- J. Bai, H. Wang, W. Gao, F. Liang, Z. Wang et al., Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int. J. Pharm. 576, 118941 (2020). https://doi.org/10.1016/j.ijpharm.2019.118941
- X. Lai, J. Huang, S. Huang, J. Wang, Y. Zheng et al., Antibacterial and osteogenic dual-functional micronano composite scaffold fabricated via melt electrowriting and solution electrospinning for bone tissue engineering. ACS Appl. Mater. Interfaces 16(29), 37707–37721 (2024). https://doi.org/10.1021/acsami.4c07400
- F.-L. He, X. Deng, Y.-Q. Zhou, T.-D. Zhang, Y.-L. Liu et al., Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym. Adv. Technol. 30(2), 425–434 (2019). https://doi.org/10.1002/pat.4481
- F. van Charante, D. Martínez-Pérez, C. Guarch-Pérez, C. Courtens, A. Sass et al., 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation. iScience 26(9), 107557 (2023). https://doi.org/10.1016/j.isci.2023.107557
- T. Xu, J. Gu, J. Meng, L. Du, A. Kumar et al., Melt electrowriting reinforced composite membrane for controlled drug release. J. Mech. Behav. Biomed. Mater. 132, 105277 (2022). https://doi.org/10.1016/j.jmbbm.2022.105277
- F. Afghah, N.B. Iyison, A. Nadernezhad, A. Midi, O. Sen et al., 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing. Adv. Healthc. Mater. 11(11), e2102068 (2022). https://doi.org/10.1002/adhm.202102068
- G. Cedillo-Servin, A.F. Louro, B. Gamelas, A. Meliciano, A. Zijl et al., Microfiber-reinforced hydrogels prolong the release of human induced pluripotent stem cell-derived extracellular vesicles to promote endothelial migration. Biomater. Adv. 155, 213692 (2023). https://doi.org/10.1016/j.bioadv.2023.213692
- X. Kong, D. Zhu, Y. Hu, C. Liu, Y. Zhang et al., Melt electrowriting (MEW)-PCL composite three-dimensional exosome hydrogel scaffold for wound healing. Mater. Des. 238, 112717 (2024). https://doi.org/10.1016/j.matdes.2024.112717
- A.R. Mridha, T.R. Dargaville, P.D. Dalton, L. Carroll, M.B. Morris et al., Prevascularized retrievable hybrid implant to enhance function of subcutaneous encapsulated islets. Tissue Eng. Part A 28(5–6), 212–224 (2022). https://doi.org/10.1089/ten.TEA.2020.0179
- K. Ghosal, P. Sarkar, D. Chakraborty, S. Das, K. Sarkar, Green synthesis of nonisocyanate poly(ester urethanes) from renewable resources and recycled poly(ethylene terephthalate) waste for tissue engineering application. ACS Sustainable Chem. Eng. 11(37), 13688–13708 (2023). https://doi.org/10.1021/acssuschemeng.3c03566
- K. Ghosal, S. Pal, D. Ghosh, K. Jana, K. Sarkar, In vivo biocompatible shape memory polyester derived from recycled polycarbonate e-waste for biomedical application. Biomater. Adv. 138, 212961 (2022). https://doi.org/10.1016/j.bioadv.2022.212961
- L. Pang, N.C. Paxton, J. Ren, F. Liu, H. Zhan et al., Development of mechanically enhanced polycaprolactone composites by a functionalized titanate nanofiller for melt electrowriting in 3D printing. ACS Appl. Mater. Interfaces 12(42), 47993–48006 (2020). https://doi.org/10.1021/acsami.0c14831
- G. Hochleitner, F. Chen, C. Blum, P.D. Dalton, B. Amsden et al., Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater. 72, 110–120 (2018). https://doi.org/10.1016/j.actbio.2018.03.023
- L. Keßler, R. Luxenhofer, Melt electrowriting of amorphous solid dispersions: influence of drug and plasticizer on rheology and printing performance.
References
C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra et al., Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5(1), 61–81 (2020). https://doi.org/10.1038/s41578-019-0150-z
W. Wu, J. Wang, G. Li, 3D/4D printing of stimuli-responsive polymers in biomedical engineering: materials, stimulations, and applications. Mater. Sci. Eng. R. Rep. 166, 101071 (2025). https://doi.org/10.1016/j.mser.2025.101071
P.D. Dalton, Melt electrowriting with additive manufacturing principles. Curr. Opin. Biomed. Eng. 2, 49–57 (2017). https://doi.org/10.1016/j.cobme.2017.05.007
T.D. Brown, P.D. Dalton, D.W. Hutmacher, Direct writing by way of melt electrospinning. Adv. Mater. 23(47), 5651–5657 (2011). https://doi.org/10.1002/adma.201103482
N.K. Karamanos, A.D. Theocharis, Z. Piperigkou, D. Manou, A. Passi et al., A guide to the composition and functions of the extracellular matrix. FEBS J. 288(24), 6850–6912 (2021). https://doi.org/10.1111/febs.15776
K.M.A. Mueller, A. Hangleiter, S. Burkhardt, D.M. Rojas-González, C. Kwade et al., Filament-based melt electrowriting enables dual-mode additive manufacturing for multiscale constructs. Small Sci. 3(8), 2300021 (2023). https://doi.org/10.1002/smsc.202300021
A. Reizabal, T. Kangur, P.G. Saiz, S. Menke, C. Moser et al., MEWron: an open-source melt electrowriting platform. Additive Manuf. 71, 103604 (2023). https://doi.org/10.1016/j.addma.2023.103604
X. Feng, L. Wang, Z. Xue, C. Xie, J. Han et al., Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. Sci. Adv. 10(10), eadk3854 (2024). https://doi.org/10.1126/sciadv.adk3854
S.O. Mathew, R. Qi, B.G. Amsden, Thermally stable, photocrossinkable and biocompatible copolymers for melt electrowriting. Biofabrication 17(4), 045001 (2025). https://doi.org/10.1088/1758-5090/adef81
E. Yarali, M.J. Mirzaali, A. Ghalayaniesfahani, A. Accardo, P.J. Diaz-Payno et al., 4D printing for biomedical applications. Adv. Mater. 36(31), 2402301 (2024). https://doi.org/10.1002/adma.202402301
A. Ding, F. Tang, E. Alsberg, 4D printing: a comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem. Rev. 125(7), 3663–3771 (2025). https://doi.org/10.1021/acs.chemrev.4c00070
A. Ding, F. Tang, E. Alsberg, The emerging 4D printing of shape-memory thermomorphs for self-adaptative biomedical implants. Adv. Funct. Mater. 35(28), 2418348 (2025). https://doi.org/10.1002/adfm.202418348
X. Wan, Z. Xiao, Y. Tian, M. Chen, F. Liu et al., Recent advances in 4D printing of advanced materials and structures for functional applications. Adv. Mater. 36(34), 2312263 (2024). https://doi.org/10.1002/adma.202312263
B. Liu, H. Li, F. Meng, Z. Xu, L. Hao et al., 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 15(1), 1587 (2024). https://doi.org/10.1038/s41467-024-45938-0
J. Shi, F. Xia, Q. Tu, C. Wang, Z. Wang et al., Damage-resistant and body-temperature shape memory skin-mimic elastomer for biomedical applications. Sci. Adv. 11(24), eadv4646 (2025). https://doi.org/10.1126/sciadv.adv4646
M. von Witzleben, A. Gasiūnaitė, M. Ihle, A.R. Akkineni, K. Schütz et al., Uniting 4D printing and melt electrowriting for the enhancement of regenerative small diameter vascular grafts. Adv. Healthc. Mater. e02380 (2025). https://doi.org/10.1002/adhm.202502380
J. Wang, J. Zhou, Z. Xie, Y. Zhang, M. He et al., Multifunctional 4D printed shape memory composite scaffolds with photothermal and magnetothermal effects for multimodal tumor therapy and bone repair. Biofabrication 17(2), 025032 (2025). https://doi.org/10.1088/1758-5090/adc29e
K. Mirasadi, M.A. Yousefi, L. Jin, D. Rahmatabadi, M. Baniassadi et al., 4D printing of magnetically responsive shape memory polymers: toward sustainable solutions in soft robotics, wearables, and biomedical devices. Adv. Sci., e13091 (2025). https://doi.org/10.1002/advs.202513091
A. Roy, Z. Zhang, M.K. Eiken, A. Shi, A. Pena-Francesch et al., Programmable tissue folding patterns in structured hydrogels. Adv. Mater. 36(43), 2300017 (2024). https://doi.org/10.1002/adma.202300017
Y. Xie, Q. Fang, H. Zhao, Y. Li, Z. Lin et al., Effects of six processing parameters on the size of PCL fibers prepared by melt electrospinning writing. Micromachines 14(7), 1437 (2023). https://doi.org/10.3390/mi14071437
A. Hrynevich, B.Ş Elçi, J.N. Haigh, R. McMaster, A. Youssef et al., Dimension-based design of melt electrowritten scaffolds. Small 14(22), e1800232 (2018). https://doi.org/10.1002/smll.201800232
G. Hochleitner, T. Jüngst, T.D. Brown, K. Hahn, C. Moseke et al., Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3), 035002 (2015). https://doi.org/10.1088/1758-5090/7/3/035002
C. Großhaus, E. Bakirci, M. Berthel, A. Hrynevich, J.C. Kade et al., Melt electrospinning of nanofibers from medical-grade poly(ε-caprolactone) with a modified nozzle. Small 16(44), e2003471 (2020). https://doi.org/10.1002/smll.202003471
C. Blum, J. Weichhold, G. Hochleitner, V. Stepanenko, F. Würthner et al., Controlling topography and crystallinity of melt electrowritten poly(ɛ-caprolactone) fibers. 3D Print. Addit. Manuf. 8(5), 315–321 (2021). https://doi.org/10.1089/3dp.2020.0290
C.B. Dayan, F. Afghah, B.S. Okan, M. Yıldız, Y. Menceloglu et al., Modeling 3D melt electrospinning writing by response surface methodology. Mater. Des. 148, 87–95 (2018). https://doi.org/10.1016/j.matdes.2018.03.053
Y. Xie, J. Chen, H. Zhao, F. Huang, Prediction of the fiber diameter of melt electrospinning writing by Kriging model. J. Appl. Polym. Sci. 139(21), 52212 (2022). https://doi.org/10.1002/app.52212
H. Xu, I. Liashenko, A. Lucchetti, L. Du, Y. Dong et al., Designing with circular arc toolpaths to increase the complexity of melt electrowriting. Adv. Mater. Technol. 7(10), 2101676 (2022). https://doi.org/10.1002/admt.202101676
I. Liashenko, A. Hrynevich, P.D. Dalton, Designing outside the box: unlocking the geometric freedom of melt electrowriting using microscale layer shifting. Adv. Mater. 32(28), 2001874 (2020). https://doi.org/10.1002/adma.202001874
Y. Wang, Y. Su, Y. Zhang, M. Chen, High-voltage wave induced a unique structured percolation network with a negative gauge factor. ACS Appl. Mater. Interfaces 14(4), 5661–5672 (2022). https://doi.org/10.1021/acsami.1c23741
H. Wang, W. Ou, H. Zhong, J. He, Z. Wang et al., Exploring precise deposition and influence mechanism for micro-scale serpentine structure fiber. Adv. Nano Res. 12, 151–165 (2022). https://doi.org/10.12989/anr.2022.12.2.151
B. Tandon, A.B. Züge, S. Luposchainsky, P.D. Dalton, Effects of electrode design on the melt electrowriting of sinusoidal structures. Adv. Eng. Mater. 25(17), 2300335 (2023). https://doi.org/10.1002/adem.202300335
C.-V. Nicolae, E. Olăreț, A.-E. Bratu, A. Lungu, I.-C. Stancu et al., Reinforcing melt electrowritten elements with entangled multifibrillar strands for thin hydrogels with potential in bone resurfacing. Mater. Des. 237, 112545 (2024). https://doi.org/10.1016/j.matdes.2023.112545
F. Eberle, A.-K. Gruska, B. Filippi, P. Stahlhut, G.G. Wallace et al., Hollow-fiber melt electrowriting using a 3D-printed coaxial nozzle. Adv. Eng. Mater. 24, 2100750 (2022). https://doi.org/10.1002/adem.202100750
Y. Su, Y. Zhang, Y. Chen, S.S. Majidi, M. Dong et al., Surface recrystallization on melt electrowritten scaffolds for acceleration of osteogenic differentiation. Mater. Today Phys. 41, 101344 (2024). https://doi.org/10.1016/j.mtphys.2024.101344
M. Ryma, T. Tylek, J. Liebscher, C. Blum, R. Fernandez et al., Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation. Adv. Mater. 33(33), 2101228 (2021). https://doi.org/10.1002/adma.202101228
J.C. Kade, P.F. Otto, R. Luxenhofer, P.D. Dalton, Melt electrowriting of poly(vinylidene difluoride) using a heated collector. Polym. Adv. Technol. 32(12), 4951–4955 (2021). https://doi.org/10.1002/pat.5463
H. Haag, D. Sonnleitner, G. Lang, P.D. Dalton, Melt electrowriting to produce microfiber fragments. Polym. Adv. Technol. 33(6), 1989–1992 (2022). https://doi.org/10.1002/pat.5641
R.S. Diaz, E.M. De-Juan-Pardo, P.D. Dalton, T.R. Dargaville, Semi-woven structures via dual nozzle melt electrowriting. Macromol. Mater. Eng. 308(4), 2200526 (2023). https://doi.org/10.1002/mame.202200526
P.B. Warren, Z.G. Davis, M.B. Fisher, Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering. J. Mech. Behav. Biomed. Mater. 99, 153–160 (2019). https://doi.org/10.1016/j.jmbbm.2019.07.013
J. Kim, E. Bakirci, K.L. O’Neill, A. Hrynevich, P.D. Dalton, Fiber bridging during melt electrowriting of poly(ε-caprolactone) and the influence of fiber diameter and wall height. Macromol. Mater. Eng. 306(3), 2000685 (2021). https://doi.org/10.1002/mame.202000685
L.D. Brenna, P. Edmund, C.A. Mark, C.P. Naomi, A.W. Maria, Advancing scaffold biomimicry: engineering mechanics in microfiber scaffolds with independently controlled architecture using melt electrowriting. bioRxiv (2023). https://doi.org/10.1101/2023.05.28.542676
B.L. Devlin, S. Kuba, P.C. Hall, A.B. McCosker, E. Pickering et al., A melt electrowriting toolbox for automated G-code generation and toolpath correction of flat and tubular constructs. Adv. Mater. Technol. 9(22), 2400419 (2024). https://doi.org/10.1002/admt.202400419
E. Bakirci, N. Schaefer, O. Dahri, A. Hrynevich, P. Strissel et al., Melt electrowritten in vitro radial device to study cell growth and migration. Adv. Biosyst. 4(10), e2000077 (2020). https://doi.org/10.1002/adbi.202000077
B.N. Jensen, Y. Wang, A. Le Friec, S. Nabavi, M. Dong et al., Wireless electromagnetic neural stimulation patch with anisotropic guidance. NPJ Flex. Electron. 7, 34 (2023). https://doi.org/10.1038/s41528-023-00270-3
F.M. Wunner, M.-L. Wille, T.G. Noonan, O. Bas, P.D. Dalton et al., Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 30(20), e1706570 (2018). https://doi.org/10.1002/adma.201706570
G. Zheng, G. Fu, J. Jiang, X. Wang, W. Li et al., Melt electrowriting stacked architectures with high aspect ratio. Appl. Phys. A 127(6), 410 (2021). https://doi.org/10.1007/s00339-021-04582-x
C.D. Lamb, B. Maitland, M.S. Hepburn, T.R. Dargaville, B.F. Kennedy et al., Understanding the significance of layer bonding in melt electrowriting. Adv. Sci. 11(47), 2407514 (2024). https://doi.org/10.1002/advs.202407514
Y. Su, Z. Zhang, Y. Wan, Y. Zhang, Z. Wang et al., A hierarchically ordered compacted coil scaffold for tissue regeneration. NPG Asia Mater. 12, 55 (2020). https://doi.org/10.1038/s41427-020-0234-7
A. Hrynevich, P. Achenbach, T. Jungst, G.A. Brook, P.D. Dalton, Design of suspended melt electrowritten fiber arrays for schwann cell migration and neurite outgrowth. Macromol. Biosci. 21(7), 2000439 (2021). https://doi.org/10.1002/mabi.202000439
C. Xie, Q. Gao, P. Wang, L. Shao, H. Yuan et al., Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater. Des. 181, 108092 (2019). https://doi.org/10.1016/j.matdes.2019.108092
N. Abbasi, S. Ivanovski, K. Gulati, R.M. Love, S. Hamlet, Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 24, 2 (2020). https://doi.org/10.1186/s40824-019-0180-z
N. Abbasi, A. Abdal-hay, S. Hamlet, E. Graham, S. Ivanovski, Effects of gradient and offset architectures on the mechanical and biological properties of 3-D melt electrowritten (MEW) scaffolds. ACS Biomater. Sci. Eng. 5(7), 3448–3461 (2019). https://doi.org/10.1021/acsbiomaterials.8b01456
M.K. Włodarczyk-Biegun, M. Villiou, M. Koch, C. Muth, P. Wang et al., Melt electrowriting of graded porous scaffolds to mimic the matrix structure of the human trabecular meshwork. ACS Biomater. Sci. Eng. 8(9), 3899–3911 (2022). https://doi.org/10.1021/acsbiomaterials.2c00623
M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo et al., Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci. Rep. 12(1), 19935 (2022). https://doi.org/10.1038/s41598-022-24275-6
M.J. Vernon, J. Lu, B. Padman, C. Lamb, R. Kent et al., Engineering heart valve interfaces using melt electrowriting: biomimetic design strategies from multi-modal imaging. Adv. Healthc. Mater. 11(24), 2201028 (2022). https://doi.org/10.1002/adhm.202201028
C.D. O’Connell, O. Bridges, C. Everett, N. Antill-O’Brien, C. Onofrillo et al., Electrostatic distortion of melt-electrowritten patterns by 3D objects: quantification, modeling, and toolpath correction. Adv. Mater. Technol. 6(11), 2100345 (2021). https://doi.org/10.1002/admt.202100345
U. Saha, R. Nairn, O. Keenan, M.G. Monaghan, A deeper insight into the influence of the electric field strength when melt-electrowriting on non-planar surfaces. Macromol. Mater. Eng. 306(12), 2100496 (2021). https://doi.org/10.1002/mame.202100496
Q.C. Peiffer, M. de Ruijter, J. van Duijn, D. Crottet, E. Dominic et al., Melt electrowriting onto anatomically relevant biodegradable substrates: resurfacing a diarthrodial joint. Mater. Des. 195, 109025 (2020). https://doi.org/10.1016/j.matdes.2020.109025
A. Zaeri, K. Cao, F. Zhang, R. Zgeib, R.C. Chang, Design and fabrication of fibrous spindle-like constructs using a melt electrohydrodynamic writing process. Macromol. Mater. Eng. 309(11), 2400080 (2024). https://doi.org/10.1002/mame.202400080
M. von Witzleben, T. Stoppe, A. Zeinalova, Z. Chen, T. Ahlfeld et al., Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties. Acta Biomater. 170, 124–141 (2023). https://doi.org/10.1016/j.actbio.2023.09.005
P. Terranova, K.M.A. Mueller, D. Biebl, A. D’Amore, P. Mela, A versatile 5-axis melt electrowriting platform for unprecedented design freedom of 3D fibrous scaffolds. Addit. Manuf. 93, 104431 (2024). https://doi.org/10.1016/j.addma.2024.104431
F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, The design and fabrication of engineered tubular tissue constructs enabled by electrohydrodynamic fabrication techniques: a review. Macromol. Mater. Eng. 309(9), 2400095 (2024). https://doi.org/10.1002/mame.202400095
A.M. van Genderen, K. Jansen, M. Kristen, J. van Duijn, Y. Li et al., Topographic guidance in melt-electrowritten tubular scaffolds enhances engineered kidney tubule performance. Front. Bioeng. Biotechnol. 8, 617364 (2021). https://doi.org/10.3389/fbioe.2020.617364
E. McColl, J. Groll, T. Jungst, P.D. Dalton, Design and fabrication of melt electrowritten tubes using intuitive software. Mater. Des. 155, 46–58 (2018). https://doi.org/10.1016/j.matdes.2018.05.036
F. Zhang, K. Cao, A. Zaeri, R. Zgeib, C. Buckley et al., Design, fabrication, and characterization of tubular scaffolds by way of a melt electrowriting process. Addit. Manuf. 62, 103383 (2023). https://doi.org/10.1016/j.addma.2022.103383
N.C. Paxton, R. Daley, D.P. Forrestal, M.C. Allenby, M.A. Woodruff, Auxetic tubular scaffolds via melt electrowriting. Mater. Des. 193, 108787 (2020). https://doi.org/10.1016/j.matdes.2020.108787
A.B. McCosker, M.E. Snowdon, R. Lamont, M.A. Woodruff, N.C. Paxton, Exploiting nonlinear fiber patterning to control tubular scaffold mechanical behavior. Adv. Mater. Technol. 7(11), 2200259 (2022). https://doi.org/10.1002/admt.202200259
E. Pickering, N.C. Paxton, A. Bo, B. O’Connell, M. King et al., 3D printed tubular scaffolds with massively tailorable mechanical behavior. Adv. Eng. Mater. 24(11), 2200479 (2022). https://doi.org/10.1002/adem.202200479
N.C. Paxton, M. Lanaro, A. Bo, N. Crooks, M.T. Ross et al., Design tools for patient specific and highly controlled melt electrowritten scaffolds. J. Mech. Behav. Biomed. Mater. 105, 103695 (2020). https://doi.org/10.1016/j.jmbbm.2020.103695
P. Mieszczanek, T.M. Robinson, P.D. Dalton, D.W. Hutmacher, Convergence of machine vision and melt electrowriting. Adv. Mater. 33(29), 2100519 (2021). https://doi.org/10.1002/adma.202100519
Z. Peng, M. Wang, H. Lv, J. Zhang, Y. Li et al., Electric field-driven microscale 3D printing of flexible thin-walled tubular mesh structures of molten polymers. Mater. Des. 225, 111433 (2023). https://doi.org/10.1016/j.matdes.2022.111433
Q.S. Thorsnes, P.R. Turner, M.A. Ali, J.D. Cabral, Integrating fused deposition modeling and melt electrowriting for engineering branched vasculature. Biomedicines 11(12), 3139 (2023). https://doi.org/10.3390/biomedicines11123139
N.T. Saidy, T. Shabab, O. Bas, D.M. Rojas-González, M. Menne et al., Melt electrowriting of complex 3D anatomically relevant scaffolds. Front. Bioeng. Biotechnol. 8, 793 (2020). https://doi.org/10.3389/fbioe.2020.00793
T.L. Brooks-Richards, N.C. Paxton, M.C. Allenby, M.A. Woodruff, Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Mater. Des. 215, 110466 (2022). https://doi.org/10.1016/j.matdes.2022.110466
S. Loewner, S. Heene, T. Baroth, H. Heymann, F. Cholewa et al., Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 10, 896719 (2022). https://doi.org/10.3389/fbioe.2022.896719
S. Ashour, H. Xu, Melt electrowriting: a study of jet diameters and jet speeds along the spinline. Polym. Adv. Technol. 33(9), 3013–3016 (2022). https://doi.org/10.1002/pat.5755
K. Cao, F. Zhang, A. Zaeri, Y. Zhang, R. Zgeib et al., Advances in design and quality of melt electrowritten scaffolds. Mater. Des. 226, 111618 (2023). https://doi.org/10.1016/j.matdes.2023.111618
F. Tourlomousis, H. Ding, D.M. Kalyon, R.C. Chang, Melt electrospinning writing process guided by a “printability number.” J. Manuf. Sci. Eng. 139(8), 081004 (2017). https://doi.org/10.1115/1.4036348
K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, Advancing a real-time image-based jet lag tracking methodology for optimizing print parameters and assessing melt electrowritten fiber quality. Addit. Manuf. 54, 102764 (2022). https://doi.org/10.1016/j.addma.2022.102764
H. Ding, K. Cao, F. Zhang, W. Boettcher, R.C. Chang, A fundamental study of charge effects on melt electrowritten polymer fibers. Mater. Des. 178, 107857 (2019). https://doi.org/10.1016/j.matdes.2019.107857
L. Du, L. Nie, L. Zhang, H. Lu, L. Yang et al., Enhancing the printing accuracy of melt electrowritten fibers deposited on aluminum foils. Mater. Lett. 321, 132397 (2022). https://doi.org/10.1016/j.matlet.2022.132397
H. Lu, Y. Sun, Y. Chen, L. Nie, L. Yang et al., The effects of voltage configurations on print accuracy in melt electrowriting. Mater. Lett. 334, 133738 (2023). https://doi.org/10.1016/j.matlet.2022.133738
F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, Effects of scaffold design parameters on the printing accuracy for melt electrowriting. J. Manuf. Process. 81, 177–190 (2022). https://doi.org/10.1016/j.jmapro.2022.06.070
F. Zhang, K. Cao, A. Zaeri, R. Zgeib, R.C. Chang, Effects of printing sequence on the printing accuracy of melt electrowriting scaffolds. Macromol. Mater. Eng. 307(9), 2200222 (2022). https://doi.org/10.1002/mame.202200222
A. Hrynevich, I. Liashenko, P.D. Dalton, Accurate prediction of melt electrowritten laydown patterns from simple geometrical considerations. Adv. Mater. Technol. 5(12), 2000772 (2020). https://doi.org/10.1002/admt.202000772
K. Cao, F. Zhang, B. Wang, Y. Sun, A. Zaeri et al., Analytical interpretation of microscale fiber deviation in designing for polymer melt electrohydrodynamic-based additive manufacturing. Addit. Manuf. 58, 103035 (2022). https://doi.org/10.1016/j.addma.2022.103035
Y. Jin, Q. Gao, C. Xie, G. Li, J. Du et al., Fabrication of heterogeneous scaffolds using melt electrospinning writing: design and optimization. Mater. Des. 185, 108274 (2020). https://doi.org/10.1016/j.matdes.2019.108274
K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, Quantitative investigation into the design and process parametric effects on the fiber-entrapped residual charge for a polymer melt electrohydrodynamic printing process. Macromol. Mater. Eng. 307(3), 2100766 (2022). https://doi.org/10.1002/mame.202100766
K. Cao, F. Zhang, R.C. Chang, A charge-based mechanistic study into the effects of process parameters on fiber accumulating geometry for a melt electrohydrodynamic process. Processes 8(11), 1440 (2020). https://doi.org/10.3390/pr8111440
K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, A charge‐based mechanistic study into the effect of collector temperature on melt electrohydrodynamic printing outcomes. Adv. Mater. Technol. 6(7), 2100251 (2021). https://doi.org/10.1002/admt.202100251
K. Cao, F. Zhang, A. Zaeri, R. Zgeib, R.C. Chang, A holistic model for melt electrowritten three-dimensional structured materials based on residual charge. Int. J. Bioprinting 9, 656 (2022). https://doi.org/10.18063/ijb.v9i2.656
L. Du, L. Yang, H. Lu, L. Nie, Y. Sun et al., Additive manufacturing of ultrahigh-resolution poly(ε-caprolactone) scaffolds using melt electrowriting. Polymer 301, 127028 (2024). https://doi.org/10.1016/j.polymer.2024.127028
Z. Zou, Y. Wang, Z. Shen, N. Luo, Study on suppression strategy of jet lag effect in melt electrowriting. J. Mech. Sci. Technol. 37(9), 4801–4808 (2023). https://doi.org/10.1007/s12206-023-0832-8
X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding et al., Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29(2), 1805290 (2019). https://doi.org/10.1002/adfm.201805290
H. Xu, L. Du, Sustainable medical materials printed by melt electrowriting: a mini-review. Curr. Opin. Biomed. Eng. 27, 100464 (2023). https://doi.org/10.1016/j.cobme.2023.100464
J.C. Kade, P.D. Dalton, Polymers for melt electrowriting. Adv. Healthc. Mater. 10, 2001232 (2021). https://doi.org/10.1002/adhm.202001232
N.C. Paxton, S.W.K. Ho, B.T. Tuten, J. Lipton-Duffin, M.A. Woodruff, Degradation of melt electrowritten PCL scaffolds following melt processing and plasma surface treatment. Macromol. Rapid Commun. 42(23), e2100433 (2021). https://doi.org/10.1002/marc.202100433
C. Böhm, P. Stahlhut, J. Weichhold, A. Hrynevich, J. Teßmar et al., The multiweek thermal stability of medical-grade poly(ε-caprolactone) during melt electrowriting. Small 18(3), 2104193 (2022). https://doi.org/10.1002/smll.202104193
J. Delaey, P. Dubruel, S. Van Vlierberghe, Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 30(44), 1909047 (2020). https://doi.org/10.1002/adfm.201909047
P. Feng, F. Yang, J. Jia, J. Zhang, W. Tan et al., Mechanism and manufacturing of 4D printing: derived and beyond the combination of 3D printing and shape memory material. Int. J. Extrem. Manuf. 6(6), 062011 (2024). https://doi.org/10.1088/2631-7990/ad7e5f
W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao et al., Shape memory materials. Mater. Today 13(7–8), 54–61 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0
S. Yang, Y. He, Z. Song, Y. Li, Research status and potential direction for thermoplastic shape memory polymers and composites: a review. Polymers 17(10), 1360 (2025). https://doi.org/10.3390/polym17101360
A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002). https://doi.org/10.1126/science.1066102
A. Lendlein, P. Neuenschwander, U.W. Suter, Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol. Chem. Phys. 199, 2785–2796 (1998). https://doi.org/10.1002/(SICI)1521-3935(19981201)199:12%3c2785::AID-MACP2785%3e3.3.CO;2-O
M. Balk, M. Behl, C. Wischke, J. Zotzmann, A. Lendlein, Recent advances in degradable lactide-based shape-memory polymers. Adv. Drug Deliv. Rev. 107, 136–152 (2016). https://doi.org/10.1016/j.addr.2016.05.012
W. Zhao, C. Yue, L. Liu, Y. Liu, J. Leng, Research progress of shape memory polymer and 4D printing in biomedical application. Adv. Healthc. Mater. 12(16), 2201975 (2023). https://doi.org/10.1002/adhm.202201975
B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh et al., Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8(16), 10070–10087 (2016). https://doi.org/10.1021/acsami.6b01295
F. Zhang, N. Wen, L. Wang, Y. Bai, J. Leng, Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int. J. Smart Nano Mater. 12(4), 375–389 (2021). https://doi.org/10.1080/19475411.2021.1974972
C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers–the role of morphology, processing effects, and matrix degradation. Expert Opin. Drug Deliv. 10(9), 1193–1205 (2013). https://doi.org/10.1517/17425247.2013.797406
A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002). https://doi.org/10.1002/1521-3773
A. Lendlein, O.E.C. Gould, Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4(2), 116–133 (2019). https://doi.org/10.1038/s41578-018-0078-8
M. Bodaghi, A.R. Damanpack, W.H. Liao, Adaptive metamaterials by functionally graded 4D printing. Mater. Des. 135, 26–36 (2017). https://doi.org/10.1016/j.matdes.2017.08.069
T. Xie, Recent advances in polymer shape memory. Polymer 52(22), 4985–5000 (2011). https://doi.org/10.1016/j.polymer.2011.08.003
Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33(6), 2000713 (2021). https://doi.org/10.1002/adma.202000713
Z. Shao, H. Chen, Q. Wang, G. Kang, J. Jiang et al., Melt electrowriting ordered TPU microfibrous mesh for on-demand colorimetric wearable sweat detection. IEEE Sens. J. 22(19), 18560–18566 (2022). https://doi.org/10.1109/JSEN.2022.3199406
C. Pasini, Z.V. Soreño, D. Schönfeld, T. Pretsch, G. Constante et al., 4D fabrication of two-way shape memory polymeric composites by electrospinning and melt electrowriting. Macromol. Rapid Commun. 45(11), 2400010 (2024). https://doi.org/10.1002/marc.202400010
M. Xue, W. Zhang, H. Jin, H. Wu, B. Qiu et al., Composite additive manufacturing for suspended microelectrode arrays: advancing oriented myocardial tissue culturing and electrophysiological sensing. Biosens. Bioelectron. 287, 117686 (2025). https://doi.org/10.1016/j.bios.2025.117686
L. Nie, Y. Sun, X. Ming, Z. Xu, X. Ye et al., High-resolution 3D printed strain sensor with superb stretchability and sensitivity: unveiling the potential of melt electrowriting. Mater. Today 84, 39–47 (2025). https://doi.org/10.1016/j.mattod.2025.01.017
D.C.S. Costa, P.D.C. Costa, M.C. Gomes, A. Chandrakar, P.A. Wieringa et al., Universal strategy for designing shape memory hydrogels. ACS Mater. Lett. 4(4), 701–706 (2022). https://doi.org/10.1021/acsmaterialslett.2c00107
G. Constante, I. Apsite, P. Auerbach, S. Aland, D. Schönfeld et al., Smart mechanically tunable surfaces with shape memory behavior and wetting-programmable topography. ACS Appl. Mater. Interfaces 14(17), 20208–20219 (2022). https://doi.org/10.1021/acsami.2c01078
G. Constante, I. Apsite, D. Schönfeld, T. Pretsch, L. Ionov, Reversibly photoswitchable high-aspect ratio surfaces. Small Struct. 4(10), 2300040 (2023). https://doi.org/10.1002/sstr.202300040
H. Ramaraju, R.E. Akman, D.L. Safranski, S.J. Hollister, Designing biodegradable shape memory polymers for tissue repair. Adv. Funct. Mater. 30(44), 2002014 (2020). https://doi.org/10.1002/adfm.202002014
N. Roudbarian, M. Baniasadi, P. Nayyeri, M. Ansari, R. Hedayati et al., Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Mater. Struct. 30(10), 105006 (2021). https://doi.org/10.1088/1361-665X/ac1b3b
M. Ramezani, D. Getya, I. Gitsov, M.B.B. Monroe, Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications. J. Mater. Chem. B 12(5), 1217–1231 (2024). https://doi.org/10.1039/D3TB02472E
T. Sun, H. Lu, S. Luposchainsky, L. Yang, X. Zhang et al., Challenges of high-temperature melt electrowriting: a study of EVOH printing. Polymer 331, 128518 (2025). https://doi.org/10.1016/j.polymer.2025.128518
D.J. Roach, X. Kuang, C. Yuan, K. Chen, H.J. Qi, Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct. 27(12), 125011 (2018). https://doi.org/10.1088/1361-665x/aae96f
T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14(11), 1087–1098 (2015). https://doi.org/10.1038/nmat4433
T. Guin, M.J. Settle, B.A. Kowalski, A.D. Auguste, R.V. Beblo et al., Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018). https://doi.org/10.1038/s41467-018-04911-4
M. Chen, M. Gao, L. Bai, H. Zheng, H.J. Qi et al., Recent advances in 4D printing of liquid crystal elastomers. Adv. Mater. 35(23), e2209566 (2023). https://doi.org/10.1002/adma.202209566
K.M. Herbert, H.E. Fowler, J.M. McCracken, K.R. Schlafmann, J.A. Koch et al., Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7(1), 23–38 (2022). https://doi.org/10.1038/s41578-021-00359-z
M. Javadzadeh, J. del Barrio, C. Sánchez-Somolinos, Melt electrowriting of liquid crystal elastomer scaffolds with programmed mechanical response. Adv. Mater. 35(14), 2209244 (2023). https://doi.org/10.1002/adma.202209244
D. Roach, C. Yuan, X. Kuang, V.C. Li, P. Blake et al., Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 11(21), 19514–19521 (2019). https://doi.org/10.1021/acsami.9b04401
C. Zhang, X. Lu, G. Fei, Z. Wang, H. Xia et al., 4D printing of a liquid crystal elastomer with a controllable orientation gradient. ACS Appl. Mater. Interfaces 11(47), 44774–44782 (2019). https://doi.org/10.1021/acsami.9b18037
C.P. Ambulo, J.J. Burroughs, J.M. Boothby, H. Kim, M.R. Shankar et al., Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9(42), 37332–37339 (2017). https://doi.org/10.1021/acsami.7b11851
A. Kotikian, R.L. Truby, J.W. Boley, T.J. White, J.A. Lewis, 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018). https://doi.org/10.1002/adma.201706164
X. Yin, L. Li, Y.-X. Zhao, Z.-Y. Xu, L.-Y. Shi et al., Adaptive structural regulation of disulfide contained liquid crystal elastomers for mild temperature-induced two-way shape memory effects. Macromolecules 58(12), 6005–6016 (2025). https://doi.org/10.1021/acs.macromol.5c01057
A. Ding, O. Jeon, R. Tang, Y.B. Lee, S.J. Lee et al., Cell-laden multiple-step and reversible 4d hydrogel actuators to mimic dynamic tissue morphogenesis. Adv. Sci. 8(9), 2004616 (2021). https://doi.org/10.1002/advs.202004616
P.J. Díaz-Payno, M. Kalogeropoulou, I. Muntz, E. Kingma, N. Kops et al., Swelling-dependent shape-based transformation of a human mesenchymal stromal cells-laden 4d bioprinted construct for cartilage tissue engineering. Adv. Healthc. Mater. 12(2), 2201891 (2023). https://doi.org/10.1002/adhm.202201891
M. Hippler, K. Weißenbruch, K. Richler, E.D. Lemma, M. Nakahata et al., Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Sci. Adv. 6(39), eabc2648 (2020). https://doi.org/10.1126/sciadv.abc2648
D.J. Wu, N.H. Vonk, B.A.G. Lamers, M. Castilho, J. Malda et al., Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. Eur. Polym. J. 141, 110099 (2020). https://doi.org/10.1016/j.eurpolymj.2020.110099
D. Nahm, F. Weigl, N. Schaefer, A. Sancho, A. Frank et al., A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels. Mater. Horiz. 7(3), 928–933 (2020). https://doi.org/10.1039/C9MH01654F
Z. Kroneková, T. Lorson, J. Kronek, R. Luxenhofer, Cytotoxicity of 2-oxazines and poly(2-oxazine)s in mouse fibroblast. ChemRxiv (2018). https://doi.org/10.26434/chemrxiv.5793990.v1
C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromol 12(3), 824–830 (2011). https://doi.org/10.1021/bm101446k
A. Cortés, A. Cosola, M. Sangermano, M. Campo, S. González Prolongo et al., DLP 4D-printing of remotely, modularly, and selectively controllable shape memory polymer nanocomposites embedding carbon nanotubes. Adv. Funct. Mater. 31(50), 2106774 (2021). https://doi.org/10.1002/adfm.202106774
C. Zeng, L. Liu, W. Bian, Y. Liu, J. Leng, 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance. Compos. Part B Eng. 194, 108034 (2020). https://doi.org/10.1016/j.compositesb.2020.108034
Z. Meng, J. He, Z. Xia, D. Li, Fabrication of microfibrous PCL/MWCNTs scaffolds via melt-based electrohydrodynamic printing. Mater. Lett. 278, 128440 (2020). https://doi.org/10.1016/j.matlet.2020.128440
Y. Zhang, A. Le Friec, Z. Zhang, C.A. Müller, T. Du et al., Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring. Mater. Today 70, 237–272 (2023). https://doi.org/10.1016/j.mattod.2023.09.005
C. Zhang, X. Li, L. Jiang, D. Tang, H. Xu et al., 3D printing of functional magnetic materials: from design to applications. Adv. Funct. Mater. 31(34), 2102777 (2021). https://doi.org/10.1002/adfm.202102777
E. Yarali, M. Baniasadi, A. Zolfagharian, M. Chavoshi, F. Arefi et al., Magneto-/ electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 26, 101306 (2022). https://doi.org/10.1016/j.apmt.2021.101306
V.Q. Nguyen, A.S. Ahmed, R.V. Ramanujan, Morphing soft magnetic composites. Adv. Mater. 24(30), 4041–4054 (2012). https://doi.org/10.1002/adma.201104994
V. Frantellizzi, M. Conte, M. Pontico, A. Pani, R. Pani et al., New frontiers in molecular imaging with superparamagnetic iron oxide nanops (SPIONs): efficacy, toxicity, and future applications. Nucl. Med. Mol. Imaging 54(2), 65–80 (2020). https://doi.org/10.1007/s13139-020-00635-w
K.M.A. Mueller, G.J. Topping, S.P. Schwaminger, Y. Zou, D.M. Rojas-González et al., Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. Biomater. Sci. 9(13), 4607–4612 (2021). https://doi.org/10.1039/d1bm00461a
I. Unalan, I. Occhipinti, M. Miola, E. Vernè, A.R. Boccaccini, Development of super-paramagnetic iron oxide nanop-coated melt electrowritten scaffolds for biomedical applications. Macromol. Biosci. 24(3), e2300397 (2024). https://doi.org/10.1002/mabi.202300397
S. Mansi, S.V. Dummert, G.J. Topping, M.Z. Hussain, C. Rickert et al., Introducing metal–organic frameworks to melt electrowriting: multifunctional scaffolds with controlled microarchitecture for tissue engineering applications. Adv. Funct. Mater. 34(2), 2304907 (2024). https://doi.org/10.1002/adfm.202304907
J.C. Kade, E. Bakirci, B. Tandon, D. Gorgol, M. Mrlik et al., The impact of including carbonyl iron ps on the melt electrowriting process. Macromol. Mater. Eng. 307(12), 2200478 (2022). https://doi.org/10.1002/mame.202200478
P.G. Saiz, A. Reizabal, S. Luposchainsky, J.L. Vilas-Vilela, S. Lanceros-Mendez et al., Magnetically responsive melt electrowritten structures. Adv. Mater. Technol. 8(13), 2202063 (2023). https://doi.org/10.1002/admt.202202063
G. Cedillo-Servin, O. Dahri, J. Meneses, J. van Duijn, H. Moon et al., 3D printed magneto-active microfiber scaffolds for remote stimulation and guided organization of 3D in vitro skeletal muscle models. Small 20(12), 2307178 (2024). https://doi.org/10.1002/smll.202307178
M. Tang, S. Mahri, Y.-P. Shiau, T. Mukarrama, R. Villa et al., Multifunctional and scalable nanops for bimodal image-guided phototherapy in bladder cancer treatment. Nano-Micro Lett. 17(1), 222 (2025). https://doi.org/10.1007/s40820-025-01717-0
D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42(17), 7244 (2013). https://doi.org/10.1039/c3cs35489j
X. Wu, T. Vedelaar, R. Li, R. Schirhagl, M. Kamperman et al., Melt electrowritten scaffolds containing fluorescent nanodiamonds for improved mechanical properties and degradation monitoring. Bioprinting 32, e00288 (2023). https://doi.org/10.1016/j.bprint.2023.e00288
P.G. Saiz, A. Reizabal, J.L. Vilas-Vilela, S. Lanceros-Mendez, P.D. Dalton, Thermochromic responses on melt electrowritten poly(ϵ-caprolactone) microstructures. ACS Appl. Polym. Mater. 5(6), 3883–3887 (2023). https://doi.org/10.1021/acsapm.3c00427
W. Peng, J. Yin, X. Zhang, Y. Shi, G. Che et al., 4D printed shape memory anastomosis ring with controllable shape transformation and degradation. Adv. Funct. Mater. 33(20), 2214505 (2023). https://doi.org/10.1002/adfm.202214505
Z.-W. Ren, Z.-Y. Wang, Y.-W. Ding, J.-W. Dao, H.-R. Li et al., Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater. Sci. 11(18), 6013–6034 (2023). https://doi.org/10.1039/d3bm01043k
Y.-W. Ding, Y. Li, Z.-W. Zhang, J.-W. Dao, D.-X. Wei, Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanops for mini-invasive androgenetic alopecia treatment. Bioact. Mater. 38, 95–108 (2024). https://doi.org/10.1016/j.bioactmat.2024.04.020
M.Z. Gładysz, D. Ubels, M. Koch, A. Amirsadeghi, F. Alleblas et al., Melt electrowriting of polyhydroxyalkanoates for enzymatically degradable scaffolds. Adv. Healthc. Mater. 14(6), 2401504 (2025). https://doi.org/10.1002/adhm.202401504
D. Sang, X. Luo, J. Liu, Biological interaction and imaging of ultrasmall gold nanops. Nano-Micro Lett. 16(1), 44 (2023). https://doi.org/10.1007/s40820-023-01266-4
E. Navarro-Palomares, P. González-Saiz, C. Renero-Lecuna, R. Martín-Rodríguez, F. Aguado et al., Dye-doped biodegradable nanop SiO2 coating on zinc- and iron-oxide nanops to improve biocompatibility and for in vivo imaging studies. Nanoscale 12(10), 6164–6175 (2020). https://doi.org/10.1039/C9NR08743E
D. Rahmatabadi, M.A. Yousefi, S. Shamsolhodaei, M. Baniassadi, K. Abrinia et al., 4D printing of polyethylene glycol-grafted carbon nanotube-reinforced polyvinyl chloride–polycaprolactone composites for enhanced shape recovery and thermomechanical performance. Adv. Intell. Syst. (2025). https://doi.org/10.1002/aisy.202500113
G. Constante, I. Apsite, H. Alkhamis, M. Dulle, M. Schwarzer et al., 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers. ACS Appl. Mater. Interfaces 13(11), 12767–12776 (2021). https://doi.org/10.1021/acsami.0c18608
J. Uribe-Gomez, A. Posada-Murcia, A. Shukla, M. Ergin, G. Constante et al., Shape-morphing fibrous hydrogel/elastomer bilayers fabricated by a combination of 3D printing and melt electrowriting for muscle tissue regeneration. ACS Appl. Bio Mater. 4(2), 1720–1730 (2021). https://doi.org/10.1021/acsabm.0c01495
X. Wang, Y. He, Y. Liu, J. Leng, Advances in shape memory polymers: remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R. Rep. 151, 100702 (2022). https://doi.org/10.1016/j.mser.2022.100702
D. Chen, Q. Liu, Z. Han, J. Zhang, H. Song et al., 4D printing strain self-sensing and temperature self-sensing integrated sensor-actuator with bioinspired gradient gaps. Adv. Sci. 7(13), 2000584 (2020). https://doi.org/10.1002/advs.202000584
M.N.I. Shiblee, K. Ahmed, M. Kawakami, H. Furukawa, 4D printing of shape-memory hydrogels for soft-robotic functions. Adv. Mater. Technol. 4(8), 1900071 (2019). https://doi.org/10.1002/admt.201900071
R. Qu, D. Zhou, T. Guo, W. He, C. Cui et al., 4D printing of shape memory inferior vena cava filters based on copolymer of poly(glycerol sebacate) acrylate-co-hydroxyethyl methacrylate (PGSA-HEMA). Mater. Des. 225, 111556 (2023). https://doi.org/10.1016/j.matdes.2022.111556
X. Peng, S. Wu, X. Sun, L. Yue, S.M. Montgomery et al., 4D printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. Adv. Mater. 34(39), e2204890 (2022). https://doi.org/10.1002/adma.202204890
H. Lu, M. Lei, C. Zhao, Y. Yao, J. Gou et al., Controlling Au electrode patterns for simultaneously monitoring electrical actuation and shape recovery in shape memory polymer. Compos. B Eng. 80, 37–42 (2015). https://doi.org/10.1016/j.compositesb.2015.05.039
A. Servant, V. Leon, D. Jasim, L. Methven, P. Limousin et al., Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv. Healthc. Mater. 3(8), 1334–1343 (2014). https://doi.org/10.1002/adhm.201400016
S. Anand, C.A. Müller, BNørrehvedde. Jensen, M. Chen, Embracing remote fields as the fourth dimension of tissue biofabrication. Adv. Funct. Mater. 34(32), 2401654 (2024). https://doi.org/10.1002/adfm.202401654
C. Neudorfer, C.T. Chow, A. Boutet, A. Loh, J. Germann et al., Kilohertz-frequency stimulation of the nervous system: a review of underlying mechanisms. Brain Stimul. 14(3), 513–530 (2021). https://doi.org/10.1016/j.brs.2021.03.008
Y.S. Lui, W.T. Sow, L.P. Tan, Y. Wu, Y. Lai et al., 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 92, 19–36 (2019). https://doi.org/10.1016/j.actbio.2019.05.005
J. Liu, Y. Gao, H. Wang, R. Poling-Skutvik, C.O. Osuji et al., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2(6), 1900163 (2020). https://doi.org/10.1002/aisy.201900163
L. Ceamanos, Z. Kahveci, M. López-Valdeolivas, D. Liu, D.J. Broer et al., Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions. ACS Appl. Mater. Interfaces 12(39), 44195–44204 (2020). https://doi.org/10.1021/acsami.0c13341
Y. Deng, F. Zhang, M. Jiang, Y. Liu, H. Yuan et al., Programmable 4d printing of photoactive shape memory composite structures. ACS Appl. Mater. Interfaces 14(37), 42568–42577 (2022). https://doi.org/10.1021/acsami.2c13982
S. Tasmim, Z. Yousuf, F.S. Rahman, E. Seelig, A.J. Clevenger et al., Liquid crystal elastomer based dynamic device for urethral support: potential treatment for stress urinary incontinence. Biomaterials 292, 121912 (2023). https://doi.org/10.1016/j.biomaterials.2022.121912
J. Wang, Y. Xu, D. Zhang, W. Liu, Z. Li et al., Multifunctional, NIR light-responsive, 4D printable polyurethane/polydopamine nanocomposite. Polymer 324, 128214 (2025). https://doi.org/10.1016/j.polymer.2025.128214
A. Zolfagharian, A. Kaynak, S.Y. Khoo, A. Kouzani, Pattern-driven 4d printing. Sens. Actuators, A Phys. 274, 231–243 (2018). https://doi.org/10.1016/j.sna.2018.03.034
H. Cui, S. Miao, T. Esworthy, S.-J. Lee, X. Zhou et al., A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res. 12, 1381–1388 (2019). https://doi.org/10.1007/s12274-019-2340-9
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2(10), 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
S. Johannsmeier, P. Heeger, M. Terakawa, S. Kalies, A. Heisterkamp et al., Gold nanop-mediated laser stimulation induces a complex stress response in neuronal cells. Sci. Rep. 8, 6533 (2018). https://doi.org/10.1038/s41598-018-24908-9
H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23(7), 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
Y. Kim, X. Zhao, Magnetic soft materials and robots. Chem. Rev. 122(5), 5317–5364 (2022). https://doi.org/10.1021/acs.chemrev.1c00481
F. Zhang, L. Wang, Z. Zheng, Y. Liu, J. Leng, Magnetic programming of 4D printed shape memory composite structures. Compos. Part A Appl. Sci. Manuf. 125, 105571 (2019). https://doi.org/10.1016/j.compositesa.2019.105571
H. Liu, F. Wang, W. Wu, X. Dong, L. Sang, 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures. Compos. Part B Eng. 248, 110382 (2023). https://doi.org/10.1016/j.compositesb.2022.110382
V. Walsh, A. Cowey, Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1(1), 73–80 (2000). https://doi.org/10.1038/35036239
A.T. Sack, D.E.J. Linden, Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res. Brain Res. Rev. 43(1), 41–56 (2003). https://doi.org/10.1016/s0165-0173(03)00191-7
N.G. Horton, K. Wang, D. Kobat, C.G. Clark, F.W. Wise et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013). https://doi.org/10.1038/nphoton.2012.336
M. Hallett, Transcranial magnetic stimulation: a primer. Neuron 55(2), 187–199 (2007). https://doi.org/10.1016/j.neuron.2007.06.026
J.H. Young, M.-T. Wang, I.A. Brezovich, Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. Electron. Lett. 16(10), 358–359 (1980). https://doi.org/10.1049/el:19800255
S. Das Barman, A.W. Reza, N. Kumar, M.E. Karim, A.B. Munir, Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 51, 1525–1552 (2015). https://doi.org/10.1016/j.rser.2015.07.031
S. Parimita, A. Kumar, H. Krishnaswamy, P. Ghosh, Solvent triggered shape morphism of 4D printed hydrogels. J. Manuf. Process. 85, 875–884 (2023). https://doi.org/10.1016/j.jmapro.2022.11.065
M. Jamal, S.S. Kadam, R. Xiao, F. Jivan, T.-M. Onn et al., Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv. Healthc. Mater. 2(8), 1142–1150 (2013). https://doi.org/10.1002/adhm.201200458
P. Imrie, J. Jin, Polymer 4D printing: advanced shape-change and beyond. J. Polym. Sci. 60(2), 149–174 (2022). https://doi.org/10.1002/pol.20210718
Y. Hu, Z. Wang, D. Jin, C. Zhang, R. Sun et al., Botanical-inspired 4d printing of hydrogel at the microscale. Adv. Funct. Mater. 30(4), 1907377 (2020). https://doi.org/10.1002/adfm.201907377
D. Kim, K.-H. Kim, Y.-S. Yang, K.-S. Jang, S. Jeon et al., 4D printing and simulation of body temperature-responsive shape-memory polymers for advanced biomedical applications. Int. J. Bioprinting (2024). https://doi.org/10.36922/ijb.3035
S. Choudhury, A. Joshi, V.S. Baghel, G.K. Ananthasuresh, S. Asthana et al., Design-encoded dual shape-morphing and shape-memory in 4d printed polymer parts toward cellularized vascular grafts. J. Mater. Chem. B 12(23), 5678–5689 (2024). https://doi.org/10.1039/D4TB00437J
F. Tang, A. Ding, Y. Xu, Y. Ye, L. Li et al., Gene and photothermal combination therapy: principle, materials, and amplified anticancer intervention. Small 20(6), 2307078 (2024). https://doi.org/10.1002/smll.202307078
S.H. Beachy, E.A. Repasky, Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int. J. Hyperthermia 27(4), 344–352 (2011). https://doi.org/10.3109/02656736.2011.562873
O. Feuerstein, K. Zeichner, C. Imbari, Z. Ormianer, N. Samet et al., Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin. Oral Implants Res. 19(6), 629–633 (2008). https://doi.org/10.1111/j.1600-0501.2007.01502.x
Y. Zhu, K. Deng, J. Zhou, C. Lai, Z. Ma et al., Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 15(1), 1123 (2024). https://doi.org/10.1038/s41467-024-45437-2
J. Wang, Z. Wang, Z. Song, L. Ren, Q. Liu, Programming multistage shape memory and variable recovery force with 4D printing parameters. Adv. Mater. Technol. 4(11), 1900535 (2019). https://doi.org/10.1002/admt.201900535
S. Nam, E. Pei, The influence of shape changing behaviors from 4D printing through material extrusion print patterns and infill densities. Materials 13(17), 3754 (2020). https://doi.org/10.3390/ma13173754
A.R. Rajkumar, K. Shanmugam, Additive manufacturing-enabled shape transformations via FFF 4d printing. J. Mater. Res. 33(24), 4362–4376 (2018). https://doi.org/10.1557/jmr.2018.397
L. Huang, R. Jiang, J. Wu, J. Song, H. Bai et al., Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29(7), 1605390 (2017). https://doi.org/10.1002/adma.201605390
Y. Wu, G. Guo, Z. Wei, J. Qian, Programming soft shape-morphing systems by harnessing strain mismatch and snap-through bistability: a review. Materials 15(7), 2397 (2022). https://doi.org/10.3390/ma15072397
D.J. Roach, X. Sun, X. Peng, F. Demoly, K. Zhou et al., 4D printed multifunctional composites with cooling-rate mediated tunable shape morphing. Adv. Funct. Mater. 32(36), 2203236 (2022). https://doi.org/10.1002/adfm.202203236
Z.J. Wang, C.N. Zhu, W. Hong, Z.L. Wu, Q. Zheng, Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures. J. Mater. Chem. B 4(44), 7075–7079 (2016). https://doi.org/10.1039/C6TB02178F
H. Wang, J. Guo, Recent advances in 4d printing hydrogel for biological interfaces. Int. J. Mater. Form. 16(5), 55 (2023). https://doi.org/10.1007/s12289-023-01778-9
M.R. Vinciguerra, D.K. Patel, W. Zu, M. Tavakoli, C. Majidi et al., Multimaterial printing of liquid crystal elastomers with integrated stretchable electronics. ACS Appl. Mater. Interfaces 15(20), 24777–24787 (2023). https://doi.org/10.1021/acsami.2c23028
J.W. Boley, W.M. van Rees, C. Lissandrello, M.N. Horenstein, R.L. Truby et al., Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl. Acad. Sci. U. S. A. 116(42), 20856–20862 (2019). https://doi.org/10.1073/pnas.1908806116
O. Bas, B. Gorissen, S. Luposchainsky, T. Shabab, K. Bertoldi et al., Ultrafast, miniature soft actuators. Multifunct. Mater. 4(4), 045001 (2021). https://doi.org/10.1088/2399-7532/ac2faf
Y. Wang, X. Li, An accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling. Mech. Mater. 151, 103628 (2020). https://doi.org/10.1016/j.mechmat.2020.103628
S. Timoshenko, Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11(3), 233 (1925). https://doi.org/10.1364/josa.11.000233
Y. Wu, X. Hao, R. Xiao, J. Lin, Z.L. Wu et al., Controllable bending of bi-hydrogel strips with differential swelling. Acta Mech. Solida Sin. 32(5), 652–662 (2019). https://doi.org/10.1007/s10338-019-00106-6
L. Li, P. Wang, H. Liang, J. Jin, Y. Zhang et al., Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J. Adv. Res. 54, 89–104 (2023). https://doi.org/10.1016/j.jare.2023.01.004
C.-Y. Cheng, H. Xie, Z.-Y. Xu, L. Li, M.-N. Jiang et al., 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem. Eng. J. 396, 125242 (2020). https://doi.org/10.1016/j.cej.2020.125242
Z. Li, P. Yan, H. Wang, Y. Zhang, J. Kong et al., Dynamic bonds reinforced polyamide elastomer for biomedical orthosis. Adv. Sci. 12(30), e04395 (2025). https://doi.org/10.1002/advs.202504395
M. Ramezani, Z. Mohd Ripin, 4D printing in biomedical engineering: advancements, challenges, and future directions. J. Funct. Biomater. 14(7), 347 (2023). https://doi.org/10.3390/jfb14070347
A. Mandal, K. Chatterjee, 4D printing for biomedical applications. J. Mater. Chem. B 12(12), 2985–3005 (2024). https://doi.org/10.1039/d4tb00006d
X. Chen, S. Han, W. Wu, Z. Wu, Y. Yuan et al., Harnessing 4D printing bioscaffolds for advanced orthopedics. Small 18(36), e2106824 (2022). https://doi.org/10.1002/smll.202106824
N. Wang, Review of cellular mechanotransduction. J. Phys. D Appl. Phys. 50(23), 233002 (2017). https://doi.org/10.1088/1361-6463/aa6e18
A. Melocchi, M. Uboldi, M. Cerea, A. Foppoli, A. Maroni et al., Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 173, 216–237 (2021). https://doi.org/10.1016/j.addr.2021.03.013
U. Aizarna-Lopetegui, S.C. Bittinger, N. Álvarez, M. Henriksen-Lacey, D. de Jimenez Aberasturi, Stimuli-responsive hybrid materials for 4D in vitro tissue models. Mater. Today Bio. 33, 102035 (2025). https://doi.org/10.1016/j.mtbio.2025.102035
W.J. Hendrikson, J. Rouwkema, F. Clementi, C.A. van Blitterswijk, S. Farè et al., Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 9(3), 031001 (2017). https://doi.org/10.1088/1758-5090/aa8114
Y. Wang, H. Cui, Y. Wang, C. Xu, T.J. Esworthy et al., 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl. Mater. Interfaces 13(11), 12746–12758 (2021). https://doi.org/10.1021/acsami.0c17610
H. Cui, C. Liu, T. Esworthy, Y. Huang, Z.-X. Yu et al., 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6(26), eabb5067 (2020). https://doi.org/10.1126/sciadv.abb5067
M. Montgomery, S. Ahadian, L. Davenport Huyer, M. Lo Rito, R.A. Civitarese et al., Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16(10), 1038–1046 (2017). https://doi.org/10.1038/nmat4956
Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16(1), 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
X. Han, Q. Saiding, X. Cai, Y. Xiao, P. Wang et al., Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nano-Micro Lett. 15(1), 239 (2023). https://doi.org/10.1007/s40820-023-01187-2
C. Cui, D.-O. Kim, M.Y. Pack, B. Han, L. Han et al., 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication 12(4), 045018 (2020). https://doi.org/10.1088/1758-5090/aba502
A. Weekes, J.M. Wasielewska, N. Pinto, J. Jenkins, J. Patel et al., Harnessing the regenerative potential of fetal mesenchymal stem cells and endothelial colony-forming cells in the biofabrication of tissue-engineered vascular grafts (TEVGs). J. Tissue Eng. Regen. Med. 2024(1), 8707377 (2024). https://doi.org/10.1155/2024/8707377
G. Größbacher, M. Bartolf-Kopp, C. Gergely, P.N. Bernal, S. Florczak et al., Volumetric printing across melt electrowritten scaffolds fabricates multi-material living constructs with tunable architecture and mechanics. Adv. Mater. 35(32), 2300756 (2023). https://doi.org/10.1002/adma.202300756
C. Shen, A. Shen, 4D printing: innovative solutions and technological advances in orthopedic repair and reconstruction, personalized treatment and drug delivery. Biomed. Eng. Online 24(1), 5 (2025). https://doi.org/10.1186/s12938-025-01334-3
D. You, G. Chen, C. Liu, X. Ye, S. Wang et al., 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 31(40), 2103920 (2021). https://doi.org/10.1002/adfm.202103920
B. Hermenegildo, C. Ribeiro, L. Pérez-Álvarez, J.L. Vilas, D.A. Learmonth et al., Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf. B Biointerfaces 181, 1041–1047 (2019). https://doi.org/10.1016/j.colsurfb.2019.06.023
A. Ding, S.J. Lee, R. Tang, K.L. Gasvoda, F. He et al., 4d cell-condensate bioprinting. Small 18(36), 2202196 (2022). https://doi.org/10.1002/smll.202202196
C. Lin, L. Zhang, Y. Liu, L. Liu, J. Leng, 4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: a preliminary study. Sci. China Technol. Sci. 63(4), 578–588 (2020). https://doi.org/10.1007/s11431-019-1468-2
Y. Deng, B. Yang, F. Zhang, Y. Liu, J. Sun et al., 4D printed orbital stent for the treatment of enophthalmic invagination. Biomaterials 291, 121886 (2022). https://doi.org/10.1016/j.biomaterials.2022.121886
C. Lin, Z. Huang, Q. Wang, Z. Zou, W. Wang et al., Mass-producible near-body temperature-triggered 4D printed shape memory biocomposites and their application in biomimetic intestinal stents. Compos. B Eng. 256, 110623 (2023). https://doi.org/10.1016/j.compositesb.2023.110623
C. Lin, L. Liu, Y. Liu, J. Leng, 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl. Mater. Interfaces 13(11), 12668–12678 (2021). https://doi.org/10.1021/acsami.0c17192
C. Zhang, D. Cai, P. Liao, J.-W. Su, H. Deng et al., 4D printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 122, 101–110 (2021). https://doi.org/10.1016/j.actbio.2020.12.042
H. Pandey, S.S. Mohol, R. Kandi, 4D printing of tracheal scaffold using shape-memory polymer composite. Mater. Lett. 329, 133238 (2022). https://doi.org/10.1016/j.matlet.2022.133238
C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen et al., Shape memory polymer with programmable recovery onset. Nature 622(7984), 748–753 (2023). https://doi.org/10.1038/s41586-023-06520-8
D. Mukherjee, J. Li, D. Spinosa, Aortic aneurysm management results through one year with a conformable neck sealing endograft and preemptive sac embolization with shape memory polymer devices. J. Vasc. Surg. Cases Innov. Tech. 11(1), 101656 (2025). https://doi.org/10.1016/j.jvscit.2024.101656
Y. Woon, K. Hyun, W. Lee, K. Hwan, Comparative analysis of temperature-responsive hydrogel (PF 72) for postoperative pain after bimaxillary surgery: a retro-spective study. Aesthet. Plast. Surg. 48(7), 1271–1275 (2024). https://doi.org/10.1007/s00266-023-03846-6
M. Zhang, W. Jiang, Z.-X. Wang, Z.-M. Zhou, Using shape-memory alloy staples to treat comminuted manubrium sterni fractures: a case report. World J. Clin. Cases 11(30), 7386–7392 (2023). https://doi.org/10.12998/wjcc.v11.i30.7386
K. Somszor, O. Bas, F. Karimi, T. Shabab, N.T. Saidy et al., Personalized, mechanically strong, and biodegradable coronary artery stents via melt electrowriting. ACS Macro Lett. 9(12), 1732–1739 (2020). https://doi.org/10.1021/acsmacrolett.0c00644
C. Wischke, A.T. Neffe, S. Steuer, A. Lendlein, Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J. Control. Release 138(3), 243–250 (2009). https://doi.org/10.1016/j.jconrel.2009.05.027
M. Jahangiri, A.E. Kalajahi, M. Rezaei, M. Bagheri, Shape memory hydroxypropyl cellulose-g-poly (ε-caprolactone) networks with controlled drug release capabilities. J. Polym. Res. 26(6), 136 (2019). https://doi.org/10.1007/s10965-019-1798-1
X. Wang, J. Zeng, D. Gan, K. Ling, M. He et al., Recent strategies and advances in hydrogel-based delivery platforms for bone regeneration. Nano-Micro Lett. 17(1), 73 (2024). https://doi.org/10.1007/s40820-024-01557-4
Y. Wang, Y. Miao, J. Zhang, J.P. Wu, T.B. Kirk et al., Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater. Sci. Eng., C 84, 44–51 (2018). https://doi.org/10.1016/j.msec.2017.11.025
A. Sadraei, S.M. Naghib, 4D printing of physical stimuli-responsive hydrogels for localized drug delivery and tissue engineering. Polym. Rev. 65(1), 104–168 (2025). https://doi.org/10.1080/15583724.2024.2427184
A. Gazzaniga, A. Foppoli, M. Cerea, L. Palugan, M. Cirilli et al., Towards 4D printing in pharmaceutics. International Journal of Pharmaceutics: X 5, 100171 (2023). https://doi.org/10.1016/j.ijpx.2023.100171
L. Keßler, Z. Mirzaei, J.C. Kade, R. Luxenhofer, Highly porous and drug-loaded amorphous solid dispersion microfiber scaffolds of indomethacin prepared by melt electrowriting. ACS Appl. Polym. Mater. 5(1), 913–922 (2023). https://doi.org/10.1021/acsapm.2c01845
J. Ren, R. Murray, C.S. Wong, J. Qin, M. Chen et al., Development of 3D printed biodegradable mesh with antimicrobial properties for pelvic organ prolapse. Polymers 14(4), 763 (2022). https://doi.org/10.3390/polym14040763
A. Mathew, B.L. Devlin, D. Singh, N.C. Paxton, M.A. Woodruff, Improving infection resistance in tissue engineered scaffolds for tensile applications using vancomycin-embedded melt electrowritten scaffolds. Macromol. Mater. Eng. 308(10), 2300168 (2023). https://doi.org/10.1002/mame.202300168
J.P. Martins, E.T. da Silva, A.A. Fernandes, S. Costa de Oliveira, Three-dimensional melted electrowriting drug coating fibers for the prevention of device-associated infections: a pilot study. Bioengineering 11(7), 636 (2024). https://doi.org/10.3390/bioengineering11070636
E. Hewitt, S. Mros, M. McConnell, J.D. Cabral, A. Ali, Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomed. Mater. 14(5), 055013 (2019). https://doi.org/10.1088/1748-605X/ab3344
J. Bai, H. Wang, W. Gao, F. Liang, Z. Wang et al., Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int. J. Pharm. 576, 118941 (2020). https://doi.org/10.1016/j.ijpharm.2019.118941
X. Lai, J. Huang, S. Huang, J. Wang, Y. Zheng et al., Antibacterial and osteogenic dual-functional micronano composite scaffold fabricated via melt electrowriting and solution electrospinning for bone tissue engineering. ACS Appl. Mater. Interfaces 16(29), 37707–37721 (2024). https://doi.org/10.1021/acsami.4c07400
F.-L. He, X. Deng, Y.-Q. Zhou, T.-D. Zhang, Y.-L. Liu et al., Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym. Adv. Technol. 30(2), 425–434 (2019). https://doi.org/10.1002/pat.4481
F. van Charante, D. Martínez-Pérez, C. Guarch-Pérez, C. Courtens, A. Sass et al., 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation. iScience 26(9), 107557 (2023). https://doi.org/10.1016/j.isci.2023.107557
T. Xu, J. Gu, J. Meng, L. Du, A. Kumar et al., Melt electrowriting reinforced composite membrane for controlled drug release. J. Mech. Behav. Biomed. Mater. 132, 105277 (2022). https://doi.org/10.1016/j.jmbbm.2022.105277
F. Afghah, N.B. Iyison, A. Nadernezhad, A. Midi, O. Sen et al., 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing. Adv. Healthc. Mater. 11(11), e2102068 (2022). https://doi.org/10.1002/adhm.202102068
G. Cedillo-Servin, A.F. Louro, B. Gamelas, A. Meliciano, A. Zijl et al., Microfiber-reinforced hydrogels prolong the release of human induced pluripotent stem cell-derived extracellular vesicles to promote endothelial migration. Biomater. Adv. 155, 213692 (2023). https://doi.org/10.1016/j.bioadv.2023.213692
X. Kong, D. Zhu, Y. Hu, C. Liu, Y. Zhang et al., Melt electrowriting (MEW)-PCL composite three-dimensional exosome hydrogel scaffold for wound healing. Mater. Des. 238, 112717 (2024). https://doi.org/10.1016/j.matdes.2024.112717
A.R. Mridha, T.R. Dargaville, P.D. Dalton, L. Carroll, M.B. Morris et al., Prevascularized retrievable hybrid implant to enhance function of subcutaneous encapsulated islets. Tissue Eng. Part A 28(5–6), 212–224 (2022). https://doi.org/10.1089/ten.TEA.2020.0179
K. Ghosal, P. Sarkar, D. Chakraborty, S. Das, K. Sarkar, Green synthesis of nonisocyanate poly(ester urethanes) from renewable resources and recycled poly(ethylene terephthalate) waste for tissue engineering application. ACS Sustainable Chem. Eng. 11(37), 13688–13708 (2023). https://doi.org/10.1021/acssuschemeng.3c03566
K. Ghosal, S. Pal, D. Ghosh, K. Jana, K. Sarkar, In vivo biocompatible shape memory polyester derived from recycled polycarbonate e-waste for biomedical application. Biomater. Adv. 138, 212961 (2022). https://doi.org/10.1016/j.bioadv.2022.212961
L. Pang, N.C. Paxton, J. Ren, F. Liu, H. Zhan et al., Development of mechanically enhanced polycaprolactone composites by a functionalized titanate nanofiller for melt electrowriting in 3D printing. ACS Appl. Mater. Interfaces 12(42), 47993–48006 (2020). https://doi.org/10.1021/acsami.0c14831
G. Hochleitner, F. Chen, C. Blum, P.D. Dalton, B. Amsden et al., Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater. 72, 110–120 (2018). https://doi.org/10.1016/j.actbio.2018.03.023
L. Keßler, R. Luxenhofer, Melt electrowriting of amorphous solid dispersions: influence of drug and plasticizer on rheology and printing performance.